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Using the polar model, we obtain expressions for the effective mass which characterize the inertial 
properties of a system of electrons and show that this effective mass affects the high-frequency 
conductivity as well as the heat capacity and paramagnetic susceptibility of the electron system. 
We also derive a sum rule which allows us to determine the sign of the effective mass both in the 
ground state and in the highest excited state, and determine the way the effective mass varies in 
these states as we vary the transfer integral ( L )  and the Coulomb repulsion integral (A) between 
electrons with opposite spin projections on the same lattice site. 

1. EFFECTIVE MASS OF AN ELECTRON SYSTEM IN THE 
POLAR MODEL -- d 2 e 0 ( k )  - aa21 L 1 cos ka. 

dk2 
According to the polar model,' the Hamiltonian of a 

system of electrons in a one-dimensional lattice, including Taking (8)  into account, we can rewrite Eq. (5 )  for HL as 

the transfer integral (L)  and Coulomb repulsion integral follows: 

(A of electrons with oppositely-directed spin projections at 
the same lattice site, has the form nk. (9)  

It is well known that 
where 

where m* (k )  is the effective mass of an electron as defined in 
band theory. Therefore, it follows from (9)  that 

and c& (c,) is a creation (annihilation) operator for an 
electron with spin projection CJ at site g, s, = n,, n,, , 
n, , = c$c,. The Hamiltonian ( 1 ) has also been discussed 
within the context of the Hubbard model,2 in which the 
quantities IL I and A are denoted t and U. 

We assume that 

According to ( 1 1 ) , 

where la) is an eigenfunction of the Hamiltonian ( 1 ) . 
The right side of Eq. (12) contains effective masses 

m* (k )  of band electrons for all states I k ) . In band theory, 
there are a number of properties of electronic systems (see, 
e.g., Eq. 13.36 of Ref. 3) whose study leads to analogous 
sums over all states I k ) weighted by the effective masses 
m (k ) .  however unlike those encountered in band theory, for 
the sums we will deal with here when electron correlations 
are absent (A = 0)  we have l a )  = Ik ), implying that the 
matrix element ( a l n ,  la) = ( k  In, I k ) coincides with some 
eigenvalue ofthe operator n ,  . In the polar model with A #0, 
the operator n ,  does not commute with the Hamiltonian H, 
from ( 1 ), and thus the matrix element ( a  In, la) does not 
coincide with an eigenvalue of the operator n,. 

The proper way to characterize the inertial properties 
of a system of electrons is to introduce an effective mass ma 
determined by the expression 

where a is the lattice constant, k is the wave vector, and N is 
the number of lattice sites. Then we can transform Eq. (2 )  
for HL to the form 

H L - 2  1 L 1 z (cos ku) nk, 
k 

where 

According to (5) ,  

where 

~ ~ ( 1 2 )  =-2ILI cos ka (7 )  According to (4), 

is the energy of a band electron when A = 0, 
It follows from ( 7 )  that 

270 Sov. Phys. JETP 70 (2), February 1990 0038-5646/90/020270-07$03.00 @ 1990 American Institute of Physics 270 



It follows from ( 13 ) and ( 14) that 

In a system with the Hamiltonian ( 1 )  the electron current 
operator I is determined by the expression (see, e.g., Refs. 
5,6):  It is clear from ( 15) that l / m ,  has the physical mean- 

ing of an average value of the inverse effective mass of a band 
electron. In the average the quantity l / m *  (k) enters in with 
probability 

W,,,=<al n,l a>lN. In the second-quantized representation, the operator x, 
from ( 2 0 )  can be written in the form It follows from ( 15) and ( 12) 

It follows from ( 2 5 )  that i.e., the effective mass ma we have introduced is inversely 
proportional to the average value of the transfer Hamilto- 
nian H, . 
2. COEFFICIENT OF HIGH-FREQUENCY ELECTRONIC 
CONDUCTIVITY IN THE POLAR MODEL 

Here (glxlg) = ga. Therefore, within the nearest-neighbor 
approximation implied by this Hamiltonain, we obtain from 
( 2 6 )  In the presence of an external spatially uniform electric 

field intensity with periodic time dependence E = E, cos wt, 
where w is the frequency and t the time, the time dependence 
of the current l i s  determined by the expression [see, e.g., Eq. 
(4.23) in Ref. 41 

The matrix elements k = (g + 1 Jxlg) do not depend 
ong under the assumption that IL I and A are alsog-indepen- 
dent. Therefore it follows from ( 2 7 )  that 

where 

According to (28 ), ( 2 4 )  and ( 1 ) 

where N, is the number of sites in the lattice. It follows from 
( 2 9 )  that here x ,  is the coordinate of the I th electron, and E > 0  goes to 

zero. 
Assuming 

In obtaining Eq. ( 3 0 )  from ( 2 9 ) ,  we have taken into account 
the fact that ( a ( n ,  ( a )  = ( a  In, l a )  by virtue of tlie equiv- 
alence of the lattice sites. It follows from ( 3 0 )  and ( 2 3 )  that we obtain from (17) - (19) :  

NeE, 
I ( t )  = - ~ e  { ( [ I ( O ) X . ( O )  I - )  exp[ ( io+e)  t ]  

72 a - i ~  

Taking ( 17) into account, we obtain from ( 3  1 ) 

In the high-frequency region, the second term on the right 
side of (21) decreases faster than the first term (see, e.g., p. 
86 of Ref. 4 ) .  Therefore 

I ( t ) = R e { o ( o ) E ,  e x p [ ( z o + ~ ) t ] ) ,  ( 2 2 )  

where the electron conductivity equals 

Thus, it is the effective mass defined in Sec. 1 which 
enters into the expressions for the electronic conductivity 
and which characterizes the effect of inertia of the many- 
electron system on its response to an external high-frequen- 
cy field. The electronic conductivity (32) corresponds to the 
equation 
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4. VARIATION OFTHE EFFECTIVE MASS AS A FUNCTION OF 
THE COULOMB REPULSION INTEGRAL BETWEEN TWO 
ELECTRONS WITH OPPOSITE SPIN PROJECTIONS ON THE 
SAME LATTICE SITE 

Differentiating ( 16) with respect to A for fixed L, we 
obtain 

dm, 
-= 

N h2 d(alHLla> 

dA a2(al HLla>' d A 
(42) 

where 

3. SUM RULE IN THE POLAR MODEL 

Let us discuss the operator The expression for the derivative d (alHL la)/dA can be 
found by taking into account the equation 

(alHL la) = Ea - A  (alsla) . (43) 

which follows from ( 1)-(3), where 
From (35 ), ( 1 ), and (24) there follows the commutation 
relation 

Differentiating (43) with respect to A, we obtain 
Taking into account that 

we obtain from (36) the following relation between I and 
d x , ,  /dt: 

According to the Gell-Mann-Feynman relation (see 
§ 1 1, Ref. 7), in the case of the Hamiltonian ( 1 ) the following 
relation is fulfilled: 

Taking a matrix element of (36) between eigenstates 
la) and ) of the Hamiltonian H, which correspond to the 
energies Ea and ED, we obtain the equation It follows from (44) and (45) that 

According to (24) and (35), Taking (46) into account, we find from (42) that 

From (39), taking into account (38), there follows the sum 
rule: 

In order to determine the sign of the derivative 
d (a IsIa)/dA, we use the results of Ref. 8. According to Ref. 
8, for a Hamiltonian of the form 

where H ,  does not depend onf, the derivative d (a1 G Ia)/df 
is positive in the ground state, while it is negative in the 
highest excited state. A comparison of (1) and (48) shows 
that in the case under discussion we have f = - A  and 
G = s. Therefore, the derivative d (alsla)/dA is negative in 
the ground state, while it is positive in the higher excited 
state. Correspondingly, we obtain from (47) 

According to ( 17), the sum rule (40) can be cast in the form 

This equation is an analog of the Thomas-Reich-Kuhn 
(TRK) sum rule. In contrast to the TRK sum rule, the right 
side of (41) is multiplied not by the mass of a free electron, 
but by the effective mass ma,  which depends on the state la) 
and is determined both by the transfer integral L and the 
Coulomb repulsion integral A for the two electrons with op- 
posite spin projections on the same site of the crystal lattice. 

It is clear from (41) that in the ground state, when 
Ea = E,, and the difference Ep - E, is positive, the effec- 
tive mass m,, is positive. In the highest excited state, when 
Ea = E,,,,, and the difference ED - Ea is negative, the ef- 
fective mass m,.,,, is negative. 

where m,, and m,,,,, are effective masses in the ground and 
highest excited states, respectively. 

Thus, we are led to the conclusion that, within the 
framework of the polar model with the Hamiltonian ( 1 ), the 
effective mass in the ground state increases as A increases, 
while the effective mass in the highest excited state decreases 
as A increases. 
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5. RELATION BETWEEN EFFECTIVE MASSES IN THE 
GROUND AND HIGHEST EXCITED STATES 

Taking (61) into account, we obtain from (56) 

According to Ref. 9, the energy E,,, of the highest ex- 
cited state and the energy Eg, of the ground state are related 
by the equation Thus, we are led to the conclusion that in the polar model 

with Hamiltonian ( 1 ), as in band theory, the effective mass 
in the ground state decreases with increasing I L I. 

Acomparison of (62) and (49) shows that variation of 
the integral A produces a variation of m,, which is opposite 
the corresponding variation produced by varying I L I .  It fol- 
lows from (53) that for the case M = f Na the following 
equation holds: 

where M is the number of electrons with negative spin pro- 
jection. Differentiating (50) with respect to A,  and taking 
(45) into account, we obtain 

whereF,,,,. and %, are the average number of "pairs" in the 
highest excited state and in the ground state. 

On the other hand, it follows from ( 1 ) and (50) that 
It follows from (63), (61), and (56) that 

(F(M) I HLIF (M) >+(O(N,-M) I HLIO(N,-M) > 
=A [N-IM- ?,,ex, ( M )  -~~~( i l i , -M)  1. (52) 

where F denotes the highest excited state and 0 the ground 
state. From (5 1) and (52) we obtain: Thus, m,,,,, increases as IL I increases in this case as well, 

just as in band theory. 
A comparison of (64) and (49) shows that in the high- 

est excited state a variation of the integral A produces a vari- 
ation of m,.,,. which is opposite the corresponding variation 
produced by varying IL I, as in the case of the ground state. 

The authors are grateful to Academician S. V. Vonsovs- 
kii for useful discussions. 

Combining (53 ) and ( 16) leads to the relation 

For the special case where M = +No,  which implies 
that Na - M = M, it follows from (54) that 

APPENDIX 1 

EFFECTIVE MASS AND SUM RULE IN ASYSTEM MADE UP OF 
TWO SITES AND TWO ELECTRONS 

In the case ofthe system where the number of sites is 
Na = 2 and the number of electrons with opposite spin pro- 
jections is N ,  = 2 (such a system is discussed, e.g., in page 
305 of Ref. 3 within the context of the Hubbard model), the 
energy spectrum and wave functions have the form 

Therefore, in this case the effective masses in the 
ground state and in the highest excited state are equal in 
value and opposite in sign. 

6. VARIATION OF THE EFFECTIVE MASS AS A FUNCTION OF 
TRANSFER INTEGRAL 

Differentiating (16) with respect to IL I at fixed A, we 
obtain 

Acccrding to (2)  

where the transfer operator equals 

It follows from (57) that 

where 

Setting f = IL I and G = rI [see (48) 1, and taking into 
account the results of Ref. 8, we obtain 

It follows from (57), (58), and (65) that It follows from (59) and (60) that 
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correspondingly, we obtain from ( 16) 

Thus, in agreement with the conclusions of Sec. ( 3 ) , 
m,, = m l  is found to be a positive quantity, while 
m,.,,. = m4 is negative. In this case Eq. (55) is fulfilled. As 
A increases the effective mass m ,  = m,, increases while the 
effective mass m, = m,,,. decreases (i.e., increases in abso- 
lute value) .This agrees with (49). 

In the states (65), the average value of the currents 
equal zero: 

(1111 1)=(21112>=(31113>--<41114>=0. (69) 

The nondiagonal matrix elements are determined by the 
equations 

Correspondingly, including the energy levels from (65) 

It is clear from (71) and (67) that the sum rule (40) is 
fulfilled. 

In Eq. (65) the average value of the number of "pairs" 
(i.e., sites with two electrons having opposite spin projec- 
tions) is determined by the equations 

It is clear from (72) that, in agreement with the conclu- 
sion of Sec. 4, the quantity S, decreases with increasing A in 
the ground state, while in the highest excited state S4 in- 
creases with increasing A. 

In the case under discussion here, we have M = 1 and 
N - M = 1. Therefore, according to (50), the following 
equation should hold: 

E,+E,=A. (73) 

The energies E4 and El from (65) satisfy this equation. Ac- 

cording to ( 5  1 ), we should have 

This equation is also satisfied for the values of S ,  and Sq from 
(72). 

It follows from (68 ) that 

which is in agreement with (62) and (64). 
In the I k ) representation, the wave functions $, and $4 

from (65 ) have the form 

with k l  = 0, k,  = n/a. It follows from (76) and (65) that 
for A = 0, in agreement with Sec. 1, the occupation numbers 
n,, and nk2 are good quantum numbers. In the ground state 

we have n,, = 2 and nk2 = 0, which corresponds to occupa- 
tion of two Ik,) states with opposite spin projections at the 
Fermi level. In the highest excited state, we have nkl = 0 and 
nk2 = 2, which corresponds to the occupation of two Ik,) 
states with opposite spin projections. In this case 

( 0 )  + + 
$4 1 ~ = o = $ &  =chZtckZr 10). (78) 

In the states (77) and (78) 

When electron correlations are taken into account 
(A #O), the number nk is no longer a good quantum num- 
ber. According to (76), $, is no longer purely the ground 
state $I0' for A = 0 with nkl = 2 and nk2 = 0, but also has an 
admixture of the highest excited state $y' for A = 0 with nkl 
= 0 and nk2 = 2. Analogously, $4 is no longer purely the 

highest excited state $iO' for A = 0 with nkl = 0 and nk2 = 2, 
but also has an admixture of the ground state $iO' for A = 0 
with nkl = 2 and nk2 = 0. 

In this state we have 

In this case ($Inkl + nk2 I $ ,  ) = 2, which agrees with (14). 
In the case under discussion here, according to (15) 

and (80) 
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where the probabilities are 

It is clear from ( 8 0 ) - ( 8 2 )  that, although we have used 
the many-electron wave function (in this case a two-electron 
wave function) to calculate the probabilities W,,,, and 
Wk2, , ,  the quantity l / m ,  still has the physical meaning of an 
average value of inverse effective mass for a band electron, in 
agreement with Sec. 1 .  The many-electron character of the 
wave function used here allows us to take into account the 
contribution due to electron correlations. 

Actually, the probability ( 8 2 )  can be cast in the form 

where 

It follows from ( 8 4 ) ,  ( 8 3 ) ,  and ( 8  1 ) that 

where 

According to ( 8 4 )  and ( 8 6 ) ,  the corrections to the probabil- 
ity Akl,, and therefore to A( l / m , )  vanish in the absence of 
correlations. However, for A # O ,  the corrections to this 
probability and therefore to A  ( l / m l  ) do not equal zero. In 
this case A ( l / m l  ) describes the change in the average value 
of the inverse effective mass of a band electron due to elec- 
tron correlations. 

In the case under discussion here we have 
m ( k 2 )  = - m ( k l ) .  Therefore, it follows from ( 8 6 ) ,  ( 8 5 ) ,  
and ( 8 4 )  that 

which coincides with the expression for m , from ( 6 8 ) .  
Note also that in the case under discussion here, the 

mean-square fluctuations of nkl and nk2 are determined by 
the expression 

It is clear from ( 8 8 )  that in the absence of correlations, i.e., 
for A = 0, there are no fluctuations in nkl and nk2. For a 
given A,  as IL I increases the fluctuations decrease, while for 
a given value of IL I the fluctuations of n,, and n,, increase 
with increasing A. As A / J L  I + W ,  the mean-square fluctu- 
ations [ (  Ankl ) 2 ] 1 ' 2  = [ ( A n k 2 ) 2 ] 1 ' 2  go to 1 .  

An analogous discussion can be carried out for the ef- 
fective mass m, in the state IC,4. 

APPENDIX 2 

EFFECTIVE MASS IN THE CASE OF AN ENERGY SPECTRUM 
OBTAINED IN THE QUASI-CLASSICAL APPROXIMATION 
AND BY THE VARIATIONAL METHOD 

The energy spectrum of the polar model has the form 

E=ANh+8NILI ('1,-h) h s in  k ,n . s in  k,a, ( 8 9 )  

where 

This spectrum is obtained by using the quasiclassical ap- 
proximation described in Ref. 1 and the variational method 
from Ref. 10. According to ( 8 9 ) ,  the average value E = E / N  
for a single electron near the minimum of E (where sin k,a 
asin k 2 a z  - 1 and we can set k2a = - r / 2  and k,a = ~ / 2  
+ S,Sg 1 ) is determined by the expression 

Taking ( 10) into account, we find from (91 ) that 

By introducing value h,, from ( 9 0 )  in ( 9 2 )  we find 

On the other hand, according to ( 8 9 )  and the first of the 
equations ( 9 0 ) ,  

We again obtain ( 9 3 )  from ( 9 4 )  and ( 16).  
Thus, in the ground state, the effective mass ( 16) deter- 

mined in this paper coincides with the effective mass deter- 
mined from the energy spectrum. Analogously, it can be 
shown that in the highest excited state 

The same equation is obtained from ( 16) by taking into ac- 
count the equation 

(F11iLIF>=-(01ALIO>. 

Thus, in the highest excited state the effective mass ( 16) also 
coincides with the effective mass determined from the ener- 
gy spectrum. 

APPENDIX 3 

ELECTRONIC SPECIFIC HEAT OF ASYSTEM WITH TWO 
LATTICE SITES AND TWO ELECTRONS 

For a nonzero temperature T the average value of the 
system energy has the form 
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r 
where k ,  is Boltzmann's constant. in ( 1 6 )  also determines the heat capacity of the electron 

In the region of relatively low temperature system. According to ( 6 8 ) ,  as A increases the effective mass 
( k ,  T&K - A / 2 )  is follows from ( 6 )  that m,  increases. Therefore it follows from ( 100) that as A in- 

E =  El 
1+3 esp (E, /kBT)  ' 

creases the low-temperature heat capacity of the electronic 
(97)  system increases. 

APPENDIX 4 
In this case the heat capacity is determined by the expression 

PARAMAGNETIC SUSCEPTIBILITY OF A SYSTEM WITH TWO 
3E12 c = -  ex" PO. ( 9 8 )  LATTICE SITES AND TWO ELECTRONS 
k,T2 kBT In a uniform magnetic field of intensity H,  the level E, 

For the case A ) I L  I, according to (65 ) , El z - 4L 2 / ~  and, from ( 65 ) splits into two levels of 0  and k 2PH, where P  is 

according to ( 68 1, m , z f f2A /4a2L 2 .  Therefore, the Bohr magneton. 
Correspondingly, the partition function Z is deter- 

f i2 E , -  --. ( 9 9 )  mined by the equation 
mia2 

It follows from ( 9 9 )  and ( 9 8 )  that 

(100) (101 

Using the fact that the free energy equals F = k ,  T  ln Z, we - - - 

It is clear from ( 100) that the effective mass introduced find the following expression for the magnetic moment: 

dF  &=-- = 4 p  sh (2pH/kBT) 
d H 1 + exp ( -A/kBT)  +2 exp (-A/2kBT) ch(K/kBT)  +2 ch (2pH/kBT) ' 

For p M / k ,  T &  1,  we obtain from ( 102) an expression for 
the paramagnetic susceptibility: 

8P2 1 
= k , T 3  + exp (-A/k,T) +2 exp (-A/2kBT) ch (KIkBT) ' 

(103) 

In the region k ,  T & K  - A /2,  it follows from ( 103) that 

8p2 1 x=- kBT 3 + exp (-E1/kBT) ' 

Taking into account (86) ,  we obtain from (104) 

It is clear from ( 105) that the effective mass ( 16) intro- 
duced in this paper also determines the paramagnetic sus- 
ceptibility of the electron system. As A grows, the increase in 
the effective mass [see ( 6 8 )  ] also leads to an increase in the 
paramagnetic susceptibility. 

In the case we have discussed here, with A )  IL I ,  the 

enhancement of the effective mass m, +, /m, = , - A  /41L 1 
can turn out to be significant. This shows that the results 
obtained here are valuable in interpreting the properties of 
heavy-fermion systems from the point of view of effective 
mass increases caused by electron correlations. 
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