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An investigation is reported of the influence of an anisotropic interaction with impurities on the 
superconducting states with a complex vector order parameter. The Ginzburg-Landau theory is 
used to show that when the impurity concentration n exceeds a certain critical value n ,, , the phase 
transition from the normal to the superconducting state splits into two transitions: the first, with a 
real vector order parameter, occurs at T = T,, ,and at lower temperatures by a second-order 
phase transition to a state with a complex vector order parameter. This state is separated from the 
region n < n,, by a second-order phase transition. It is pointed out that this situation may not 
occur in a real superconductor if the superconductivity appears before the point n = n ,, is 
reached on the concentration axis. The physical conditions under which the above splitting into 
two transitions nevertheless takes place are given. Moreover, at an impurity concentration 
n = n,, > n,, the T,, line exhibits a tricritical point: the superconducting transition in the range 
n > n,, becomes first-order if the superconductivity does not appear at lower concentrations. 

1. INTRODUCTION 

Replacement of uranium with thorium atoms in the 
heavy-fermion compound UBe,, splits the phase transition 
to the superconducting state into two at thorium concentra- 
tions exceeding a certain critical value x, (Refs. 1 and 2) .  
Such phase transition behavior is possible when the super- 
conducting state represents a mixture of two superconduct- 
ing phases a and b, which have different symmetry groups 
and whose critical temperatures depend in different ways on 
the impurity concentration: T,, > T,, when x < x, and T,, 
< T,, when x > x,. A theory of phase transitions of cubic 
semiconductors based on this hypothesis is developed in Ref. 
3 and other possible explanations of the phase diagram of the 
system U, -,Th,Be,, are considered there. 

Phase transitions between superconducting phases of 
different symmetry are possible also within the framework 
of one representation. We shall show that such a situation 
does occur in a superconductor containing impurities and 
characterized by a complex vector order parameter +, which 
transforms in accordance with one of the two- or three-di- 
mensional representations of the symmetry group.4 

The interaction with impurities in superconductors 
with a multicomponent order parameter is anisotropic, i.e., 
it depends on the position (relative to the center of a unit 
cell) of a given impurity. Averaging over the random orien- 
tations of the anisotropy axes gives rise to an effective func- 
tional of the free energy and minimization of this functional , 
determines the phase diagram of the superconducting states. 

In the range of impurity concentrations n exceeding a 
certain critical value n,, the phase transition from the nor- 
mal to superconducting state splits into two. First, a second- 
order transition takes place at T = T,, , producing a super- 
conducting phase 1 with a real order parameter 
( 1 = I +  1 '), and this is followed by a second-order transi- 
tion to a phase 2 with a complex order parameter 
(0 < 1 < I +  1 2 ) ,  separated from a region 3 with a complex 
order parameter ( 1 1 = 0)  by a second-order phase transi- 
tion. When the impurity concentration is n = n,, > n,, , the 

T,, line may exhibit a tricritical point the phase transition to 
the superconducting state with n > n,, becomes first-order. 
However, in the case of physically meaningful parameters of 
the theory the superconductivity is clearly suppressed at im- 
purity concentrations less than n > n,,. This qualitative be- 
havior is the same for two- and three-dimensional represen- 
tations of the symmetry group of the particular crystal. 

We shall identify the superconducting classes to which 
the new phases belong and establish inequalities governing 
the parameters of the proposed model and ensuring the 
phase transitions just described. 

2. SELECTION OF THE MODEL AND AVERAGING OVER 
IMPURITIES 

We shall consider a superconductor described by the 
Ginzburg-Landau functional (see Refs. 4 and 5): 

where a, p,, P2, and 0, are numbers; Vis the volume of the 
superconductor; and the index a labels the various impuri- 
ties. In this model U:k is a symmetric matrix which corre- 
sponds to an ellipsoid of revolution with the eigenvalues A,, 
A,, and A, whereas in the expression (2)  for F,, we have to 
sum over the impurities present, whose concentration is n. 
The problem of the appearance of a term P2\q2\, in Eq. (1) 
and of those superconducting classes which admit the exis- 
tence of this term will be discussed in Sec. 4. 

The subsequent procedure is as follows: Averaging is 
carried out over the impurity orientations and their posi- 
tions in space. Then, minimization of the Ginzburg-Landau 
functional establishes the nature of the superconducting 
state. 
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One important point should be noted. In the calculation 
of the main physical quantities we have to average the loga- 
rithm of the partition function, i.e., the free energy and not 
the partition function itself. Nevertheless, we shall average 
the partition function. However, it can easily be shown (see 
the Appendix) that to fourth order in +, the results of calcu- 
lations made by these two methods are identical. It follows 
from the above comments that the functional form of the 
true free energy will differ from that given above, but this 
does not affect the final result, because in this result we need 
to know the free energy only to fourth order in +. 

We now carry out averaging over the impurity-orienta- 
tions: 

Uika=(P)  'APl  
Aij=O, i#j; All=hl;  Aii=hz, i+1,  ( 3 )  

whereS" is an orthogonal matrix. The dimensionality of the 
matrices A and Sa is equal to the dimensionality of the order 
parameter. 

The partition function can be described by the following 
readily derived expression: 

dr I "V 
e -  i = { s -  1 ,  ( 1- , (4) 

I; 

1 1 
($(r.), 9' (r.) ) = - - 111 [ ~ D S  (->F ....')] . 2 = - . 

P 1' 

Complete integration of Eq. (5 )  is possible only if the 
order parameter has the dimensionality d, = 2. In this case 
the calculation gives 

If d, = 3, then 

where I, ( t )  is a modified Bessel function of the zeroth order. 
We shall consider only the case d, = 2. 

3. PHASE DIAGRAM 

We thus find that the density of the average Ginzburg- 
Landau functional is 

Forp, > 0, then for arbitrary values of 141' and 1q21 we can 
assume I1C?, I 2  = I$,, 1'. Then, introducing 
-at+n (hl+k?) /2=-11 (T, n ) ,  

(3=p,+P3/2, ( 9 )  

we can reduce f to 

f l  ( t )  =-at+(3t2, 
fz(t)=Pzt2-(n1P)ln [Io(i/2Ptlhl-?.2J)]. 

Forp2<0, we have f2<0 and the state is always described by 
the relationship [ + I Z  = 1+l21. However, forp, > 0, there is a 
critical concentration n,, = 16P,/p IA1 - i1212, such that for 
O(n < n,, the graph has the form shown in Fig. la, whereas 
for n > n,, the graph is different (Fig. lb).  

Just this qualitative discussion is sufficient to show that 
in the former case the superconducting state is characterized 
by 1q21 = 0, whereas in the latter case there is a transition 
from the state 1 ( ($1' = (q2() to the state 2 (0 < (q2( < ( + I 2 )  
at a temperature T,, (n) .  We find this dependence and show 
that this is a second-order phase transition. 

We can easily see that a minimum off corresponds to 
states with the following order parameters: 

1) 1$12=1$21, if 1$12GEO; 
(1'1 

2 )  1912>1$21=E~, if l$12>Eo, 

where lo > 0 is such that min f2({) = f2(10). It should be 
noted that lo is independent of temperature and is affected 
only by the impurity concentration and other parameters. 
We thus find 

We can also readily determine the dependence of 141' on T 
by representing f2 in the vicinity of 6, by the expression 

Then the relationship 

governs the temperature of the transition from the phase 1 to 
the phase 2. 

We can also calculate easily the specific heat discontin- 
uity as a result of this phase transition: 

In view of the continuity of the first derivative with respect 
tof, it follows that the 1-2 transition is second-order. 

We now consider the line separating the phases labeled 
2and 3. It is a segment joining the points [ T, (n,, ), n,, ] and 
(0, n,, ) because its position is governed by the existence of a 
nonzero minimum of the function f,, the appearance of 

where FIG. 1. Plot of the function f, (x2) in Eq. ( 10): a) O<n < n,, ; b) n,, < n. 
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which below T, (n,, ) is independent of temperature. We 
show that this line represents second-order phase transi- 
tions. The quantity go can be approximated satisfactorily by 
the expression 

We can then readily find the change in the free energy as a 
result of the 2 - 3 transition: 

Af2-.s=12(Eo (n) )-const.Eo4. (17) 

It readily follows from the above expression that the 2 -+ 3 
transition is second-order, because the free energy in the de- 
pendence on the impurity concentration is a continuously 
differentiable function, but its second derivative has a dis- 
continuity along the n,, line. 

If the impurity concentration n exceeds n,, 
= 1 6 ~ ( B  + B2 ) / (A,  - A,) ,, the dependence of the free en- 

ergy on the order parameter has two different minima indi- 
cating that the line separating the normal and superconduct- 
ing ( 1 ) phases is a line of first-order phase transitions and 
that the minimum of 11)) #O is lost when the superconduct- 
ing phase is absolutely unstable, whereas the minimum 
(41 = 0 disappears when the normal phase becomes abso- 
lutely unstable. This is illustrated in Figs. 2 and 3. 

In the next section we shall identify the superconduct- 
ing classes to which this model can be applied, as well as the 
correspondence between these classes and the phases pre- 
dicted by the model. 

4. SYMMETRY OF SUPERCONDUCTING PHASES 

The various classes can be made to correspond to the 
different phases of the model by first identifying the symme- 
try groups of the normal phase which admit the existence of 
a term p2 1zl,212 in the functional ( 1 ). We can readily show 
that if the order parameter transforms in accordance with 
the two-dimensional representation of the corresponding 
group, i.e., if the vector J, is two-dimensional, the symmetry 
group of the superconductor should be axial (it should have 
a preferred symmetry axis). However, if the vector zl, is 
three-dimensional, then in general any point group allows 
the existence of the term in question. 

Since we shall concentrate on the two-dimensional 
order parameter and allow for the influence of the term 
P3BI+biI4 in the functional ( l ) ,  it is clear that the maximum 
combined group corresponding to the normal state consis- 
tent with a model described by the functional (1) is the 
group D4xU(1)  XR.  

FIG. 2. Dependence of the free energy on the square of the absolute value 
of the order parameter: a)  absolute instability of the superconducting 
phase; b) first-order phase transition; c )  absolute instability of the normal 
phase. 

FIG. 3. Phase diagram of a superconductor described by the model of a 
functional ofEq. ( 8 ) :  here, n is the normal phase (j+j2 = 0 ) ;  I )  supercon- 
ducting phase ( 1 + 1 2  = 1+21#0); 2)  magnetic superconducting phase 
( 0  < < ]+I2); 3) magnetic superconducting phase 
( I+'/ = 0, l+12#O) .  The continuous curves represent second-order phase 
transitions; the dashed line represents first-order phase transitions (line 
b ) ;  the chain curves represent the lines of absolute instability of the super- 
conducting (a) and normal ( c )  phases. 

The superconducting classes were found in Ref. 4. We 
use the results given there and establish the necessary corre- 
spondence between the superconducting phases and the rela- 
tive classes. Using the condition 1 +hx 1 = 1 +h,, 1 ,, we select the 
order parameter for the phase I (Fig. 2)  in the form 
zl, = (exp [ in- /4] ,  exp [in-/4] ); the corresponding classes 
D ; (C,) (Ref. 4) which must be transformed to 

since the order parameter of the phase I is selected-for the 
sake of convenience-in the complex form. In phase 3 the 
corresponding class is D, (El  with the order parameter 
J, = ( 1,i). However, in the case of phase 2 there is a sponta- 
neous breaking of the D, ( E )  and Z) ; (C, ) symmetry, yield- 
ing a certain class X which is a subgroup of these two groups. 
We shall write down explicitly the elements of the class X 

X = {E,  Czei", e i n " / ~ ~ ~ ' ' '  , e - i n / ~ ~ ~ 1 2 ( 2 )  ),  (18) 

as well as the expression for the order parameters of the 
phases 1,2, and 3: 

$?= ( c ~  , ie-lp), 

transforming to J,, when p = 0 and to p, when p = a/4. 
The U;"' and U;"' axes are bisectors of the angles XOY 
and - XOY, respectively. Therefore, we obtain the phase 
diagram shown in Fig. 4. We now give the expressions for the 
corresponding order parameters: 

$i=e'*''' (I, I), 

Naturally the groups D, ( E )  and b ; (C, ) are subgroups of 
the complete combined group D, X U( 1 ) X R and the group 
Xis  a subgroup of all three groups. 

The order parameter J, is truly complex, because the 
vectors Re zl,, and Im +, are noncollinear, which means that 
the phase 2 is magnetic. Electrons in this phase are paired in 
a nontrivial manner: The pairs now have a nonzero orbital 
momentum, but this is not the state with a fixed momentum 

286 Sov. Phys. JETP 70 (2), February 1990 V. G. Marikhin 286 



FIG. 4. Correspondence between the phases and the superconducting 
classes of the system. 

since the symmetry group of the crystal does not have a com- 
plete rotational symmetry. This state is a sum of different 
spherical harmonics corresponding to different values of the 
orbital momentum. 

5. CONCLUSIONS 

The situation considered above is one in which nontri- 
vial pairing occurs in a superconductor and the order param- 
eter transforms in accordance with the two-dimensional rep- 
resentation of the symmetry group. The anisotropic 
interaction with impurities stimulates a second-order phase 
transition from a nonmagnetic superconducting phase to a 
magnetic one when the impurity concentration exceeds a 
certain critical value n , ,  . 

The question now arises about the validity of this model 
associated mainly with the selection of the impurity term in 
the functional ( 1 ) in the form given by Eq. (2), and relating 
to the procedure of averaging over the impurities. Moreover, 
it may happen that the constants of the interaction with the 
impurities A, and A, are equal and then the model is invalid. 

We consider these problems now and identify a physical 
situation in which the values of A, and A,  are not only not 
equal to one another, but also one of them vanishes identical- 
ly. 

The most general form of the impurity term in the Ginz- 
burg-Landau theory was obtained in Ref. 6. When applied 
to the present model, this term becomes 

F,,,,, = c 1 J A  (I*) [ I ~ I  (r .  r f j  l - ~ * ( r ~ j ( l r  c~r'.  (20)  
h 

where C is a constant and the expression Im T(r,ri) repre- 
sents the imaginary part of the exact scattering matrix con- 
sidered in the coordinate representation. 

We assume that theimpurity is located at some point r,. 
Then, calculation of Im T(r,rl) to second order in the inter- 
action with the impurity [ V(r) = VS(r - r,) ] yields the 
expression 

Substituting Eq. (21 ) into (20), we obtain an impurity term 
in the form 

Here @, and @, are the basis functions of the irreducible 
representation which governs the transformation of the or- 
der parameter $. It should be pointed out that the matrix Uik 
is degenerate, so that 

h,=O, h,=Tr Ui,=Cb'[@,'(r,)81(r.)+@,*(ro)@2(r,) I .  (23) 

The value of A, is generally nonzero. 
We can easily understand also the meaning of the aver- 

aging over the "orientations" of an impurity for fixed values 
of A, and A , .  It simply means averaging over the position of 
an impurity in the unit cell on condition that the impurity is 
located on an equipotential surface inside the well created by 
the crystal field. 

The symmetry analysis in Sec. 4 shows that this model 
applies to real superconductors with a symmetry group that 
allows nontrivial pairing in a superconductor with a multi- 
component order parameter and the appearance of terms of 
the /3,1 q2 1 type in the Ginzburg-Landau functional. How- 
ever, we have to determine the physical conditions under 
which this model is acceptable and identify those relation- 
ships between the constants of the theory which ensure that 
the splitting of the phase transition occurs before suppres- 
sion of the superconductivity. This happens if the following 
inequality is satisfied: 

On the left we have the expression for the impurity concen- 
tration n,, at which the superconductivity is suppressed and 
on the right we have the impurity concentration n , ,  at which 
the transition splits. 

If we use the expression for the constants given by 
A; -a,, k f./16n, for example that derived in Ref. 7, we ob- 
tain the following expression for the quantities n,, and n,, : 

Here, No is the density of states at the Fermi level; a,, is the 
transport cross section of an impurity, and the coefficient E 

represents the smallness of the coefficient /3, associated 
with, for example, the fact that the crystal symmetry is tetra- 
gonal but differs slightly from the cubic (the degree of com- 
pression of the cube is proportional to E ) .  It then follows 
from the expressions in Eq. (5)  that this phase transition 
behavior occurs in two important cases: for a,, k i -  16r% 1, 
i.e., when the impurity has "giant" dimensions, and for E< 1 
(in the slightly noncubic case, which is more realistic than 
the former condition). 

The author is grateful to V. P. Mineev for his help in the 
selection of the subject and valuable discussions of the re- 
sults. 

APPENDIX 

We shall show that the coefficient in front of / 42 )2  in the 
expression for the effective free energy is the same irrespec- 
tive of whether it is calculated by averaging the partition 
function and then taking the logarithm of the average or by 
averaging the logarithm of the partition function. Moreover, 
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the free energy is an increasing function in the limit 
I+* ( - co . Therefore, if the free energy falls at low values of 
[+*I, then at some value 1+2(#0, it has a minimum when 
considered as a function of 1+'1, which means that the phase 
diagram obtained above applies in this case. 

We now calculate the impurity term in the effective free 
energy by the two methods mentioned above. 

1. Weassume thatf, = - Tln ( Z  ),, whereZis thepar- 
tition function and the angular brackets denote averaging 
over the impurities. We then have 

Here and below the index a labels the impurities over which 
the summation is carried out and the expression (A ) &, 

means that 

i.e., it implies a functional integral of A(+,+*)  with respect 
to + and the use of the function F, which is the Ginzburg- 
Landau functional of a pure superconductor. In the expo- 
nential function and the logarithm to within fourth-order 
terms in +, we obtain 

Here, 

and the matrix U is defined above. Therefore, we have 

2. In the second case, we obtain 

The last term in the above expressions depends only on / + I 2  
and not on I+'I, whereas the first term is identical with f, 
apart from the correction o( /+I4),  which means that the co- 
efficients in front of 1 +* 1 are identical in the expressions for 
f, andf,. 
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