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Experimental investigations have been made of isothermal partial annealing of radiation defects 
in glasses over periods on the order of lo4 h. It was found for the first time that postirradiation 
relaxation of inorganic glasses can be described by a universal fractional exponential dependence. 
The Kohlrausch relaxation function was found to satisfy the principle of temperature-time 
scaling. However, all the moments except the zeroth were missing from the corresponding 
spectrum of the relaxation probabilities. This difficulty was avoided by proposing a model 
relaxation function characterized by fractional-exponential behavior in a limited time interval 
and satisfying all the criteria of the hierarchically limited dynamics of relaxation in glasses. The 
parameters of the model function were determined from the experimental results. This yielded the 
spectra of the relaxation probabilities as well as the activation spectra describing postirradiation 
relaxation of glasses. The experimental behavior of the nonexponential relaxation parameters of 
the radiation defects was interpreted quantitatively in terms of the long-term kinetics of the 
activation spectra representing the contributions of parallel correlated relaxation channels in 
radiation damage regions in a glass. Such relaxation makes charge exchange, followed by 
stabilization, possible for each defect. 

1. INTRODUCTION 

Irradiation of solids and particularly of insulating 
glasses creates local defects and disordered microregions 
whose number densities can be determined by optical or 
ESR spectroscopy as a function of the radiation dose. Such 
electrically and magnetically active radiation structure 
damage is unstable. It is followed by long-term (very slow) 
nonexponential relaxation manifested, for example, by ESR 
signals of paramagnetic centers3 which can be explained in a 
natural manner by thermally stimulated changes in the 
atomic configuration of the glass network. 

It is assumed in some that a theoretical 
description of the kinetics of such isothermal annealing of 
radiation centers in noncrystalline materials can be based on 
the universal Kohlrausch law for relaxation in glasses (see, 
for example, Refs. 5 and 6 ) :  

where T,, is the characteristic relaxation time and a is the 
index of the fractional-exponential function. However, ex- 
perimental data to support this law is available only for or- 
ganic solids and for relatively short observation times (for 
the bibliography of the subject, see Refs. 3 and 4). 

The mechanisms of the cooperative processes that oc- 
cur in disordered systems with a strong interaction, giving 
rise to the fractional-exponental function of Eq. ( 1 ), can 
vary greatly, but they can be divided nominally into two 
main groups. The mechanisms belonging to the first group 
represent different variants of the model of diffusion-con- 
trolled  reaction^^'^"-^ based on the concept of dispersive 
transport in disordered structures. The second group is 
based on the model of hierarchically limited dynamics of the 
relaxation in glasses8-l2 which postulates that the relaxation 
processes are correlated: in contrast to parallel relaxation of 
independent degrees of freedom, the nonexponential nature 
of the relaxation kinetics is attributed in this model more to 

dynamic constraints than to the random distribution in each 
of the degrees of freedom. 

The difficulties encountered in the interpretation of the 
experimental data on glass relaxation on the basis of Eq. ( 1 ) 
arise because all the moments of the relaxation rate 

diverge for n = 1,2, ... . This is due to the nonphysical behav- 
ior of the function ( 1 ) for short times. If we consider the 
nonexponential relaxation function q ( t )  to be a superposi- 
tion of the contributions made by elementary exponential 
relaxation processes 

q ( t )  = J d t  e-'"rp ( k )  , 

we find that the weighting function p(k) ,  representing a 
normalized distribution function of the relaxation rates, is 
characterized by a power-function asymptotic form which 
applies in the limit k- cc : p ( k )  a k -  ( '  + " I ,  which is the 
reason for the divergence of the moments. This nonphysical 
feature is avoided in the present treatment by introducing a 
model relaxation function characterized by the fractional- 
exponential behavior of Eq. ( 1 ) in a wide range of observa- 
tion times and also by finite values of all the moments de- 
scribed by Eq. (2).  

Our aim was to investigate experimentally the nonex- 
ponential kinetics of postirradiation relaxation of glasses 
and to obtain on this basis the activation spectra of such 
relaxation. The methods and results of an experimental 
study of the kinetics of thermal annealing of radiation 
centers (as a function of the radiation dose and annealing 
conditions) are reported in Sec. 2. An analysis of the results 
obtained is used to show for the first time that the kinetics of 
postirradiation relaxation of inorganic glasses follows a frac- 
tional exponential form. A modification of the model of hier- 
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FIG. 1. Kinetics of thermal annealing represented by the relaxation func- 
tion q(  t )  = N( t)/N, ( N  is the number of radiation centers) of glassy 
NaPO, irradiated with a dose of 3 X lo5 rad and subjected to annealing at 
temperatures (1)  T = 293 K, (2)  343 K, (3)  363 K, and also (4)  the 
results of step annealing characterized by an abrupt temperature jump 
AT = 20 K. The inset ( 5 )  shows the kinetics at T = 293 K throughout the 
range of observation times investigated. 

archically limited dynamics of glass relaxation, suitable for 
the description of three time regimes of postirradiation re- 
laxation in a quasiergodic system, is given in Sec. 3. It is 
shown in Sec. 4 that the corresponding spectra of the rates of 
postirradiation relaxation have finite moments in every or- 
der and are in agreement with the familiar results of Pollard. 
Moreover, it is found that the function p ( k )  behaves asymp- 
totically at low and high relaxation rates and in the former 
case there is a delta-function singularity in the spectrum. 
The long-term kinetics of postirradiation relaxation can be 
interpreted by reactions of defects in glasses (Sec. 5) and 
described quantitatively by the activation spectra of relaxa- 
tion deduced from the experimental data (Sec. 6). 

2. CHARACTERISTICS OF NONEXPONENTIAL KINETICS OF 
SYSTEMS OF RADIATION CENTERS: EXPERIMENTAL 
RESULTS 

We investigated pure phosphate glasses of the composi- 
tions NaPO, and Ca(P0,) irradiated with gamma rays 
from the 60Co isotope at room temperature at a dose rate of 
100 rad/s. Irradiation of initially nonparamagnetic samples 
created metastable (at room temperature) radiation color 
centers with an ESR spectrum which was recorded using an 
SE/X-2544 rf spectrometer (operating at a frequency 
f = 9.0 GHz) with automatic data storage and processing 
by a MERA-CAMAC 125/SM4A system. Irrespective of 
the radiation dose and of the temperature of the subsequent 
heat treatment, the ESR spectrum representing the phos- 
phorus-oxygen PO:- centers of the dangling bond type1*13 
showed no changes in the profile and was characterized by 
the g-tensor components gll = 2.012 and g, = 2.0, and by 
the hyperfine splitting constants All = A, = 3.8 mT. The 
concentration N ( t )  of the radiation centers, deduced from 
the ESR signal intensity, depended on the isothermal an- 
nealing conditions and on the radiation dose (Figs. 1 and 2).  

FIG. 2. Fractional-exponential [a-0.4 cm, see Eq. (6.2)] irradiation 
relaxation of glassy NaPO, at annealing temperatures ( 1 ) T = 293 K (7, 
= 6.5X 104min), (2)  343 K (7, = 464min), (3) 363 K (7, = 93 rnin). 

The results given in the inset are on a different time scale. Radiation dose 
3 X lo5 rad. 

Annealing at temperatures between 273 and 343 K 
(curves 1 and 2 in Fig. 1 ) involved heating samples directly 
in the rf-spectrometer resonator cavity using a special 650H 
attachment with a temperature controller designed for the 
SE/X-2544 spectrometer; this attachment made it possible 
to maintain the required temperature to within 0.1 K. At 
higher temperatures we used the method of fractional an- 
nealing which made it possible to eliminate the effects of the 
detuning of the spectrometer resonator and of the tempera- 
ture dependence of the ESR signal. The method involved 
repetition of the following cycle: a )  fast heating of a sample 
to a given temperature (heating time t ,  = 1 rnin); b) iso- 
thermal exposure to the selected temperature; c )  rapid cool- 
ing to room temperature (cooling time t,  = 1 min) during 
which the ESR spectrum was recorded. The metastability of 
the radiation centers at room temperature (curve 1 in Fig. 1 ) 
made it possible to carry out annealing outside the resonator. 
Control experiments carried out at T = 343 K showed that 
the results of heat treatments were the same under fractional 
and isothermal annealing conditions. The observation time 
was varied from 10 min to lo4 h (Figs. 1 and 2). 

The use of a method involving detection of paramagnet- 
ic centers of one type in a glass of simple composition led us 
to the conclusion that the nonexponential kinetics of post- 
irradiation relaxation (Fig. 1 ) was typical of retarded reac- 
tions in disordered systems and was specific to the glassy 
state and not a consequence of superposition of the contribu- 
tions of centers of different nature, as could happen in multi- 
component glasses as a result of chemical differentiation. 
The strong reduction in the reaction rate in the solid phase 
after a long observation time ( t  > 10 h )  was not due to a 
reduction in the induced radiation centers, but due to the 
existence of a broad spread in the relaxation rates or times. l4  

Consequently, the results of nonexponential postirradiation 
relaxation (Fig. 1) could be interpreted in terms of long- 
term kinetics of the activation spectra. 

A nontrivial feature of the retarded kinetics was a tem- 
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perature-time hysteresis (curve 4 in Fig. 1 ), representing a 
memory effect typical of relaxation processes in glasses. 

It follows from the above that the kinetics of postirra- 
diation relaxation (Fig. 1) is described by Eq. (3)  and the 
relaxation function q(t) = N(t)/N, [No is the concentra- 
tion of the PO:- centers observed 1 h after irradiation at 
room temperature (see curves 1 and 2 in Fig. 3) 1 on condi- 
tion that an elementary recombination event is a first-order 
reaction. This hypothesis was checked by investigating the 
dependence of dN(t)/dt on the radiation dose at the initial 
times during measurements (curves 3 and 4 in Fig. 3). Accu- 
rate numerical differentiation was ensured by smoothing out 
the kinetic curves during the initial period ( t  < 1 h). The 
constancy of the derivative in the region of the linear dose 
dependence of the concentration of the centers (Fig. 3) pro- 
vided the experimental proof that the reaction was of the 
first order. However, in the case of the Ca(P0, ), glass this 
statement was only approximately true (curve 4 in Fig. 3). 

An analytic approximation for the kinetic curves (Fig. 
1 ) was based on a least-squares analysis carried out for expo- 
nential, logarithmic, and fractional-exponential test func- 
tions q(t).  The best approximation was provided by the 
function ( 1 ) shown in Fig. 2, where the range of variation of 
the Kohlrausch relaxation function (from 0.99 to 0.01) 
agreed with the theoretical estimates of Refs. 8, 11, and 12. It 
is important to note that the fractional-exponential behavior 
of the function q ( t )  was retained even in the case of very long 
observation times ( t  > lo4 h )  with a characteristic value of 
az0.4 (Fig. 2). The use of the approximation ( 1 ) in the 
range t < rmin (Fig. 2) increased the exponent a (for exam- 
ple, a = 0.68 was found for curve 1 in Fig. 1 ). 

The Kohlrausch function of Eq. ( 1 ) satisfies the princi- 
ple of temperature-time s ~ a l i n g , ~ " ~  provided the fractional 
exponent a in the argument and the characteristic time r0 
are both independent of the observation time and a is inde- 
pendent also of tempera t~re .~ ,~  An investigation of this de- 
pendence showed that glass with the composition NaPO, 

satisfied these requirements (Fig. 4).  The observed Arrhen- 
ius-type temperature dependence of r0 (Fig. 4b) made it 
possible to use the concept of the activation spectra of postir- 
radiation relaxation. In the case of glass of composition 
Ca(P0, ), the temperature dependence of a was weak, 
which caused breakdown of the temperature-time scaling 
relationships and was clearly associated with the competi- 
tion between the tunnel and activation mechanisms in the 
recombination of radiation centers. 

3. MODEL OF HIERARCHICALLY LIMITED DYNAMICS OF 
POSTIRRADIATION RELAXATION 

We interpret the experimental data of Sec. 2 by a modi- 
fication of a model of hierarchically limited dynamics of re- 
laxation in The approach developed by Palmer et 
al." is based on the following representation of the relaxa- 
tion function of a quasiergodic system: 

q ( t )  = w n  e i p  (-KJ), w.=w,/hn, 

where w, is the statistical weight of a correlated relaxation 
process consisting of n successive steps; k, is the total proba- 
bility of this process; ,u is a parameter describing the dynam- 
ic limitations on the atomic motion ( 1 <p < 10); w, and k, 
are, respectively, the statistical weight and the rate of relaxa- 
tion of the fast recombination process; andil,p> 1 are dimen- 
sionless parameters. The value ofp is close to unity. Physi- 
cally, Eqs. (4)  mean that the relaxation function is 
represented as a superposition of the contributions of corre- 
lated relaxation processes with an arbitrary number of steps 
n (Ref. 8).  

In contrast to the treatment of Palmer et a/.," in the 

No, arb. units 

10 10' lo6 D,rad 
I I 

FIG. 3. Dependence of the initial concentration No of radiation centers 2.5 J D  T - ' ,  / O - ~ K - '  
(1,2) and of the first moment of the relaxation function (k ) = dq(O)/dt 
(3,4) for glassy NaPO, (curves 1 and 3; T = 363 K )  and Ca(P0, ), FIG. 4. Temperature dependence of the exponent a (a) and of the relaxa- 
(curves 2 and 4; T = 413 K)  on the radiation dose D. tior. (b)  of ( 1 )  NaPO, and (2 )  Ca(P0, ), glasses. 
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case of postirradiation relaxation the slow degrees of free- 
dom of a glass block relaxation of the faster degrees of free- 
dom in disordered regions created by irradiation. In a given 
disordered region the process of postirradiation relaxation 
terminates with the recombination of a radiation defect 
characterized by a probability k,,, which occurs when the 
relaxation of the local environment is complete. We shall 
show below (Sec. 5) that such a recombination reaction is 
the fastest relaxation process in the system because it con- 
sists of atomic modification which effectively occurs along 
one generalized lattice coordinate. On the other hand, relax- 
ation of the local environment involves atomic modifications 
which affect simultaneously a large number of generalized 
coordinates and, consequently, are characterized by fairly 
large potential barriers. The presence of such barriers in a 
system of radiation defects makes each atomic modification 
an allowed process, provided all the preceding levels of the 
hierarchy are already relaxed and have liberated the neces- 
sary free volume. A one-electron energy level of radiation 
defects needed for detection of relaxation on the basis of the 
ESR signal (Sec. 2)  is located in the band gap. On the other 
hand, the level of a second (correlated) electron at the same 
defect is located in the conduction band of the glass immedi- 
ately after irradiation, so that an electron transition to this 
level is not favored by energy considerations (Sec. 5). There- 
fore, the physical reason for this sequence of relaxation pro- 
cesses is the lowering and stabilization of a level of a nonpar- 
amagnetic two-electron state of a defect in the bandgap of 
the glass. 

The Kohlrausch function ( 1 ) with an exponent 
a = 1 ( 1 + p )  is the asymptotic form of the sum of Eq. (4)  
obtained on going over from a discrete to a continuous distri- 
bution of the degrees of freedom in a However, 
according to Eq. (4), the behavior of the relaxation function 
at short times is nearly exponential, which is fundamentally 
different from Eq. ( 1 ). In fact, if the time t is short, the sum 
contains only the first exponential function with the highest 
relaxation rate k, and the remaining exponential functions 
in Eq. (4) are equal to unity. This is due to an exponential 
decrease of k, and w, with increasing n: the numerical data 
used in the present study (Secs. 2, 5, and 6) indicate that k ,  
is approximately 4.5 times less than k ,  Inclusion of higher 
exponential terms in Eq. (4) cannot alter the qualitative pic- 
ture of the process of relaxation in the case of short times t, 
i.e., it cannot account for the absence of infinite rates of re- 
laxation in Eq. (4),  in contrast to Eq. ( 1 ). Moreover, as 
shown in Ref. 10, quasiergodic systems are characterized by 
the maximum characteristic time r,,, of atomic modifica- 
tions when a transition takes place from the Kohlrausch re- 
laxation mechanism of Eq. ( 1 ) to the slower Debye relaxa- 
tion. These three regimes of the relaxation behavior can be 
described over the full range of times in a unified manner 
using the following modified relaxation function: 

where z is the dimensionless time; v, = r0/rmin, v2 = r0/ 
rma,; rii; and T;:~ are the upper and lower limits of the 
spectrum of the relaxation rates p ( k )  (v, > 1 ) v, ) . The 
simplest interpolation function of Eq. (5 )  is our main as- 
sumption, which will be used later to interpret the experi- 
mental data on relaxation in glasses (Sec. 2).  It satisfies the 

/ 

0 L; v;' 

FIG. 5. Dependence of the relative concentration of the radiation centers 
on the duration of annealing: modified postirradiation function ( I ) ,  
Kohlrausch function (2) ,  and Debye function ( 3 )  for a = 0.4. 

criteria of hierarchically limited dynamics of relaxation in 
glasses10 and makes it possible to find the distribution p ( k )  
including all the moments. The function (5) exhibits three 
main types of behavior (Fig. 5)  and the Kohlrausch law is 
obtained only for intermediate times. Elsewhere the expo- 
nent a in the fractional argument of the exponential function 
varies slowly with time, approaching unity: 

The value of T,,, can be found from the experimental data as 
the lower limit of the transition region where deviations 
from the fractional-exponential behavior disappear (Figs. 2 
and 5). The values of T,,, used in the calculations were ob- 
tained by analytic approximation of the kinetic curves (Fig. 
1 ) by the method of least squares using the test function (5) .  
It was found that the value of T,,, is of the same order of 
magnitude as v: - "/T,, which is the first moment of the spec- 
trum of Eq. (2)  corresponding to the function (5) .  Bearing 
in mind the comment about the behavior of the function (4)  
at short times, we readily find from Eq. (6a) that the use of 
the interpolation (5) is justified in this range. 

We can expect the characteristic times T,,, and T,,, in 
Eqs. (5) and (6)  to depend on the temperature in an activat- 
ed manner. It follows from the results of Sec. 2 on the reac- 
tion order that the spectrum of the relaxation rates is gov- 
erned by the inverse Laplace transformation of the function 
(5 : I m 

where the integration contour lies to the right of all the sin- 
gularities of the function q ( t ) .  

4. SPECTRA OF POSTIRRADIATION RELAXATION RATES 

The problem of inversion of the relaxation function (7 )  
in the specific case of the Kohlrausch law ( 1 ) has been con- 
sidered before.16-" In the case described by Eq. (5)  this 
problem has nontrivial features; the results of an investiga- 
tion of these features are presented below and used in Sec. 5 
in an analysis of the experimental data given in Sec. 2. 

The relaxation function of Eq. (5)  is analytic through- 
out the complex plane of the variable z with a cut along the 
negative part of the real axis from - v; ' to - v; I .  Substi- 
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tuting Eq. (5) into Eq. (7), we find that simple transforma- 
tions yield the following expression 

rn 

dz 
rp (k)  =i0 5 - exp {-zh(z) sin[ (I-a)%(') 1) 

" n 

where x = kr,, , 
h (z )  =v:-= [ ( I + v ~ ~ z ~ )  I (I+vI2z3) ](1-a'12, (9)  

In the limit with Y,- w and Y, --+O the relationships (8)- 
( 10) reduce to the familiar Pollard representation16 

which corresponds to the fractional-exponential relaxation 
process of Eq. ( 1 ). In the case with a = 1/2 and a = 1/3, it 
is possible to express Eq. ( 1 1 ) explicitly in terms of special 
 function^.'^^" We can easily show that in the limit k- co the 
asymptotic form of Eq. ( 11 ) has the form [ I ' ( x )  is the gam- 
ma function] 

- 

- -  0 I 

FIG. 7. Kinetics of the spectrum of postirradiation relaxation rates of Eq. 
(8) ( X  = k r , )  plotted for ( I )  to = 0, ( 2 )  T,, ( 3 )  37,, and (4) lor,,. The 
inset shows schematically the delta-like singularity in the spectrum of 
q( k,t, ) at low values of k. 

k -  w (X > vf -a). It follows from the general properties of 
the Laplace transformation that in this case the integral of 
Eq. (8) is governed by the range of low values ofz (v,z < 1). 
Since according to Eqs. (9)  and ( 10) we obtain in this limit 

h ( z )  =v:-~, x (z) =Z (vi-vz), (14) 

we find that p( k) is now described by 
TO sin (ncc) w 

cr(k)= xxlta r ( l + a ) ,  (12) Ta 
rp (li) =g Je esp (-az2) cos (bz) = -- ex , , -  g), 

o (4na) ". which gives rise to the divergence of all the moments in the 
spectrum of the relaxation rates in the case described by Eq. 

I-(L i -a  
(15) 

( 1 ). It should be mentioned that the spectrum of the relaxa- a=(l-a)vi (vi-vz), b=x-vl . . . 
tion rates corresponding to the original model (4) proposed 
by Palmer eta/ .  'O is a superposition of the delta functions 

r+ (i) = e.6 (k-k,.) . 

The envelope of the spectrum ( 13) can be represented 
by a series of discrete maxima of amplitude w, [see Eq. (4)  ] 
at the points k, (Fig. 6 )  or as a histogram of the function 
p ( k )  which is obtained by dividing the quantity w, by the 
length of the corresponding segment along the abscissa 
(k, + , - k, - , )/2 (Fig. 6).  We shall show that smoothing 
out of the histogram (dashed curve in Fig. 6) gives results 
which are close to the exact calculation of the integral of Eq. 
(8) given in Fig. 7. 

In the case of the spectrum described by Eq. (8) we can 
check that all the moments of the relaxation rate of Eq. (2)  
are finite by considering the asymptotic behavior in the limit 

The advantage of this approach to interpreting the experi- 
mental data (Sec. 2) on the basis of the relaxation function 
of Eq. (5 )  is the exponential smallness of the "tail" of the 
distribution given by Eq. ( 15) at high relaxation rates. In the 
limit a - 1 the spectrum ( 15), which in this case corre- 
sponds to the exponential relaxation process, degenerates 
into the delta function S(k  - v;-"/r, ). Therefore, in func- 
tion ( 5 ) ,  unlike Eq. ( I ) ,  relaxation times shorter than 
ro $ - ' are excluded. 

An analysis of Eq. (7) shows that the result of integra- 
tion depends on the selection of the contour in the complex 
plane of the dimensionless time z: the integrals along the 
axis in Eq. (8)  along the imaginary axis and along the cut 
mentioned above differ by an amount equal to the integral 
along an infinite semicircle in the left half-plane, which in 
this case does not vanish. We can show that the contribution 
of this integral is proportional to the delta function 
S(x  - Sip"). In the opposite limit of low relaxation rates 
the asymptotic form of the relationship (8)  should reflect 
this. The main contribution to Eq. (8) comes from the range 
of large values of z (S,z > 1 ) , where [see Eqs. (9)  and ( 10) ] 

FIG. 6.  Envelope of the spectrum of the relaxation rates obtained in the 
model of hierarchically limited dynamics proposed in Ref. 10; p = 1.5, 
A = 2 , p  = 1.01. 

To within terms of order z-I in the integrand, we find that 
Eq. ( 8 ) becomes 
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The final result for low values of k can be represented conve- 
niently in the following form: 

cp(k) =to exp[-- ( I -a)  ~ i . l - v 2 ) l ~ i v , a ] f  

where O(x) is the Heaviside step function. It is important to 
note that Eq. ( 18) is identically equal to zero if k < v:-"/rw 
If the system has a finite time rm,,, i.e., if the system of 
radiation centers is quasiergodic (see Refs. 8 and lo),  it fol- 
lows from Eq. (18) that the distribution p ( k )  becomes a 
constant at low values of k and is "terminated" by a delta 
function (inset in Fig. 7).  If v2 falls, the quantity C in Eq. 
( 18) tends to approach a( 1 - a)/2v: +". However, the ex- 
ponential factor in Eq. ( 18) drops rapidly and balances out 
the effects of the rise of C, so that both the normalized delta- 
like peak and the height of a "step" at the point k --,v:-"/r, 
[see Eq. ( 18) and the inset in Fig. 71 become small quanti- 
ties and can be detected experimentally if the observation 
time is t > T,,, ( lo5 h )  when the Kohlrausch law is no long- 
er obeyed [see Eq. (6c) ]. Basically, the presence of these 
singularities in the relaxation rate spectrum of Eq. ( 8) corre- 
sponding to the function (5) indicates that the analysis given 
in Ref. 10 is incomplete [compare with Eq. ( 13) and Fig. 61. 
The existence of the delta function in the spectrum ( 18) is a 
common property of quasiergodic systems. The result given 
by Eq. ( 18) in the limit v2 -0 is in full agreement with the 
asymptote found in Eq. (18) by the steepest-descent (sad- 
dle-point) method in the Kohlrausch relaxation case (see 
Ref. 17). 

We evaluated the integral of Eq. ( 8) numerically for the 
experimentally obtained (using the data in Sec. 2) values of 
the parameters a = 0.4, v, = 21.2, and v2 = The re- 
sults are presented in Fig. 7 (curve 1). The calculated spec- 
trum of the relaxation rates p ( k )  has the properties estab- 
lished above [Eqs. ( 15) and ( 18) 1, and in the range of 
intermediate values of k it is in good agreement with the 
predictions of the model of hierarchically limited dynamics 
of relaxation in glasses (Fig. 6) .  

5. PROBABILITY OF A RECOMBINATION REACTION OF A 
RADIATION CENTER 

The experimentally observed activated dependence of 
the characteristic relaxation time (Fig. 4b) is in agreement 
with the model of hierarchically limited dynamics of postir- 
radiation relaxation (Sec. 31, provided that the constants k, 
[see Eq. (4)  1 have the Arrhenius dependence for all values 
of n. This is sufficient to make this dependence typical of the 
fastest process in a correlated relaxation chain, specifically, 
recombination of a radiation defect. Disappearance of the 
signal due to the ESR centers in the course of postirradiation 
relaxation (Sec. 2)  indicates that the recombination com- 
pleting the modification processes represents the reaction of 
charge transfer of a defect accompanied by pairing of spins 
and atomic modification of the lattice. '9-21 

In a calculation of the probability of this reaction we 
can use the standard methods of the theory of nonradiative 
multiphonon transitions in deep  center^.'^-^' The charge 
transfer rate r- '  can be related to the first moment of the 
spectrum p( k); according to Refs. 20 and 21, it is described 
by the expression ( 4  = 1 ) 

1 v : -~  
-=.-- - Sn($) .2N ( E )  . 
T To 

Here, a, is the localization radius of an electron captured by 
a center; a, is the Bohr radius of a shallow impurity which 
releases an electron in stabilizing a radiation center; 

is the average value (obtained using the phonon occupation 
numbers Nq ) of the square of the total matrix element of a 
transition; q and w, = vq are the quasimomentum and fre- 
quency of acoustic phonons in glass, which in this case play 
the role of a promoting mode; v is the velocity of sound; 
(Cq 1' = Z2q/2pv is the square of the matrix element; B is the 
deformation potential; p is the density of the investigated 
glass; r is the average distance in a donor-acceptor pair"; 

is the effective density of the final states participating in the 
charge transfer reaction; l i s  the thermal ionization potential 
of a stabilized radiation defect; E < 0 is the energy level of a 
shallow trap; and A is the half-width of the line profile of a 
multiphonon transition (see Ref. 19). It should be pointed 
out that, according to Eq. (21), stabilization of a radiation 
defect accompanies nonoptimal quantization of the multi- 
phonon process (see Ref. 2 1 ) . 

In the semiclassical approximation for multiphonon 
transitions ( T >  w,, wq ) the quantities A2 and Nq are pro- 
portional to the temperature of a sample'9 and the probabili- 
ty ( 19) is characterized by the Arrhenius dependence: 

l /z=fo c s p  (-Eo/T). (22) 

Here, w, is the frequency of a local accepting mode of a 
defect; the following notation is used in Eq. (22) for the 
activation energy and the preexponential factor: 

where W = Sw, is the polaron shift; S is the Huang-Rhys 
factor; and w, is the Debye frequency. 

The first moment of the spectrum p ( k )  deduced from 
the experimental data (Sec. 2) agrees with the results of cal- 
culations carried out using Eqs. (22) and (23) and the fol- 
lowing values of the parameters of the irradiated material: a, 
= 1 b ; , a , = ~ b ; , ~ = 3 e ~ , w ,  =5mev,p=2.5g/cm3,  
T = 3 4 3 K , u = 5 ~ 1 0 ~ c m / s , ~  =7.2x103s,r=21b;; the 
concentrations of radiation defects and shallow traps are as- 
sumed to be 10" and loZ0 ~ r n - ~ ,  respectively. The other 
parameters are E, = 0.67 eV, f, = 5 X lo6 s- ', I = 0.64 eV, 
and W = 0.16 eV. The dependence of the Debye frequency 
ofthe material on the radiation dose affects Eo only logarith- 
mically. The photon energy hv = I + Wcorresponds to the 
wavelength of light 520 nm at the maximum of the observed 
optical absorption by stabilized PO:- centers in irradiated 
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and annealed phosphate glasses.22 This makes it possible to determine the upper limit to k * for 
It therefore follows that the proposed approach allows the spectrum of Eq. (8)  with logarithmic precision. Obvi- 

us to relate the average statistical characteristics of postirra- ously, the value of k * should exceed the rate of the fastest 
diation relaxation with a microscopic quantum theory of relaxation process (Sec. 5). We therefore obtain the follow- 
atomic modifications in glasses. ing estimate: 

1-(1. 

6. ACTIVATION SPECTRA OF POSTIRRADIATION x'=v, +no (2a) '12. (27) . . 
RELAXATION 

where 2a is the variance which occurs in the asymptotic form 
~n analysis of the experimental data of postirradiation of Eq. ( 15), and no - 10. Clearly, the second term dominates 

relaxation in glasses (Set. 2 in terms of the activation spec- E ~ ,  (27). Moreover, we must allow for the fact that the mea- 
tra was made using the Arrhenius dependence of the relaxa- surements began 1 h after irradiation (set. 2)  and during 
tion rate (Sec. 5 ) this time the degrees of freedom with activation energies of 

where k * is the maximum rate of postirradiation relaxation 
in the system and the activation energy G assumes positive 
values. The normalized distribution function P(G) of the 
activation spectrum is related to the spectrum p ( k )  as fol- 
lows: 

v 

We can easily see [cf. Eq. (8)  ] that the characteristic rate k * 
occurs in Eq. (25) in the dimensionless combination 
x* = k *r, the values ofwhich depend strongly on the behav- 
ior of the relaxation function q(t)  at short times. In the case 
of the Kohlrausch law ( 1 ) the unbounded nature of the spec- 
trum at high relaxation rates [see Eqs. (1 1) and (12)] 
makes it impossible to determine uniquely the value of k *. In 
fact, using Eq. ( 1 ) in the calculation of the activation spec- 
trum of Eq. (25 ), we find that for a = 1/2 and for any finite 
value of k * we can use the following analytic representation: 

Since the function (26) differs from zero for G = 0 [at this 
point its characteristic value is close to 
(2T) - ' ( r x * )  - ' I 2 )  1, the interpretation of postirradiation 
relaxation on the basis of Eqs. ( 1 ) and (26) becomes incon- 
sistent because it is then necessary to postulate the existence 
of nonphysical negative values of the activation energy. 

It follows from the above discussion that if we use the 
modified relaxation function (5) ,  these difficulties do not 
appear: the spectrum of Eq. (8)  is bounded at large values of 
k, in agreement with Eq. ( 15) [but in contrast to Eq. ( 12) 1. 

the order of T were annealed. This should increase the esti- 
mate given by Eq. (27) by almost another factor often: for 
example, for typical values of a = 0.4 and v ,  = 21, we now 
obtain x* = 800. 

The changes in the distribution of p ( k )  in the course of 
isothermal annealing are governed by the fact that the first to 
be annealed are the "fast" radiation centers, which corre- 
spond to high probabilities k. Depending on the annealing 
duration to, these changes become 

rfi(k, I,,) = e z p ( - k t o ) v ( / c ) .  (28) 

The zeroth moment of the "annealed" spectrum of Eq. (28) 
is identical with q(to ), i.e., it is identical with the fraction of 
the radiation centers remaining in the glass. The dependence 
of the activation spectrum P(G,t,) on the duration of an- 
nealing is expressed in terms of the function p(k,to) by a 
relationship analogous to Eq. (25 ). We used Eqs. (8), (24), 
(25), and (28) to investigate the long-term kinetics of the 
activation spectrum of postirradiation relaxation P(G,ro). 
The results of the calculations (Fig. 8) confirmed that the 
experimental data can be interpreted on the basis of Eq. (5): 
curves 1-5 in Fig. 8 correspond to consecutive stages of the 
kinetics of isothermal annealing of the activation spectra of 
the experimental postirradiation relaxation parameters 
(Sec. 2) and at low values of G the function P(G,t,) is close 
to zero for any value of to. This long-term kinetics of the 
activation spectra is a clear manifestation of isothermal an- 
nealing of radiation defects with different activation energies 
for the processes of correlated relaxation with an arbitrary 
number of steps (stages). 

The characteristic features of the behavior of P(G) are 
consequences of the three regimes described by Eqs. (6a)- 
(6c) [see also Eqs. (15) and ( It?)]: the asymptotic form of 
Eq. (15) is related to the existence of a low-temperature 
"wing" of the function P(G) shown in Fig. 8. It follows from 

FIG. 8. Kinetics of the activation spectrum of postirradiation 
relaxation in glassy NaPO, plotted for different annealing 
durations: ( 1 )  to = 0,  ( 2 )  0.2ro, ( 3 )  0.5ro, ( 4 )  T,, and ( 5 )  
27,. The inset shows the behavior of the function P(G,t,) at 
the upper limit of the spectrum ( G < Go ) . 
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these results that the long-term kinetics of the activation 
spectra of postirradiation relaxation P(G,to ) is insensitive to 
the profile of this wing, firstly because of the exponential 
dependence of the annealing time in Eq. (28) and, secondly, 
because of the logarithmic dependence of G on k. However, 
if instead of Eqs. (8)  and (25) we describe the spectrum 
P(G) using Eq. (26), we find that a considerable error is 
made in the normalization procedure. It should be stressed 
that the selection of the value of k * on the basis of the experi- 
mental data affects the calculated results logarithmically. In 
fact, the position of the maximum of the function P(G) de- 
pends logarithmically on x*: G,,, = T 1n(x*/xmax ) = 7.2T 
eV, where x,,, = 0.6 is the position of the maximum of the 
function kr,p(k); G,,, = 0.23 eV at T = 380 K, which is 
supported by the numerical data in Fig. 8. The maximum 
activation energy Go governing the asymptotic relaxation 
described by Eq. (6c) (see the insets in Figs. 7 and 8) can 
also be described in terms of the fundamental parameters of 
a quasiergodic system of radiation defects: Go 
= Tln(x*/viPa) = (1 -a)Tln(~, , , /~, , , )  = 12.3TeV, 

where a = 0.4, v, = G = 0.4 eV at T = 380 K (Fig. 
8).  Here, v : - ~  is the lower limit of the relaxation rate spec- 
trum of Eq. ( 18). Therefore, we can conclude that the char- 
acteristics of the activation spectra (modulo T) are univer- 
sal and, in particular, the values of G,,, and Go are the same 
for the investigated model of postirradiation relaxation. 

Jt should be pointed out that the delta-like singularity in 
the spectrum of the relaxation rates occurring at low values 
of k has an important consequence: in the case of asymptoti- 
cally long times to of isothermal annealing, the activation 
spectrum of P ( G )  degenerates to the delta function. This 
corresponds to the presence of a residual concentration of 
slowly relaxing radiation damage zones. This feature is asso- 
ciated with the use of the relaxation function (5) and is miss- 
ing from the theory of Palmer et al.'' 

From this it follows that in estimating the characteristic 
activation energy Eo on the basis of the relationships ( 19), 
(22), and (23) it is more natural not to use the first moment 
of the spectrum ~ ( k ) ,  but the value of k *. The latter de- 
scribes on the average the very fastest correlation relaxation 
processes in a glass characterized by a small number of steps 
n (Sec. 3). However, this improvement does not alter signifi- 
cantly the estimates given in Sec. 5, because the activation 
energy depends logarithmically on the probability. Never- 
theless, we may conclude that the inequalities E, > Go and 
f, > k * apply. This is due to the fact that, by definition the 
quantities f, and Eo apply to a problem with one degree of 
freedom, whereas k * and Go are the statistical characteris- 
tics of a cooperative relaxation process as a whole, i.e., they 
describe on the average the contribution of an infinite num- 
ber of the degrees of freedom. 

Subject to the comments made above, it is clear that the 
results in Secs. 4-6 provide a complete description of the 
kinetics of nonexponential relaxation in glasses (Sec. 2) 
throughout the investigated range of observation times. 

7. CONCLUSIONS 

We have discussed here postirradiation relaxation in 
inorganic glasses. We have demonstrated for the first time 
that the relaxation kinetics is described by the universal 
Kohlrausch law. An investigation of the dose dependences 

indicated that annealing of radiation defects is a first-order 
reaction and the temperature dependence of the characteris- 
tic relaxation time is governed by the Arrhenius exponential 
function. A method was developed for an analysis of the 
experimental data on such nonexponential relaxation in 
glasses, which satisfied all the criteria of the model of hierar- 
chically limited dynamics of relaxation in glasses" and can 
be used to calculate the normalized spectra of the relaxation 
rates and activation energy as a function of the observation 
time, to investigate their asymptotic behavior in the range of 
low and high relaxation rates, and to determine the param- 
eters of the theoretical model from the experimental data. It 
is shown that, from the point of view of postirradiation relax- 
ation a glass is a quasiergodic system in which cooperative 
atomic processes occur, and these can be described by the 
long-term kinetics of the activation spectra. In fact, the 
problem of quasiergodicity of a system is the problem of the 
validity of the inequality r,,, < a. On the other hand, ex- 
perimental investigations and theoretical ideas lead to the 
Arrhenius dependence of all the characteristic times of 
atomic modifications in a glass, so that at high temperatures 
rmaX should be an observable quantity. Our experiments 
showed that high-temperature annealing of defects was ter- 
minated very rapidly, but the residual concentration of the 
defects could not be detected by ESR spectroscopy methods. 
Our results demonstrated the existence of an exact upper 
limit to the activation spectrum of quasiergodic systems of 
this kind. It should be stressed however that the analysis of 
relaxation in glasses given above applies also to nonergodic 
systems, since all the moments of the spectra of the relaxa- 
tion rates and of the activation spectra remain finite, al- 
though the spectra themselves are unbounded. 

The new experimental and theoretical results obtained 
in the present study can be used as the basis for the investiga- 
tion of nonexponential relaxation in glasses under complex 
thermal annealing conditions. 

The authors are grateful to S.E. Paramzin for his help in 
the preparation of the samples. 

"The distance inside a donor-acceptor pair is a random quantity and 
there is no experimental information on the distribution function of this 
quantity. Therefore, we replaced a real disordered system of donor- 
acceptor pairs with an effective disordered system characterized by an 
average internal distance in a pair. 
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