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The magnetic properties of disordered Ising antiferromagnets with frustrated intrasublattice 
exchange interaction are studied. The theory satisfactorily describes the experimental results for 
the layer antiferromagnets Fe, Mn, - , TiO, (Refs. 5-7) and Fe, - , Mg, C12 (Ref. 2).  

INTRODUCTION 

A considerable number of experiments, devoted to the 
study of the properties of disordered Ising antiferromagnets, 
have now been performed.'-' It has been found that below 
the temperature T,, the introduction of strong disorder into 
an antiferromagnet results in the appearance of a re-entrant 
transition of a new state of matter, in which long-range anti- 
ferromagnetic order and nonergodicity-states of an anti- 
ferromagnetic spin glass (AFSG)--coexist. 

A theoretical study of frustrated Ising antiferromagnets 
carried out by Korenblit et a/.*-l2 has shown that the unique- 
ness of frustrated antiferromagnets is manifested in their be- 
havior in an external magnetic field. Specifically, in a transi- 
tion from a ferromagnetic phase into a ferromagnetic spin 
glass the magnetic field, while increasing the magnetization, 
suppresses the glass state, so that the temperature of the re- 
entrant transition decreases monotonically as the field is in- 
creased, while in an AFSG a magnetic field suppresses both 
antiferromagnetic and spin-glass order. For this reason, in a 
wide range of parameters the transition temperature T, (H) 
in AFSG increases monotonically as a function of the field, 
until it intersects the Ntel line TN (H) at the field Ho. In 
fields stronger than Ho the temperature T, decreases mono- 
tonically as H is increased, and in this region a transition 
from the ergodic paramagnetic state into a "pure" spin glass 
without long-range magnetic order occurs on the line 
T, (H). Experimental studies performed for a laminar Ising 
metamagnet Fe, _, Mg, C1, reveal that T, is almost doubled 
as the field is increa~ed.~ In addition, it was found in Ref. 2 
that the curve T, (H) has a wide maximum near the intersec- 
tion with the NCel line, but there were no reliable experimen- 
tal data in this region. 

A detailed study of a different frustrated Ising antifer- 
romagnet Fe,Mn, - ,TiO, was performed and recently 
publi~hed.~,' the results obtained from samples withx > 0.57 
have a number of important features compared both with 
studies of Fe, -, Mg, C1, and with the theoretical predic- 
tions made in Refs. 8-12. 

1. It is observed that the temperature T, (H) increases 
strongly, compared with Fe, - , Mg, Cl,, as the field is in- 
creased (by a factor of 6.3 for TN (O)/T, (0) ~ 6 . 6 )  up to the 
field Hm at which the temperature T, (H) is equal to the 
Ntel temperature TN (H) . 

2. In the field Hm the line T, (H) has a distinct and 
sharp maximum, after which T, (H) drops rapidly as the 
field is increased; in addition, the line T, (H) for Hz Hm 
passes inside the antiferromagnetic (AF) phase. 

3. The temperature dependence of the magnetic suscep- 
tibility X (  T) in the ergodic AF phase has a minimum whose 

depth increases with the degree of frustration. 
In Refs. 8-12 attention is devoted primarily to antifer- 

romagnets in which frustrations of the intersublattice inter- 
action are stronger than frustrations of the intrasublattice 
interaction. In the alloys Fe, Mn, _, TiO, the intrasublat- 
tice interaction is mainly frustrated. The point is that both 
FeTiO, and MnTiO, are layer antiferromagnets with anti- 
ferromagnetic interlayer interaction, but the intralayer in- 
teraction is ferromagnetic in FeTiO, and antiferromagnetic 
in MnTiO,. For this reason if MnTiO, is added to FeTiO,, 
then frustrations appear within the sublattice layers, while 
the intersublattice interaction, though its magnitude is ran- 
dom, always carried an antiferromagnetic sign. 

In this paper it is shown that the behavior of a frustrated 
antiferromagnet in an external magnetic field in the case 
when the frustrations of the intrasublattice interaction are 
much stronger than the frustrations of the intersublattice 
interaction is different from that studied previously in Refs. 
8-12. It turns out that the obtained theoretical phase dia- 
grams and the temperature dependence of the magnetic sus- 
ceptibility are qualitatively in agreement with the experi- 
mental results mentioned 

1. DERIVATION OF THE BASIC RELATIONS 

We study an Ising magnet in which the spins belong the 
two different sublattices and interact according to the Ham- 
iltonian 

The indexp = 1 and 2 labels the sublattices, while the intra- 
sublattice interaction VV and the intersublattice interaction 
JV do not depend on the distance ro and are distributed nor- 
mallyI3 with means Vo/Nand J,/Nand variances V2/Nand 
J2/N, respectively, where N is the number of spins in one 
sublattice and H i s  the external magnetic field. 

Using the method of replicas we obtain the free energy 
spin: 

j=-T  lim -- I { e x p ( F  ~ n )  
2nN 
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with the boundary conditions 

Here n is the number of replicas and a and fl are the replica 
indices. The free energy is calculated by calculating the inte- 
gral in ( 2 )  by the saddle-point method, which gives 

J2+V2 T 1 
f = - - - -  lim - @ [ (x ,") , ,  ( Y , " ~ ) o I ,  t = l ,  2,3, 

4T 2 ,.+, n 

while the saddle-point values (xy) , ,  (yyB),  satisfy the equa- 
tions 

The brackets indicate an average weighted with the expo- 
nential of the function ( 3 ) .  

Using Parisi's parameterization for the matrices 
q;B,'4315 determining the spin-glass order parameter, and 
passing to the limit n+O by Duplantier's method,16 we ob- 
tain the following expression for the free energy f and the 
equation of state, which are correct in both the ergodic and 
nonergodic phases: 

where the functions qp ( x , y )  and Pp ( x , y )  satisfy the system 
of equations 

@ P  1 d2qp x d ( p p  d 
-- - - -[ - + -( -) ] - [ V2qp ( x )  +J2qF ( x )  1, a x 2 a y 2  z a y  dx 

( 7 )  

The system is closed by the condition of self-consistency for 
the magnetizations m ,,, of the sublattices and spin-glass pa- 
rameters q,, ,  ( x ) :  

where we introduced the function 

J f p  ( 2 ,  Y )  ~ d r p p l a ~ ,  Mp ( 1 ,  Y =th ylT. 

The equations ( 7 ) - ( 9 )  were first derived in Ref. 10. Analo- 
gous expressions for a magnet with different concentrations 
of atoms in the sublattices were derived in Ref. 17. 

Writing qp = dq,, /dx we obtain from the expressions 
(91, using (71, 

where we introduced the operatorg918 

Using the obvious properties 
h np Mp = U, 

af dg ( 1 1 )  h, ( f g )  = 6,f) g+i(h,g) + ( ~ ~ g . , + J ~ p , )  - - 
ay ay' 

we find 

and therefore we obtain for q,, ,  the system of equations 
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From here it is obvious that if qp #O,  then the following 
relation must hold: 

which is the condition under which Parisi's parameteriza- 
tion is marginally stable. 

Above the temperature of the transition into the noner- 
godic state the relation ( 13) cannot be satisfied, and for this 
reason it follows from ( 12) that qp = 0 and hence qp (x,y), 
Pp (x,y), and qp (x )  do not depend on x. For this reason the 
expressions for the free energy and the equation of state as- 
sume the following forms:" 

where the brackets (...), denote Gaussian averaging over z: 

The relation ( 13) transforms, in the process, into the equa- 
tion for the temperature of the transition into the nonergodic 
state T, (H) : 

On the line T, (H) ,  as shown in Ref. 19, the replica-symmet- 
ric solution of the saddle-point equations (5 )  becomes un- 
stable with respect to small fluctuations which break this 
symmetry. By studying the expression (3)  for stability rela- 
tive to small fluctuations of this solution which do not break 
the replica symmetry it is possible to find the stability bound- 
ary of the paramagnetic Tpa, (H) and antiferromagnetic 
Taf (HI phases in the ergodic state ( T >  T, (H)  ) . I2  Above 
some temperature Tc (triple critical point) the lines Taf (H) 
and T,,, (H) merge and determine the second-order transi- 
tion line TN (H). The first-order phase transition line, start- 
ing from the triple critical point ( Tc ,H, ), can be found from 
the condition that the free energies of the antiferromagnetic 
and paramagnetic phases, determined by the expression 
(14), are equal. As regards the triple critical point itself 
(Tc ,Hc ) it is not convenient to find it from the condition 
Taf (H)  = Tpa, (H). It is simpler to determine it from the 
condition that the coefficient B in the expansion of the free 
energy (14) in powers of the antiferromagnetic order pa- 
rameter I = m, - m, vanish: 

B=P (.3q"+2g3-3/20wg3m"q'+3/2ug4q'-3/4uwg,q'q~f 
-'/,wg, (q') 3 - ' / 2 ~ g z ~ " ' ) ,  (19) 

where we have introduced the following notation: 

and the quantities mu, q', q", and q" are found from the 
relations 

As should be the case the equation A = 0 is identical to the 
equation for the line Tpa, (H) (Ref. 12). The additional con- 
dition B = 0 determines the position of the tricritical point 
(Tc,Hc). Thus we have derived equations which make it 
possible to construct the complete phase diagram in the er- 
godic region. 

2. PHASE DIAGRAM OF ANTIFERROMAGNETS WITH SMALL 
J 

In the limiting case J / V- 0 Eq. ( 16) for T, decomposes 
into two independent equations 

and 

When there is no external field we have m, = - m, and 
q, = q,, and for this reason Tgl = Tg2. For H > 0 this is no 
longer the case. 

One can see from Eqs. ( 12) that if in the present case 
J /V-0  there is no relation between q, and q,, then they can 
vanish independently. Physically, this means that the transi- 
tion into the nonergodic state in each sublattice occurs inde- 
pendently at the temperature TgI and Tg2, respectively. It is 
obvious that the effects of irreversibility, based on which the 
transition into the nonergodic state is recorded in an experi- 
ment, will be manifested first at the highest of these two 
temperatures, so that it is the field dependence of this tem- 
perature that must be compared with experiment. 

It is not difficult to understand that the high transition 
temperature corresponds to the sublattice whose spins in a 
weak external field are oriented opposite to this field. In- 
deed, let the spins of the first sublattice be oriented down. In 
the entire region of existence of antiferrornagnetism in a non- 
zero field the magnetization of the first sublattice is less in 
absolute magnitude that the magnetization of the second 
sublattice. For this reason in this region the line T,, (H) on 
the H-T phase diagram will pass above the line Tg2 (H) .  In 
the region where the antiferromagnetic order is destroyed by 
an external field (i.e., m, = m,, q, = 9,) the temperature 
TgI (H) is equal to the temperature Tg2 (HI.  

We now present some qualitative considerations which 
make it possible to understand the field dependence of the 
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temperature T,, ( H )  and Tg2 ( H ) .  Consider the first sublat- 
tice. As the external field grows the magnetization of this 
sublattice lm,l will decrease, which will cause T,, to in- 
crease. The temperature T,, ( H )  will increase until I m, 1 van- 
ishes in some field H." At H  = Hm m ,  changes sign. As the 
external field increases further m ,  increases, and TgI corre- 
spondingly decreases. Thus the curve T,, ( H )  has a maxi- 
mum at H  = Hm . Conversely, the magnetization at first in- 
creases as the external field is intensified and Tg2 decreases. 
For H  2 H,  the temperature Tg2 increases as the field is in- 
creased up to levels at which the antiferromagnetism is de- 
stroyed. 

It follows from the arguments presented above that the 
maximum value of the temperature T,, ( H )  is equal to V. 
Indeed, on the line m ,  ( T , H )  = 0  the parameter q,  is deter- 
mined from the equation 

and 

These equations have one solution q ,  = 0 ,  Tgm = V. 
This result corresponds to the fact that on the line 
m , ( T , H )  = 0  on the first sublattice in the field H,  trans- 
forms from the paramagnetic state ( m ,  = q ,  = 0 )  into the 
state of a "pure" spin glass ( m  , = 0 ,  q ,  # 0 ) .  For this reason 
the function T,, ( H )  should have a cusp in the field H,  . 

Figure 1 shows the H-T phase diagram of a frustrated 
antiferromagnet with J =  Vo=O and 
TN ( H  = O)/T,  ( H  = 0 )  ~ 9 . 5 ,  obtained by means of nu- 
merical analysis of Eqs. ( 15 ) and ( 16). It is interesting that 
the maximum of T,, lies very close to the NCel line TN ( H ) .  
The lines T, ( H )  and TN ( H )  intersect in the field Ho > H ,  , 
and in addition the slope of the line T, ( H )  changes in the 
field Ho. In weak magnetic fields the change in the tempera- 

FIG. 1. The phase diagram of a frustrated antiferromagnet in a magnetic 
field with J =  V,,=O, J,JV= 1.7, Jo= 1 ( T , / T , l , = o  = 9 . 5 ) .  The 
dot-dashed line is the line T, ( H ) ;  the dashed line is the approximate 
continuation of the Nee1 line T,  ( H )  in the nonergodic state. Phases: P- 
paramagnetic, AF-antiferromagnetic ergodic, AFSG-antiferromag- 
netic nonergodic, SG-spin glass. 

"PG AFSG . 

FIG. 2. The phase diagram of a frustrated antiferromagnet in a magnetic 
field with V,, = 0 ,  J,, = 1, V 2 / J 2  = 5, J , J ( V 2  + J2)'" = 1.5 
( T , / T , l ,  =, = 5.5).  

ture satisfies AT, = T, ( H )  - T, ( 0 )  a H. It can be shown 
that AT, is a linear function of H  in weak fields only for 
J  = 0. For J  # O ,  then we have AT, a H  ' .  

For nonzero but sufficiently small values of J  the maxi- 
mum on the curve T, , ( H )  becomes wider and shifts away 
from the line TN ( H )  (Fig. 2 ) .  As regards the second solu- 
tion of Eq. ( 16) for T,, strictly speaking, it is physically 
meaningless for J  # O ,  since nonergodicity arises immediate- 
ly in both sublattices. If, however, we have J< V, then, as 
follows from Eqs. ( 1 2 ) ,  in the temperature range 
T,, ( H )  2 T >  Tg2 ( H )  the derivative q 2 a  J 2 q , / V 2 4 q 1 .  In 
other words, in this interval of temperatures the nonergodi- 
city of the second sublattice is weak. In this sense the line 
T,, ( H )  now determines not a phase transition, but rather 
crossover to the regime of strong nonergodicity of the second 
sublattice. 

Figure 3  shows the phase diagram at J=O, 
T, /T,  I,_ = 5.6, Vo/TN = 0.3. In accordance with the 
'analysis performed in Refs. 10 and 12 the line TN ( H )  con- 
tains two tricritical points K ,  and K,, between which lies the 
region of the first-order phase transition. In this case the 
phase diagram contains an interval of field HA < H  < HK2, in 

FIG. 3. The phase diagram of a frustrated antiferromagnet in a magnetic 
field with J =  0, J,, + V,, = 1 ,  Vo = 0.3, (J,, + V , , ) / V =  1.5 
( T, /T ,  1, =, = 5.5) .  The dot-dashed line is the first-order phase transi- 
tion line; K ,  and K2 are the triple critical points; on the section AK2 the 
transition from the paramagnetic ( P )  phase into the antiferromagnetic 
nonergodic phase (AFSG) occurs in a jump-like fashion; on the section 
K2B the difference between the lines TgI ( H )  and T ,  ( H )  is sosmall that it 
cannot be shown in the figure. 
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which as the temperature is lowered nonergodicity and anti- 
ferromagnetism abruptly appear at the same time. It  should 
be noted that we did not determine the position of the section 
AK2 on the line of the first-order phase transition completely 
rigorously, since in determining it the free energies of the 
paramagnetic and ergodic antiferromagnetic phases were 
equated, while the magnetically ordered phase, according to 
Fig. 3, is nonergodic in this region. It is obvious, however, 
that this circumstance does not affect the qualitative conclu- 
sion that an AFSG can arise discontinuously. 

In the present case, when the point A is approached 
from the AF phase the moment of the first sublattice is ori- 
ented opposite to the external field. For this reason T, in- 
creases with the field up to the point A. 

We note that in the case J # 0 and Vo # 0 a discontin- 
uous transition into a nonergodic state can be accompanied 
not by the appearance, but rather by the vanishing of long- 
range magnetic order (the transition AF + SG) .10*12 

field and its variance have opposite effects on the magnetiza- 
tion m,. Analogous arguments can also be made for the sec- 
ond sublattice. 

We now study the temperature dependence of the mag- 
netic susceptibility. This is most easily done analytically in 
the case of a strongly frustrated antiferromagnet, when we 
have b = (Jo + Vo)/(J2 + V2)'12 - 1 (1. Then, as shown 
in Ref. 8, the temperature satisfies T, = TN ( 1 - b 'I2 ) and a 
perturbation theory in the parameter b can be constructed in 
the entire ergodic phase. 

If we have V = 0, then, according to Ref. 8, the suscep- 
tibility increases monotonically as the temperature is 
lowered in the entire interval T, < T < T, . The situation is 
different with J = 0. In this case it follows from ( 15) and 
(23) that 

3. MAGNETIC SUSCEPTIBILITY 
If follows from Eq. (24) and X( T) varies nonmontonically: 

Differentiating the expression (9) for the magnetiz- for 7. = (36 2/21 113 < b 112 the susceptibility has a minimum. 
ations of the sublattice m , ,  and the parameters q,,, (x = 0) This monotonic dependence x ( T )  in an ergodic AF 
with respect to the external field and using the boundary state is preserved, as one can see from Fig. 4, with an arbi- 
condition ( 8) we obtain an expression for the magnetic SuS- trary degree of frustration, if J = 0 holds. The ratio J/ v for 
ceptibility of an antiferromagnet which is applicable in both which the function X( T) has a minimum in the AF state 
the ergodic and nonergodic phases depends on the degree of frustration b. 
x = n / [ l  - ( Vo - Jo)II],  To determine the behavior of the magnetic susceptibil- 

Here we have introduced the notation ul(O,y) 
= Tdu (0,y )/dy; the angular brackets ( ... ), denote averages 

overy with the distribution function P ,,, (0,y) from (8 ) with 
H = 0. An expression for x was derived in Refs. 9 and 1 I in 
the case Vo = V = 0. In the ergodic phase the expressiw for 
x assumes the form2' 

It is obvious that the quantities J2 and V2 enter into the ex- 
pressions (22) and (23) forx with different signs. It is easy 
to understand why the frustrations of the intra- and inter- 
sublattice interaction affect the susceptibility differently. 

We first study the case V = 0. Assume that when there 
is no field we have m, < 0 and m2 > 0. Then a weak external 
field decreases the effective mean field acting on the spins of 
the first sublattice B,, = H + Vom, - Jom2 and it increases 
the variance of this effective field SH,, = J[q2(0) ] 'I2. Both 
these factors decrease the magnetization of the sublattice 
m,. Now let J = 0. Then a weak external field decrease 8,, 
as happened before, but unlike the preceding case it also 
decreases the variance of the random field on the first sublat- 
tice V[q, (0)  ] Thus the changes in the mean effective 

ity in the nonergodic state it is necessary to solve E~S :  (7)-  
(9). This can be done only near T, with 
7, = (Tg - T)/Tg 4 1. The quantity ( d ~ / d T ) ~ ,  - o  can be 
calculated using the procedure described in Ref. 9. 

Figure 5 shows the dependence of the quantities 
D ,  = (d lnx /d ln  TITg*, on the ratio 
( V2 - J')/( V2 + JZ).OnecanseethatforJ # V theslopeof 
the susceptibility changes at T = T, and the dependence 
X( T) becomes weaker in the nonergodic region than in the 

FIG. 4. The temperature dependences of the reduced magnetic suscepti- 
bility x = 1/2 Vd(m,  + m,)/dH with Jo = 1 and Vo = J =  0  and'differ- 
ent degrees of frustration: a-J , , /V=  1.05 T N / T ,  1, = 0 -- 1.37, b-- 
Jo/V= 1 . 1 ,  TN/Tg l ,=o= .1 .6 ,  c-Jo/V= 1.5,  TN/T,lH=.,,--5.5. The 
broken lines show the behavior of X (  T )  for T <  T,. 
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FIG. 5. Thedependenceofthequantities D .  = d In x/d  In TI .= ,, on 
the ratio of the variance of the intrasublattice interaction V and the vari- 
ance of the intersublattice interaction J. 

ergodic region. There exists a region of parameters in which 
we have D + < 0 and D - > 0, i.e., the susceptibility has a 
sharp maximum (cusp) at T = Tg . 

4. COMPARISON WITH EXPERIMENT 

We shall compare the results obtained with experiment 
for the alloys Fe, Mn, - , TiO, and Fe, - , Mg, C1,. As we 
have already pointed out, FeTiO, and MnTiO, are laminar 
antiferromagnets with antiferromagnetic interaction 
between the layers, while within the layers the interaction is 
ferromagnetic for FeTiO, and antiferromagnetic for 
MnTiO,. Since the interlayer interaction is weaker than the 
intralayer interaction in pure MnTiO, antiferromagnetic or- 
der exists in each layer, i.e., the magnetic structure of this 
compound actually consists of four sublattices. When 
FeTiO, is added in interlayer interaction remains antiferro- 
magnetic and fluctuates in magnitude, but not in sign, i.e., 
nonergodicity arises independently in layers with oppositely 
directed spins. In each layer, however, the iron impurity 
brings about frustration of interaction between the manga- 
nese sublattices." In this sense the manganese-enriched al- 
loy can be regarded as a two-sublattice antiferromagnetic 
with frustrated intersublattice interaction, the theory of 
which we constructed p r e v i ~ u s l y . ~ ~ ~ ~ "  

If, however, MnTiO, is added to FeTiO,, then a system 
which, as we have already pointed out, consists of a two- 
sublattice antiferromagnet with frustrations within the sub- 
lattice layers is obtained. 

We now show that the theory developed above with 
J = 0 satisfactorily describes all the basic features of the be- 
havior of Fe, Mn, - , TiO, with x > 0.57. We note first that 
in Ref. 7 in all the samples long-range magnetic order in a 
magnetic field vanishes through second-order phase transi- 
tion. This means that either the parameter Vo is quite small 
or the first-order phase transition is suppressed by disor- 
der.I2 In any case, however, since there is no first-order 
phase transition line, the results are virtually independent of 
Vo and for this reason we compare with experiment the re- 
sults obtained for V, = 0. 

1. For J = 0 the maximum increase in Tg in a magnetic 
field is significantly larger than in the case V = 0 which we 
studied previously :9311 for T,/T, 1, =, z 9.5 Tg increases 
approximately by a factor of two if V = 0 and by almost a 
factor of 6 in the case J = 0 (Fig. 1 ). The last value does not 
differ much from experiment (increase by a factor of 6.3 
with TN/T, 1, =,  ~ 6 . 6 ) .  

2. Comparison of Figs. 1 and 3 from Ref. 7 shows that 
the overall character of the behavior of T, (H) is the same in 
both theory and experiment. First of all, both in fields 
H < H,,, and in fields H 2 H,,, the line Tg (H) passes within 
the antiferromagnetic phase; second, in a weak magnetic 
field the experimental behavior of Tg (H) is close to the lin- 
ear behavior following from the theory. In Ref. 17 he results 
of the molecular-field theory are also compared with the ex- 
perimental results from Ref. 5-7. The phase diagram is con- 
structed for Vo/Jo = V/J = 5, when, unlike the experiment, 
long-range magnetic order vanishes abruptly. For this rea- 
son neither a maximum of T, (H) in the AF  region nor linear 
growth of Tg (H) in weak fields, (since J #O) was obtained 
in Ref. 17. 

3. It follows from the theory, in complete qualitative 
agreement with experiment, that the curvex( T) has a mini- 
mum for T, < T <  TN. Moreover, in both theory and experi- 
ment the minimum almost vanishes in a weakly-frustrated 
sample. This can be seen by comparing Fig. 1 from Ref. 7 
with Fig. 4, which shows the temperature dependencex( T) 
approximately for the same ratios rp TN/Tg 1, =, as in the 
experiment. 

The experimental behavior of the magnetic susceptibil- 
ity in the nonergodic state differs from the predicted theoret- 
ically in one important respect. The theoretical susceptibil- 
ity has a change in slope at Tg and as the temperature is 
further lowered the susceptibility remains virtually con- 
stant. The experimental susceptibility, however, obtained 
with the sample cooled in a magnetic field (this value of the 
susceptibility is customarily regarded as the equilibrium sus- 
ceptibility) passes through the point of irreversibility with- 
out a change in slope and is temperature-independent only 
appreciably below Tg . 

The theory also provides an explanation for the wide 
maximum on the curve T, (H) in the alloy 
Fe,,,,, Mg,,,,, Cl,." Pure FeC1, is a laminar metamagnet, in 
which the interlayer interaction is antiferromagnetic and is 
approximately and order of magnitude weaker than the in- 
tralayer interaction." When the alloy is diluted with magne- 
sium atoms a re-entrant transition occurs at concentrations 
close to the percolation threshold in the plane and in our 
model this situation corresponds to VZ J. As one can see 
from Fig. 2 in this theory the dependence T, ( H )  also has a 
smooth maximum. 

CONCLUSIONS 

The foregoing analysis shows that the model of an anti- 
ferromagnet with an infinite radius of interaction between 
spins quite satisfactorily describes the properties of real frus- 
trated antiferromagnets, at least in the ergodic state. it is 
possible to explain the basic behavior of the line Tg (H) .  The 
theory can pick up the difference in the physical properties 
of disordered antiferromagnets depending on the method of 
frustration. The theory predicts a number of properties of 
substances which, in our opinion, it would be interesting to 
study experimentally. In particular, for J< V a transition 
into a regime where the second sublattice is strongly noner- 
godic should be observed in the ( T,H) plane. This region can 
apparently be manifested experimentally as a maximum in 
the temperature dependence of the imaginary part of the 
magnetic susceptibility. 
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We note that such a field may not exist. In the case of a first-order 
transition the moment m, can change in a jump-like fashion from a 
negative to a positive value, equal to m, (see the end of this section). 

" In Ref. 12 a factor of ( - 1/2) in the coefficient ofg, is omitted in this 
expression. 
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