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It is shown that a fast charged particle moving above the surface of a substance covered by a two- 
dimensional grid of microirregularities emits intense coherent radiation in the form of photons 
generated as a result of resonant excitation of local surface plasmons. A theory of spontaneous 
and stimulated emission of radiation is developed for the case when a dipole resonance of plasmon 
excitation is important. It is also shown that under certain conditions relativistic particles can 
exchange energy effectively with an external electromagnetic wave via local surface plasmons. 

1. INTRODUCTION 

Collective oscillations of an electron plasma in material 
microparticles, excited by an electromagnetic wave or fast 
electrons, are the origin of many interesting effects which are 
currently under close scrutiny (see, for example, the reviews 
in Refs. 2 and 5).  It is shown in Ref. 1 that a local electro- 
magnetic field near the surface of a particle of submicron size 
may be several orders of magnitude greater than the field of 
the incident wave if the wave frequency is in resonance with 
one of the natural frequencies of oscillations of an electron 
plasma in microparticles. Enhancement of this local field 
results in turn in a considerable amplification of a number of 
electro-magnetic processes that occur on metal surfaces or in 
metal  colloid^.^-^ In particular, the cross sections represent- 
ing the Raman scattering of light and luminescence of ad- 
sorbed molecules rise by several orders of m a g n i t ~ d e . ~ . ~  Ob- 
servations have also been reported of enhancement of 
nonlinear optical phenomena such as the two-photon lumi- 
nescence of molecules and the generation of higher harmon- 
ics when laser light is reflected by irregularities of metal sur- 
faces.*~~ 

The discovery of considerable enhancement of several 
electromagnetic processes on metal surfaces has increased 
the interest in other phenomena involving local surface plas- 
mons. They include the appearance of a "dip" in the coeffi- 
cient representing reflection of light by metal surfaces when 
the frequency of light is close to the frequency of local plas- 
m ~ n s , ~ , ~  radiative damping of local plasmons excited by fast 
 electron^,'-'^ and evidently also Wood's anomalies,' i.e., the 
appearance of dips in the case of diffraction by gratings with 
sufficiently deep grooves, analogous to dips in the specular 
reflection of light. Some of the observed  effect^",'^ have not 
been explained convincingly for a long time, but they were 
reviewed in Ref. 10 allowing for the role of local surface 
plasmons. It was shown there that the unusually high inten- 
sity and other properties of optical radiation discovered 
when metal surfaces were bombarded with fast electrons at 
grazing angles can be explained fully by radiative decay of 
local plasmons excited by electrons located in surface irregu- 
larities. 

Such microirregularities of random surfaces represent 
particles which differ greatly in size and shape.' Since it is 
these parameters of the particles that determine, in conjunc- 
tion with the permittivity of the material, the resonance fre- 
quencies of local surface plasmons, the plasmon excitation 

spectrum is characterized by a relatively large inhomogen- 
eous width. On the other hand, microlithography of surfaces 
can p r o d ~ c e ~ ~ ~ ~ ' ~ - ' ~  regular two-dimensional grids of submi- 
cron particles which are of the same size, shape, and orienta- 
tion. In such cases it is possible, firstly, to minimize the inho- 
mogeneous broadening of plasmon resonances and thus 
enhance greatly the local field effects. Secondly, the addi- 
tional effects associated with the translation symmetry of the 
surface are also observed. In particular, it is reported in Ref. 
15 that a grid of ellipsoidal projections can be used to gener- 
ate the second harmonic of laser light not only (as usual) at 
an angle close to the reflection angle, but also at an angle 
corresponding to the diffraction of the second harmonic by a 
grating. Another experimentI3 has shown how a two-dimen- 
sional array of disk-shaped AlGaAs particles on the surface 
of GaAs affects the hf conductivity in a magnetic field, asso- 
ciated with the damping of surface plasmons. 

The regular nature of such microirregularities should 
be manifested particularly in the excitation of local plas- 
mons by a fast charged particle and their subsequent radia- 
tive decay, since phase relationships between the individual 
radiators are important in this process. We shall develop a 
theory of coherent emission of radiation from local surface 
plasmons excited by a relativistic electron and we shall for- 
mulate the conditions under which considerable enhance- 
ment of the emission is possible compared with incoherent 
radiation emitted by random  surface^.^-'^ We shall discuss 
the processes of stimulated coherent emission and absorp- 
tion of photons when, in addition to an electron beam, an 
electromagnetic wave with the frequency of a plasmon reso- 
nance is traveling at an angle to the surface. We shall show 
that in this case there is an exchange of energy between the 
electron beam and the electromagnetic wave because of plas- 
mon resonances. 

2. FREQUENCY-ANGULAR DISTRIBUTION OF RADIATION 
EMITTED BY AN ARRAY OF PLASMONS EXCITED BY A FAST 
ELECTRON 

We assume that a relatively flat surface carries a two- 
dimensional array or grid in the form of separate microparti- 
cles with specific shapes, dimensions, and orientations rela- 
tive to the normal to the surface. We also assume that a fast 
relativistic electron is traveling in vacuum at a velocity v and 
at a distance x from the surface. The fast electron excites 
oscillations of the electron density in the particles and these 
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in turn become sources of electromagnetic radiation in the 
form of transverse waves. 

The energy of such radiation traveling in vacuum, mea- 
sured within a frequency interval dw and a solid angle dfl, 
can be found using the familiar expression taken from classi- 
cal electrodynamics: 

Here n is a unit vector along the direction of the emitted 
radiation, k = n(o/c) is the wave vector, and j (k,w) is the 
space-time component of the Fourier current induced by a 
relativistic electron in the particles on the surface. We as- 
sume that the dimensions of these particles are small com- 
pared with the radiation wavelength A = 2m/w and the 
main periods of the two-dimensional array are comparable 
with A, so that the distance between the neighboring parti- 
cles is much greater than their dimensions. In this case the 
radiation of the dipole nature and the interaction between 
neighboring dipoles can be ignored.' Consequently, the 
Fourier component of the induced current can be represent- 
ed in the form 

j ( k ,  w )  = i w x  d ( o ;  x, R) o I k R .  

where d(w;x,R) is the dipole moment induced in a single 
particle and dependent on the distance x between the fast 
electron and the surface and on the coordinate R of the 
"site" in the two-dimensional array (lattice) on the surface. 

The dipole moment d(w;x,R) can be expressed in terms 
of the corresponding Fourier time components E (o,r)  of the 
electron field. We choose a cylindrical coordinate system 
with the z axis along the electron velocity v and use p to 
denote the radius vector perpendicular to v. Then the com- 
ponents of the electron field of frequency w can be described 
(see, for example, Ref. 10) 

2 - l /2 . Here, r = { p,z); y = ( 1 - u2/c ) IS the Lorentz factor 
of a fast electron; KO({) and K, (6) are modified Bessel func- 
tions of the second kind: Ez and E, are the parallel and per- 
pendicular (relative to the velocity) Cartesian resolvents of 
the Fourier component of the field; + Y ' ) " ~ .  In the 
case of sufficiently small islands { = pw/vy< 1, the behavior 
of the modified Bessel functions is described by the familiar 
expressions 

An estimate of the spatial derivatives of the field (3),  based 
on these expressions, show that the variation of the field of 
the electron within a particle can be ignored if the longitudi- 
nal a, and transverse a, dimensions of the particle satisfy the 
conditions 

Under these conditions we can assume that a single particle 
experiences the electric field of the electron of Eq. ( 3 )  which 
alternates in time and is practically constant in space. We 

assume that the particle material is characterized by a fre- 
quency-dependent permittivity ~ ( w )  and the particles are 
not too small (a > u,/w - 10 A),  so that we can ignore the 
influence of the particle dimensions on their dielectric prop- 
erties. Consequently, the dipole moment induced by the field 
of the electron within the particle can be calculated by analo- 
gy with the corresponding problem in electrostatics. If, for 
the sake of simplicity, we assume that the particle has three 
symmetry axes, which coincide with the axes of the selected 
coordinate system, we can represent the components of the 
dipole moment in the form 

The following notation is introduced above: Vis the particle 
volume; a,, a,, , and a, are the components of the polariza- 
bility tensor of the particle at a frequency w, corresponding 
to the excitation of dipole oscillations along the coordinate 
axes. The components of the polarizability tensor of the par- 
ticle can be expressed as follows in terms of electric suscepti- 
bility ~ ( w  ) = E (w ) - 1 and in terms of the depolarization 
coefficients n,, n,, and n, depending only on the particle 
shape: 

1 x ( o )  a =- 
4n l + n , x ( o )  ' 

The depolarization coefficients satisfy the relationship 

and can be represented analytically in the form of isolated 
particles with simple ~ h a ~ e s ~ . ~  and in the case of microirre- 
gularities of more complex shape (for example, in the case of 
hemispherical projections on a flat surface), the value of 
a (w)  can be calculated by numerical methods.16 It follows 
from Eqs. (4)  and ( 5 )  that the dipole moment of a particle 
considered as a function of the frequency is characterized by 
resonance at frequencies w, for which the real parts of the 
denominators in the system ( 5 )  vanishes. The amplitudes 
and widths of these resonances are then governed by the 
ratio x'/xl' of the real and imaginary parts of the electric 
susceptibility ~ ( w )  at the resonance frequencies. It therefore 
follows that strong excitation of local surface plasmons can 
be expected if the damping at the resonance frequencies is 
sufficiently weak: X" < Ix' I. 

In the case of a rectangular array of microirregularities 
with the periods d l  and d, the components of the induced 
current can be written in the form 

m N-4 

278 Sov. Phys. JETP 70 (2), February 1990 N. K. Zhevago 278 



where p, = vy/w, 

are the coordinates of the sites in this array or lattice, 

$ is the angle between the electron velocity and one of the 
sides of the array (along which the period is d l ) ,  

n,==sin 0  sin cp, n,=cos 0 

are the projections of a unit vector oriented parallel to the 
direction of emission and resolved along the coordinate axes, 
and N is the number of sites in the array or lattice along the 
direction of the electron velocity. The quantity @,, repre- 
sents the phase of the radiation field in the case of a single 
dipole and the other factors in the sums represent its ampli- 
tude. the substitution of Eq. (6) into Eq. ( 1 ) yields the spec- 
tra and angular distribution of the radiation. 

We now consider some cases of practical importance in 
which the analysis\of the general result can be simplified 
greatly. We assumed that the direction of motion of an elec- 
tron is close to the direction of one of the sides of the array 
( $ < o  ' - n, ). In this case we can assume that y,, zpd,,  
z,, z v d l  Consequently, we can sum over the index v in Eq. 
(6),  using the identity 

Further simplification is possible in the ultrarelativistic limit 
y>) 1. In this limit the amplitude of the radiation field in- 
cludes a comparable contribution of the fairly large number 
( - y) of sites with y,, 5 Xy, so that the summation in the 
system (6) over the index p can be replaced by integration 
with respect to the quasicontinuous quantity y,,d,. In this 
integration we can use the relationships" 

p = ( z 2 + y 2 ) " 2 ,  a = l / p o ,  6=- ( W / C )  n,. (8 )  

In the limit y>) 1 the component z of the induced dipole mo- 
ment is y times less than its transverse components d, and 
d, , so that we can ignore the excitation of the dipole oscilla- 
tions along the direction of the electron velocity. It should be 
noted also that according to Eq. (8 )  the phases of the x and y 
components of the current described by Eqs. (6) are shifted 
relative to one another by n-/2 and, therefore, the cross terms 
in Eq. ( 1 ) proportional to Re jd; vanish. Consequently, the 
frequency and angular distribution of the radiation energy in 
a distance L = Nd, traveled by the electron above the sur- 
face becomes quite simple: 

S (o, 0 )  =sin2 (NE/2 )  /sinz ( E / 2 )  

is the interference factor for the radiation emitted by a chain 
ofN dipoles located along the electron path. If the number of 
dipoles is large, N% 1, we can present the above results in the 
approximation form 

m 

We also note that 

sin2 ( N g , )  
lim = d l  (En) , 
N*m NEn2 

where S(6, ) is the Dirac function. 
The frequency and angular distribution of the radiation 

energy given by Eq. (9)  as a function of the polar angle 8 at a 
fixed frequency w or, conversely, as a function of the fre- 
quency at a fixed angle 8 has sharp maxima when the condi- 
tion 6, (w,8) = 0 is satisfied, which is a consequence of the 
coherence of the radiators. The width of this maxima Al, on 
the 6, scale is governed by the number of periods Nalong the 
electron path: Ag, zn-/2N. The magnitude of the frequen- 
cy-angular density of the radiation energy at the maxima is 
proportional to the square of the number of periods, to the 
square of the polarizability of the microparticles, and (sub- 
ject to the condition d, - X2)  to the square of the ratio of the 
microparticle volume V to the quantity X3. 

As pointed out above, the polarizabilities a, (w) and 
a, (w)  have resonances at frequencies or where the real part 
of the susceptibility satisfies the conditions 
['(w:')) = - n; ' or xf (wj2) )  = - n; ', so that the radi- 
ation is emitted mainly at angles Orcorresponding to such 
resonances: 6, (wr,8, ) = 0. If the susceptibility in Eq. ( 5  ) is 
expanded in powers of the small parameter Aw = w - w,, 
we obtain expressions for la, (w ) 12, lay ( w )  1' near the reso- 
nance frequencies which yield 

wherex ' ,~" ,  and dx1/dw are taken at the resonance frequen- 
cy w,. It is assumed here that the absorption is relatively 
weak: X" < Ix'J. Therefore, to lowest order the line profile 
representing excitation of a local plasmon is Lorentzian with 
the following width at a half-amplitude: 

Although this width is small compared with the resonance 
frequency w,, if the structure is sufficiently long ( N 2  10') it 
exceeds the width determined by the interference between 
dipoles ( Aw/w z 1/2Nn). Therefore, the total width of the 
distribution of the radiation in the polar angle around 8, is 
governed by the spectral width I? of the plasmon resonance. 

If the resonance frequency w, of a local plasmon is suffi- 
ciently low compared with the frequencies of interband tran- 
sitions, it follows that the electric susceptibility of the metal 
can be described by the Drude expression 
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where w, and r represent respectively the plasma frequency 
and the relaxation time of carriers. In this approximation the 
resonance frequencies and the widths of the resonances are 
given by the simple relationships: 

The distribution of the radiation in the azimuthal angle 
q, depends on the distance between the moving electron and 
the plane of the surface and on the polar angle of the emis- 
sion of radiation. If the distance x is large compared with /Z 
and the polar angle is not too close to zero or to .rr 
(sin 8% y -  ' ), the effective values of q, are small: q,,, - y - ' . 
Subject to these restrictions we can now integrate Eq. (9)  
with respect to the solid angle by an analytic procedure. We 
represent n, = sin 8 sin q, in its approximate form so that 
sin q,-9 and extend the limits of integration with respect to 
q, to infinity. We can then use the relationship 

?z 

where t = yq, /sin 8 I and X = 2x/hy,  which is the famil- 
iar"s18 integral representation of the modified Bessel func- 
tion. The other integral which is obtained can be represented 
in the form 

The relationship given by Eqs. ( 12) is obtained by integrat- 
ing Eq. ( 1 1  ) twice with respect to the parameter X. The 
functions K, (X) and Ki, (X) are tabulated in, for example, 
Ref. 18. In the case of large parameters X k 1 they decrease 
exponentially.18 Further integration with respect to the po- 
lar angle 8 carried out using Eq. ( lo) gives 

where [x ]  is the integral part ofx; S = dld, is the area of the 
surface per one microirregularity. 

The spectral density of the radiation energy given by 
Eq. ( 13) for the motion of an electron above a regular struc- 
ture on the surface of a metal is on the order of the value 
obtained in Ref. 10 for a random distribution of surface mi- 
croirregularities with an appropriate distribution density. 
On the other hand, along certain directions the coherence of 
the radiation may enhance the spectral and angular density 
of the radiation emitted by the regular structure [Eq. (9)  1 
by several orders of magnitude. 

The relatively high spectral and angular density and the 
monochromaticity of the coherent radiation emitted by local 
plasmons is of interest in connection with the possibility of 
laser acceleration of particles and generation of laser radi- 
ation, which will be discussed below. 

3. INTERACTION BETWEEN AN ELECTROMAGNETIC WAVE 
AND AN ELECTRON BEAM TRAVELING ABOVE ATWO- 
DIMENSIONAL ARRAY 

We assume that a beam of electrons moving above an 
array of microirregularities meets an electromagnetic wave 
of frequency corresponding to resonant excitation of local 
plasmons at an angle 8 to the direction of the electron veloc- 
ity, and let us assume that this angle is close to the angle of 
coherent spontaneous emission [see Eq. ( 10) 1. We shall 
show later that such a wave may be amplified by the process 
of stimulated emission or it may be damped, transferring its 
energy to the moving electrons, depending on its relation- 
ship to the electron beam. 

When the wave loses energy, we have to find the in- 
crease AE in the energy of an electron after it passes above a 
structure of length L at a distance x from the surface. In the 
other case we have to find the gain G, defined as the ratio of 
the increase in the density of the energy flux carried by the 
incident wave to its initial energy density. Their are several 
ways of calculating the gain when the active medium is an 
electron beam interacting with matter or with an external 
field [see, for example, Refs. 19 and 201. The simplest of 
these is based on allowance for the influence of the quantum 
recoil effect, which accompanies the emission or absorption 
of the photon by an electron, on the condition specifying 
coherence of the radiation. Let us assume that W" ( ( ~ , n )  de- 
notes the frequency-angular probability density of coherent 
spontaneous emission of a photon by an electron in a dis- 
tance L. Since the photon energy is considerably less than 
the electron energy, it follows that the lowest order in the 
parameter h / E ,  i.e., in the classical approximation, the 
quantity ww ((w,n) is found by the dividing the right-hand 
side of Eq. (9)  by the photon energy h. We shall now as- 
sume that jph (w,n) denotes the frequency-angular density 
of the energy flux carried by the external electromagnetic 
wave. Then, the corresponding density of the probability of 
simulated emission we" and absorption wab can be related to 
wV by the familiar expressions: 

The energy AE acquired by an electron is proportional 
to the difference wab - we" and, consequently, a nonvanish- 
ing effect ( A E  # O )  appears only in the next order in the 
small parameter h / E .  Inclusion of the quantum correc- 
tions modifies the coherence condition for the emission and 
absorption in such a way that the quantity 6, [see Eq. ( 10) ] 
experiences different increments: S{, ( - ) in the case of ab- 
sorption. This splits the spectral line for a fixed angle 8. On 
the other hand, the influence of the quantum effects on the 
amplitude of the frequency-angular distribution of the radi- 
ation observed for gn =:O can be ignored. We shall introduce 
A{,, = 66, ( + ) - A{, ( - ) as the difference between quan- 
tum increments in the quantity 6,. Then, the increment in 
the electron energy due to the absorption of external radi- 
ation can be represented in the form 
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where J,, is the density of the energy flux of the external 
wave which is assumed to have spectral and angular widths 
small compared with the corresponding quantities in the 
case of spontaneous emission. 

If the right-hand side of Eq. ( 14) is negative, then the 
wave is amplified as a result of stimulated emission. The gain 
Gis found from Eq. ( 14) as follows. Let us assume thatj, ( x )  
is the density of the electron flux which may depend on the 
distance from the surface of the substance, a = L, D is the 
cross section of the photon beam, L, is the dimension of this 
beam along they axis, and D is the other side of the rectangu- 
lar beam cross section. The optimum conditions for magnifi- 
cation are obtained when the linear dimensions of the elec- 
tron and photon (electromagnetic) beams coincide along 
they axis and the length of the region of overlap of the beams 
along the z axis is equal to the total length of the structure, 
i.e., D = L lsin 0 I. Multiplying the right-hand side of Eq. 
(14), by the electron flux J, (x)  = j, (x)Ax, where A x 4  h y  
is the width of the electron beam, and dividing next by the 
photon beam cross section, we find the magnitude of the 
increment in the photon energy flux. Consequently, the gain 
becomes 

It follows from Eq. (9)  that the probability of spontaneous 
emission and, consequently, the gain described by Eq. ( 14) 
depend exponentially on the distance x between the electron 
beam and the surface and the dependence. Therefore, if the 
dimensions of the electron beam along the x axis are not 
sufficiently small compared with hy, it is necessary to carry 
out integration in Eq. ( 14') over the transverse dimensions 
of the beam. 

We can find the quantum shift ofc, without solving the 
problem of emission again. This shift can be deduced quite 
readily from the conservation laws. 

We use SE and Sp for the increment in the energy E and 
in the momentum p of a fast electron; we use o and k to 
denote the energy and momentum ofthe photon. The laws of 
conservation of energy and momentum (accurate to within 
the reciprocal lattice vector K parallel to the surface) can be 
written in the form (on the assumption that fi  = m = c = 1 ) 

The upper sign corresponds to the absorption and the lower 
to the emission of a photon by a fast electron, accompanied 
by the transfer of momentum + K to the lattice of local 
plasmons.Since the change in the electron energy is small, it 
can be represented in the form 

where vi is the Cartesian components of the electron veloc- 
ity; i, j = 1,2,3. Therefore, the condition of coherence in the 
case of absorption and also emission (subject to quantum 
corrections) becomes 

Bearing in mind that the above case of spontaneous emission 
described by Eq. (9)  corresponds to K-v = 0, where 
K = 2m/d1, we find that in this case the difference between 
the shifts of 6, is 

Next, using Eqs. (9), ( 14), and ( 15), we obtain the incre- 
ment in the electron energy in the field of the wave because of 
the interaction with nth harmonic in the form 

Here the notation is as follows: 

nLc 1 d sin 6 ' 
6.y-($--). h u, f(6)=-(--) 8% % , (17) 

and u, = c(nA /d l  - cos 8) is the phase velocity of the sur- 
face wave. The relevant gain is found from Eqs. (16) and 
( 14). The electron energy increment and the gain are pro- 
portional to the probability of spontaneous emission in the 
direction of the coherent maximum and to the derivative of 
the profile of the spontaneous emission line, which is typical 
of the low-gain approximation. The gain maximum occurs at 
c, z - 0.4a, where u > v, and f (6, ) ~ 0 . 5 4 .  The positive 
value of c, -- 0 . 4 ~  for v < v, corresponds to the maximum of 
the electron energy increment [Eq. ( 14) 1. 

It is clear that the validity of Eq. ( 16) requires that the 
variation of <, due to a change in the parameters occurring 
in this quantity should not exceed =:n-/2. Differentiating Eq. 
( 17) with respect to these parameters, we obtain the follow- 
ing restrictions on the monochromaticity and collimation of 
the electron beam of photons carried by the external wave, 
and also on possible deviations of the surface structure from 
strict periodicity: 

In the ultrarelavistic case ( y % 1 ) the less stringent of these 
conditions is that imposed on the spread in the electron ener- 
gies. On the other hand, when the number of the structure 
periods N is large, it is necessary to ensure a high degree of 
periodicity of the structure and a high degree of collimation 
of both beams. 

The mean square deviations of the structure period 
(Ad12) and of variation of the shape, volume, and orienta- 
tion of the particles affect the probability of coherent emis- 
sion [Eq. (9)  1, but do not alter significantly the coherence 
condition 6, (w ,B)  = 0 [see Eq. ( 10) 1 ,  which is related to 
the existence of long-range order in the array. 
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By analogy with the scattering of neutrons or x-ray 
phonons in crystals, we can show that the mean-square de- 
viations of the array period give rise, in Eq. (9 ) ,  to a factor 
e -  of the Debye-Waller type, where 
W = (27~n/d,)~(Ad :) and the quantity (Ad: ) then plays 
the role of the square of the amplitude of thermal vibrations 
of the lattice. Variations of the shape, volume, and orienta- 
tion of the particles relative to the surface also influence the 
probability of coherent emission, which is analogous to the 
influence of the isotopic composition of the nuclei on the 
coherent scattering of neutrons in a crystal. In general, the 
quantities V, a,, a, must be understood to represent average 
values. The averaging does not result in a significant reduc- 
tion in the polarizability a if the scatter of the plasmon reso- 
nance frequencies caused by variation of the pdrticle phase 
does not exceed the width of the resonances. Hence, the fol- 
lowing restrictions should be imposed on variation of the 
depolarization coefficients [see Eq. (5)  1 : 

In the case of an ellipsoid elongated along the nollnal to the 
surface the depolarization coefficient parallel to the longest 
of the axes of the ellipsoid is2f5 

where b / a<  1 is the ratio of the minor to the major semiaxis. 
Since in cases of practical importance we can a ~ s u r n e ' ~  that 
x f / x "  - 10 applies in the plasmon resonance region, it fol- 
lows that deviations of the eccentricity e of the ellipsoids 
from the average value should not exceed a few percent. 

The irregularities of the two-dimensional array should 
also give rise to an incoherent background in the radiation, 
but this background is of no interest in the problem under 
discussion. 

4. DISCUSSION OF RESULTS 

Coherent emission by local plasmons excited by a fast 
electron is treated theoretically and it is found that the prop- 
erties of the emitted radiation are closest to those of Cheren- 
kov radiation2' and Smith-Purcell radiati~n.~'  It is known 
that the latter can be regarded also as coherent radiation 
emitted by dipoles induced by the fast particle. In all such 
cases spontaneous radiation is emitted when the velocity of 
the fast particle becomes equal to the phase velocity of elec- 
tromagnetic excitations in the medium. In the case of the 
Smith-Purcell radiation a particle moving above the surface 
of a linear diffraction grating interacts with a surface wave 
characterized by an electric vector parallel to the particle 
velocity. When a wave of local plasmons is excited by an 
electron of higher energy ( y s  1 ) we have the opposite situa- 
tion: only those plasma oscillations which have the electric 
vector perpendicular to the particle velocity are important. 
The strength of the interaction of such plasmons with a rela- 
tivistic electron is, according to Eq. (6) ,  approximately y 
times greater than in the case of plasmon oscillations parallel 
to the electron velocity. This in turn makes the preexponen- 
tial factor in Eq. ( 16) describing the energy acquired by an 
electron from an external wave via local plasmons inversely 
proportional to the first power of the Lorentz factor and not 
to the third power, as in the case of the Smith-Purcell ef- 

f e ~ t . ' ~  On the other hand, in both cases it is preferable to use 
particles with a large value of the Lorentz factor because this 
relaxes the stringent requirements on the transverse dimen- 
sions of the particle beam associated with the exponential 
decrease of the parameter representlllg the interaction of 
electrons with surface plasmons as we move away from the 
surface. 

Another characteristic feature of the radiation dis- 
cussed above is its strong dependence on the shape of mi- 
croirregularities of the surface and dielectric properties of 
matter, related to the resonant behavior of the polarizability 
a (a) as a function of the frequency. 

By way of example we consider the case when a two- 
dimensional array of microinhc-llogeneities consists of silver 
ellipsoids with the ratio of the semiaxes b /a  = 3.4 and ori- 
ented so that the major axis is perpendicul .- to the surface.'' 
Calculations (see, for example, Ref. 10) show that a plasma 
resonance along the major axis occurs at A =: 500 d; and at the 
resonance we have (ox 12=:880. We assume that the other 
parameters of the structure are as follows: b = X/2, d, = 2A, 
d2 = 3a, and L = 0.5 cm. If the initial energy is E = 0.5 1 
GeV ( y  = lo3), and if the power density of the external 
source is P = lo9 W/cm2 we find that the e, = 0 Eq. ( 16) 
yields the following estimate of the average rate of laser ac- 
celeration of electrons: 

AEILx8 .5  e s p  (-0.025~) MeV/cm , 
where the distance of the electron to the surface is measured 
in microns. 

Estimates carriea out using Eq. ( 14) also show that for 
y z  10' the gain due to stimulated emission at optical fre- 
quencies (A =: 5000 d;) reaches a value of order unity when 
the electron current density is - lo4 A/cm2 and all the elec- 
trons in the beam travel no further than =: 10 pm from the 
surface. A laser operating on this amplification principle 
may be frequency-tunable within the width of a plasmon 
resonance by selection of the angle between the direction of 
the electron beam and the resonator axis. The frequencies of 
plasma resonances governed by the shape of the microirre- 
gularities and the dielectric properties of the medium cover 
the ultraviolet, optical, and infrared ranges. 

The above theory developed for the case of a two-di- 
mensional array can be applied also to the case when the 
particles form a three-dimensional colloidal c r y ~ t a l . ' ~ ' ~ ~  
This opens up an opportunity for investigating the proper- 
ties of colloidal crystals using a beam of fast electrons. 

We conclude by noting likely trends in the development 
of the theory of coherent emission by local plasmons. Ac- 
cording to these results, the probability of emission is pro- 
portional to the square of the volume of the microirregulari- 
ties and the square of their concentration. Since the 
dimensions of the particles are assumed to be initially small 
compared with the wavelength of the radiation (dipole ap- 
proximation) and the interaction of the induced dipoles has 
been ignored, the validity of the results obtained is limited to 
fairly small particles and low concentrations. We escape 
these restrictions only at the expense of a considerable com- 
plication of the theory. An increase in the particle size and 
their interaction result in deterioration of the plasmon re- 
sonances which in the final analysis should balance out the 
increase in the spectral density of the radiation. Hence, we 
can assume that the optimal parameters of such a two-di- 
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mensional array or structure should be of the order of the 
radiation wavelength. 

Structures with similar parameters were used in Ref. 15 in nonlinear 
optics experiments. 
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