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An adiabatic mechanism is proposed for the oscillations in the broadening cross sections when 
nonhydrogenic Rydberg states of alkali-metal atoms are quenched in an atmosphere of such 
atoms. The oscillations are due to a low-lying and relatively broad 3Pre~~nance  of the quenching 
atom. The term generated by this resonance crosses the nonhydrogenic levels, and the resulting 
term splitting is determined by the wave function of the Rydberg electron at the term-crossing 
point. This wave function oscillates as a function of the principal quantum number n, and this 
gives rise to the oscillations in the cross sections. This simple picture has had to be significantly 
extended for the problem discussed in this paper. In particular, a new Landau-Zener type 
dynamic problem is found to arise, in which oscillations in the term coupling parameter near the 
crossing point are found to be significant. The results obtained are in qualitative agreement with 
experimental data for the pairs K** (n2S) + Rb and Rb** (n2S) + Rb. 

1. INTRODUCTION 

The collision widths and shifts of the non-hydrogen- 
like Rydberg nS, nP, and nD levels of alkali-metal atoms in 
the vapor phase were measured in the 1980s for a wide range 
of values of the principal quantum number n (n> 1&50). 
The oscillations (with varying n)  in the spectral characteris- 
tics of quenched Rydberg nS and nD states (SCQRS), i.e., 
level widths and shifts due to collisions between highly excit- 
ed alkali-metal atoms and similar atoms in the ground state, 
were reliably recorded for n =: 15-30. '-I 

Attempts were then made5-'' to use the impulse ap- 
proximation to relate these oscillations to the existence of a 
weakly-bound quasi-stationary alkali-metal negative ion in 
the 3P state, but careful analysis has shownlG12 that the os- 
cillations could only be explained by assuming an anoma- 
lously small width l?, for the 3P resonance. In addition, the 
impulse approximation was found to be generally invalid in 
the region in which the oscillations appeared, since it could 
only be used for n 2 25-30, and there are no oscillations in 
this range. For n 5 30, on the other hand, a better description 
is achieved by using the adiabatic approximation. 

In this paper, we propose a mechanism for the SQRS 
oscillations, based on the adiabatic approximation, and us- 
ing the 3P resonance as our starting point. We shall show 
that this mechanism reproduces correctly the phase of the 
oscillations and provides a qualitative description of the 
cross sections. 

2. DESCRIPTION OF THE MECHANISM AND QUALITATIVE 
ESTIMATES 

The essence of the mechanism that we propose is as 
follows. When a Rydberg alkali atom A** approaches an- 
other unexcited alkali-metal atom B, the quasistationary 3P 
state of the ion B - with energy E, = k 2,/2 in the presence 
of the positive ion A + becomes stable for nuclear separa- 
tions R < E ,- '. The corresponding ion terms 3X, 3rI exhibit 
a quasi-crossing of the Coulomb and nonhydrogenic 
(S,P,D) Rydberg covalent levels for R = R,, (n* ) < E ; 
(Fig. la) .  When specific conditions are satisfied, the cross- 
ing points R,, (n*) lie well inside the classically allowed re- 
gion for the motion of the Rydberg electron (RE) after a 
certain value of the effective principal quantum number n,*, 

i.e., for n* > n,*. The term splitting at the quasicrossing point 
R,, (n*) is then proportionali3 to the square of the absolute 
value of the RE wave function at the point R,, (n*). Since 
the phase of this function at the point R,, (n*) depends on 
n*, the probability of a transition between the ionic and co- 
valent terms oscillates as a function of n*, which gives rise to 
the oscillations in the broadening cross section a' and to the 
shift of Rydberg levels as a function of n. 

Let us now estimate the broadening cross section a' for 
the nS state of a Rydberg atom. If we ignore the distorting 
effect of polarization interactions (in both ionic and cova- 
lent states), we find that 

The broadening cross section a' can be crudely estimated for 
n* > n,* by substituting d =:TR $, (n*). Since the character- 
istic value of R,, (n*) for alkali metals is of the order of 280 
a.u., we find for n* = 20 that ~ ' ~ 6 . 1 0 -  l2 cm2, which is of 
the order of magnitude of the experimental  result^.'^ Using 
the criterion proposed in Ref. 14, we then find that 

which shows that, at the point of transition, the perturbing 
atom lies in the interior of the corresponding electric orbit, 
well away from the RE turning point. If we then use ( 1 ) and 
(2),  we find that the lower limit n,* of the range of values of 
n* for which there are oscillations is given by 

no'= (4Er3)  - ' /a ,  (3)  

which, for alkali metals with E, - l o p 3  a.u., gives n,*=: 13- 
15, is in agreement with experiment. 

We shall now derive an expression for the broadening 
cross section a', using the two-state approximation, to begin 
with. With the parametrization employed in Refs. 14 and 15 
for the elastic S-matrix, after averaging over the large diaba- 
tic phase and rejecting the relatively small dynamic phases16 
we find that the broadening cross section is given by 

R, , (nr )  

3n 
2 

(I-P) p dp+npO2 (4)  
PO 
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E 2 FIG. 1 .  Coarse (a)  and actual (b) energy level curves 
-------- ------- for the problem considered here: 1-pure Coulomb 

multiplet, 2-ionic term '2, 3-ionic term 311, 4- 
Rydberg non-hydrogen-like nS ('H,'Z) state; the P 
and D states are also found to split from the Coulomb 
multiplet, but are not shown in the figure. The limit of 

----- - - - - - - - - - A 7 the state continuous are also shown spectrum [ionic and configuration the quasistationary ( 5 )  1; (b) 'P 
1-pure Coulomb multiplet, 2-adiabatic 32 term 
formed as a result of strong interaction between the r: ionic described ' 8  term in the (curve Appendix 3) and [cf. the Coulomb (A17)l .  We multiplet are con- as 
sidering the diabatic crossing of this adiabatic '2 term 
and the '2 configuration (curve 3) generated by the 
Rydberg S-state whose crossing parameters are evalu- 

I I - ated in the Appendix [cf. (A21) and (A22)I. 
R,? P) fc, I" + 1) f 

where P is  the probability of a nonadiabatic transition for a 
single crossing of the nonadiabatic region in the neighbor- 
hood of R,, (n*), and p, = (ra/4v, ) is the Weisskopf 
radius corresponding to the polarization interaction 
between the atomic core A and the perturbing atom B ( a  is 
the probability of atom B). In deriving (4),  we took into 
account the contribution of the polarization interaction 
between A +  and B in the covalent 's3  2-states of the quasi- 
molecule A** (nS) + B, but ignored the influence of the sta- 
ble ionic state '2 of the system A + + B - ( IS), although it 
does have a relatively high binding energy, and calculations 
performed in the impulse approximation show that it can 
play an important part in the evaluation of 6' for n 2 30. 

In the approximation employed in (4),  the shift cross 
section a" can be expressed14-l6 in terms of the phases ~ 5 ' ~ '  , 
8'"' for motion over the diabatic and adiabatic 3Z-term that 
corresponds to the nS configuration. The final result is 

3 
o" = - n [ J  (I-P) sin 2S'"'p dp 

2 

- I (I-P) sin 26'"p dp] +o / ,  ( 5 )  

where 

o."=2n 1 sin 2S")p dp 

is the shift cross section due to the polarization interaction 
between the ion A + and the atom B. We shall not analyze 
the shift cross section a" any further because this would 
require more detailed information about the behavior of the 
phases 6'"' ,iSd' . 

It is interesting to note that (4)  can also be obtained in 
the multilevel approximation in which motion along the ion 
term is described for R < R,, (n*) in terms of the effective 
width r ( R )  of the ionic state: 

~ ( 1  - 2 sin2 6@)) p dp, (6) 

where R' is the left turning point on the diabatic term of the 
ion. It follows from (6) that, when 6'"' ,I ,  and if 

expression ( 6 )  becomes identical with (4) .  In other words, 
the multichannel nature of the collision process has no sig- 
nificant effect on the form of (4). 

It is shown in Ref. 17 that, when one oblique term 
crosses a set of parallel terms, the elastic and inelastic transi- 
tion probabilities can be calculated in the Landau-Zener ap- 
proximation. On the other hand, we can use the results ob- 
tained in Ref. 13 to find the Landau-Zener parameter < and 
the probability P: 

3rl cosz 6,"' 
E = sinZ @ (n') , 

4n1!?,n'~v~ (R,,) 

where r, is the width of the 3P resonance, 6;'' is the corre- 
sponding partial phase in potential scattering, VR (R,, ) is 
the radial velocity at the point R,,, and <P(n*) is the quasi- 
classical phase of the RE wave function at the point R,, (n* ) : 

n S,, Tc 
8 (n*) =2n.12 -[s..(~-s..) 1'-arctg(--) I-sc7 } - - 4 ' 

in which s,, = R,, 12n*'. Substituting (7)  in (4), we obtain 

where v, is the relative velocity of the atoms at infinity, 
A = 2r<vR (R,, ), and T ( x , y )  is the incomplete gamma- 
function. It is clear from (8)  that, when < = 0, for which 
n* > n,*, the broadening cross section has a minimum value 
equal to rp t .  On the other hand, the maxima of a' occur for 
the same values of n* for which sin2 @ (n*) - 1. 

The above discussion is entirely qualitative for two im- 
portant reasons: first, the method of Ref. 13 was employed in 
the derivation of (7)  and assumes that rr 4 E, whereas we 
know that I?, -E ,  for the alkali-metal atoms. Second the 
above method leads to oscillations even for n > 30, and we 
know from experiment, and from the impulse approxima- 
tion, that there are no oscillations in the region. The first 
difficulty can be obviated by extending the method used in 
Ref. 13 (see Appendix), and the second is of considerable 

253 Sov. Phys. JETP 70 (2), February 1990 V. M. Borodin and A. K. Kazanskil 253 



theoretical interest because it demands the establishment of 
a connection between the adiabatic and the impulse approxi- 
mations. 

3. QUANTITATIVE EVALUATION OF THE BROADENING 
CROSS SECTION 

In practice, there is considerable mixing of ionic and 
Rydberg terms because of the relatively large widths of the 
quasistationary 3P state of the A-  ion. This is indicated by 
the fact that, at the pseudocrossing point of'the ionic and the 
isolated Coulomb Rydberg levels (Fig. lb) ,  the term split- 
ting is of the order of the level separation. The quantity 
R,, (n*) that appears in (4) and (5)  must therefore be rede- 
fined, and must be evaluated from ( 1 ) in which Er must be 
replaced with the reduced energy Er of the resonance, de- 
fined by (A20) in the Appendix. 

The Landau-Zener approximation used in (7)  presup- 
poses that the interaction V between the terms is a slowly- 
varying function over the distance AR - V/AF characteriz- 
ing the size of the transition region. In our case, we have to 
remember that the effective matrix element between two 
terms oscillates for sufficiently large n* (definitely larger 
than n,*) inside this region. Fortunately, however, the corre- 
sponding transition probability is low, and this enables us to 
employ the distorted-wave approximation. We actually use 
a mixed approach in which the Massey parameter is calcu- 
lated in the distorted-wave approximation and the transition 
probability is found from the Landau-Zener formula with 
the Massey parameter. 

In the above approximation, the exponent in the Lan- 
dau-Zener formula is determined by the probability of tran- 
sition between the diabatic ionic and covalent 3 X  terms, and 
is given by 

wherep(r) = (A ' - I)"', S,, = R,, 12n*' and AH Is the 
difference between the diabatic terms. The expression for 
A,(R,, ) is given in the Appendix. We now consider the term 
in the off-diagonal matrix element that is an oscillating func- 
tion of R, and take the slowly-varying part A (R ) to be equal 
to its value at the point R,, . 

Since we have 2n* $1, the integral in (9) can readily be 
evaluated by the method of stationary phase. The position of 
the points of stationary phase (PSP) is determined by the 
equation 

n'AH ( s )  /u,(R,,) -&p ( s ) .  (10) 

If we assume, for the sake of simplicity, that v, (R,, ) = v, 
in ( lo),  and that the dependence of AH on s is given by the 
linear expression AH = 2n*'AF (R,, ) (s  - s,, ) [the 
expression for the difference in slopes AF of the diabatic 
terms is given by (A2 1 ) in the Appendix], we find that there 
is little difficulty in analyzing ( 10). The positive sign in ( 10) 
always gives a single real root s,, <sl < 1, and the equation 
with the negative sign gives either two roots 0 < s, (s, < s,, or 
no roots (more precisely, in the latter case, the two roots are 
complex). Of course, in the second case, both roots lead to 

an exponentially small contribution, and the integral (9)  is 
entirely determined by the single transition point. If all the 
three roots are real, then together with the first roots,, they 
generate an interference pattern for P'd' as a function of the 
effective quantum number n*. Finally, in this case, the prob- 
ability P ' ~ '  is given by 

where 

It is important to note that, when n* > n,*, we have for 
the PSP s, z s ,  zs,, , 0 < s, 4 1, so that the points, lies outside 
the range of validity of the theory. However, since, in this 
case ,a l ( s , )~a2( s2 )z1 ,aa3( s3 )<1 ,  wecanuse (11) asbe- 
fore, except that the third term in this expression is now 
small. As n* increases, the difference s, - s, is found to in- 
crease, the oscillations in the matrix element as a function of 
R = 2n*'s become significant inside the transition region, 
and the approximation (7)  ceases to be valid. The transition 
from one regime (three PSP) to the other (one real PSP) 
occurs for a certain boundary value nz defined by the follow- 
ing set of equations: 

When n > nz, we must put a,(s,) = a,(s3) = 0 in (1 I ) ,  
which ensures that the parameter P'd' ceases to oscillate 
and, after it is substituted in the Landau-Zener formula, the 
resulting transition probability can be used to find the cross 
section d from (4).  The final expression for this cross sec- 
tion is then very similar to the result obtained in Ref. 9 in the 
impulse approximation. 

We now emphasize the physical significance of ( 10). 
For n* > n,*, it is natural to take the idea of adiabatic terms as 
our starting point. The product v, (R)p(R)  can then be in- 
terpreted as the characteristic frequency of variation of the 
nonadiabatic interaction over the nuclear separation R. The 
final diabatic state of the ion can be populated in a number of 
ways. Up to the crossing point R,, , and if R ,  > R,, , the reso- 
nance condition w(R,) = AH(R, = 2n**s,) is satisfied, and 
we have a transition from the covalent to the diabatic ionic 
term. This term is populated when w (R ,,, ) = - AH(R ,, ) 
with R ,,, < R,, (Fig. 2), or when there is a transition from 
the diabatic covalent term to the diabatic ionic term under 
resonance conditions. To find the corresponding transition 
amplitude, we must combine the amplitudes corresponding 
to these two channels, and this leads to the interference-type 
oscillations. Equation (10) can also be interpreted in the 
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FIG. 2. Three coherent channels for a transition from the covalent 
term to the ionic 3Z state, where the interference between the 

corresponding contributions to the transition amplitude determines the 
oscillations in the quenching cross section. 

spirit of the impulse approximation, which seems appropri- 
ate for n* - n;. In the reference frame in which the atom B is 
at rest, the electron that collides with thisatom has the veloc- 
ity p v, (R) (the separation of the radial motion of the 
electron is motivated by the selection rules that arise when 
the nonadiabatic interaction is evaluated in the Appendix). 
If we ignore the perturbing effect of the purely Coulomb 
level (see Fig. 1 ), we find that the difference AH between the 
diabatic ionic term and the covalent term is given by 

Equation (10) can then be written (to within the small 
quantity v i  /2 in the form of the resonance condition 

The vanishing of the real roots in ( 10) and ( 12) with the 
negative sign signifies the absence of resonance in collisions 
between the electron and atom B if both travel in the same 
direction. The transition between the adiabatic and impulse 
regimes is associated precisely with the fact that the reso- 
nance occurs for both directions of motion of the electron 
relative to atom B. We note that this transition is sensitive to 
the relative velocity of atoms A**, and B, although it may be 
difficult to produce a variation in the collision velocity in a 
wide range. 

The expression given by (1 1) for the transition proba- 
bility between diabatic states becomes invalid when the two 
roots s,, s, coincide for n - nz. The precise evaluation of P'd' 
in this region demands a more accurate application of the 
method of stationary phase.I8 We shall not follow this idea 
any further and simply reproduce in Fig. 3 the calculations 
performed with and without the smallest PSP s = s,. It is 
clear that the contribution of this point is significant only in 
the neighborhood of the transition between the adiabatic and 
impulse regimes, i.e., for principal quantum numbers n* of 
the order of nt ,  whose typical value is n t  - 30. 

Figure 3 shows the calculations performed for 
Rb**(nS) + Rb and K**(nS) + Rb) collisions. The reso- 
nance parameters of Rb were taken to be l9 y = 6.36 a.u. and 
E" = l.2.10-3 a.u. (see the Appendix for the notation). 
Careful measurements of the broadening cross sections of 
the nSand nD levels were made in Refs. 3 and 4 at T- 520 K. 
It is clear that the calculations satisfactorily reproduce the 
oscillation structure both in respect of the position of the 

6.1u5, arb. units 4 

I I I 

15 20 25 30 n 

6,roJ arb. units b 

FIG. 3. Quenching cross sections for the nS levels in collisions with rubi- 
dium atoms: ( a )  K**(n2S) + Rb, ( b )  Rb**(nZS) + Rb. The notation is 
as follows: + -the contributions due to the three transition points taken 
into account, h n l y  the two transition points s, and s, taken into ac- 
count, 0-xperimental results (dashed curves) reported in Refs. 3 and 4 
for (a) and Ref. 4 for (b) . 

maxima and minima, and the order of magnitude of the cross 
sections. The anomalously deep minima should not be taken 
too seriously: our quenching mechanism is anomalously 
weak in these cases, and other quenching mechanisms unre- 
lated to oscillations, come into play. The include potential 
(nonresonance) scattering, largely due to the presence of 
stable negative ions of the alkali metal in the S state. 
Allowance for this mechanism can be treated as an indepen- 
dent problem. The importance of potential scattering is also 
indicated by calculations made in the impulse approxima- 
tions. '"*19 In particular, this quenching mechanism may lead 
to a slower reduction in the measured cross section as com- 
pared with theory. 
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CONCLUSIONS 

The mechanism that we have proposed is quite univer- 
sal and demands only that the "quenching" atom have a 
quasistationary ionic resonance with low enough binding en- 
ergies and widths, and that the Rydberg atom have isolated 
non-hydrogen-like levels. However, if the energy parameters 
of the resonance are too small, the SCQRS oscillations will 
be better described by the impulse approximation than by 
the adiabatic approximation discussed here. It is also impor- 
tant to note that the oscillations in the cross section as a 
function of the number n of pure Coulomb levels are absent 
because, in this case, the splitting at the crossing point 
between the ionic and Coulomb terms is a monotonic func- 
tion of n (cf. Appendix). We note, by the way, that the 
SCQRS oscillations arise not only because of the mechanism 
discussed here, but also by ionization in atomic  collision^.^^ 
The oscillations occur for n*- 10, and their amplitude is 
smaller by one or two orders of magnitude than the ampli- 
tude of the SCQRS oscillations observed experimentally. As 
far as thequenching of Coulomb states is concerned, we note 
that the absence of SCQRS oscillations in this case could 
serve as confirmation of this mechanism. 

In calculating a, we ignored nonadiabatic transitions 
due to the rotation of the axes passing through the nuclei, 
which in our case gives rise to the mixing of the 3C and 3rI 
states. It was shown in Ref. 21 that this mechanism can play 
a significant role in the dynamics of transitions between 
Rydberg states in the intermediate range of values of n* 
(n*  < 30), but the inclusion of this factor is not a trivial 
problem. 

The parameters of the negative ions of alkali-metal 
atoms have been measured and calculated in recent 
years.22-26 It was found that some of these ions can be in a 
resonant state with energy of the same order as in the case of 
alkali-metal atoms, e.g., ( C a  (2P) eV for E, - 5 .  l o p 2 .  
Consequently, we may expect that the SCQRS oscillations 
will arise if the "quenching" atom is a suitably chosen rare- 
earth atom, say, Ca. An attempt to detect these oscillations 
was reported in Ref. 27, but was said by the authors to be 
unsuccessful for experimental reasons. 

APPENDIX 

1. Equation for the adiabatic terms 

In the central-field approximation, the one-electron 
Green's function of an optical electron of a Rydberg atom is 
shown by the quantum defect method (CDM) to bez8 

G ( r ,  r'; E)=G("(r ,  r ' ;  E ) H G ( r ,  r'; E ) ,  

where G"' (r,rl;E) is the pure Coulomb Green's functionz8 
and 

v T(I+L-v)  s i n x ( p L + L )  
6G(r , r1;  E)=-  

rrr & I ' ( I + L + v )  sin n ( v + p L )  

in which L = 0, ...,Lo are the orbital angular momenta of the 
nonhydrogenic levels relative to the core of A + ,  
Y = ( - 2E) E is the electron energy, T( ... ) is the gam- 
ma function, W,,, + ,,, (...) is the Whittaker function,29 
PL (nn') is the Legendre polynomial, n = r/r, n  = r'r, and 

p, is the quantum defect. We use for G") (r,rl;E) the repre- 
sentation given in Ref. 30, and write W,, + ,,, (2r/v) in the 
quasiclassical form.14 The Green's function for v )  1, 
r,rl <2n2, R 2P) lr - 1'1, R 2p) IR - ( r  - r1)/21, L 2/d< 1 
can then be taken in the form 

G(r,  r ' ;  E )  
1  

{COS [ p  ( R )  I r-r' I I 
2n  1 r-r' 1 

-ctg n v  s inlp ( R )  ( r-r' 1 1) 
Lo 

1  (2L+1) sin n p ,  

+ 2n sin rrv ; inn  (pL+v) 

sin(y+n/4)  sin ( y f + n / 4 )  
X P ~ ( n n ' )  , .  [ p ( r ) p ( r . ) ] ' , , '  

where 

The interaction between the Rydberg electron and the 
perturbing atom B is described by the separable approxima- 
tion 

whereA is the coupling constant, I, m are the electron orbital 
angular momentum and its component along the nuclear 
axis, p  = Ir - RI describes the position of the electron rela- 
tive to the atom B, (9-,p) are the spherical coordinates of the 
vector p ,  and ,yl and Ylm are, resp~tively, the radial and 
angular harmonics. The parameters V, , are chosen so as to 
reproduce correctly the quantities E, and T, for the low- 
energy 3P resonance of the e + B system. If we use the equa- 
tion for the bound states and the resonances in the field , 

we find in the approximation of low momenta p that the 
equation for the angular momenta I of the resonance as- 
sumes the standard form3' 

The parameters E, and y in this expression are given by 

2nh-If <F,, ( ( p-p' I - ' IF,,) 
Eg = 

<Flm I I P-P' I IF,,> 
' 

rn 

To simplify these expressions, we confine our attention 
to the case m = 0 and I odd. We now use the method of Ref. 
13 to evaluate the terms after the summation sign in (A1 ) 
between the center of A + and the center of B. For small 
p (R) ,  the equation (Flm I G I Fl,, = A ' for the eigenvalues 
of the hamiltonian of the system A** + B assumes the form 

256 Sov. Phys. JETP 70 (2), February 1990 V. M. Borodin and A. K. Kazanskil 256 



- 2 ctg nv 
[(21+1) !!I2 

(2LSl)sin n p ~  2(21+1) 
P- +' L=o sin nv sin n (pL+v) i (2l+I) !!I2 

X 
p2'-I (R) sin2 @ (R) 

RZ [I o x1 (p) p"' dp 1' = - t l ,  (A6) 

where 
1 

n 
@ (R) =2v I (T-'-I)'~ d~ - - . 

R/Zv* 
4 

If we divide this equation by - (Flollp - p1llFlO)/2~, and 
use the definitions of the parameters E, and y, we obtain 

p'(R) yp2'+' (R) ctg nv -I 
(2LSI)sin n p ~  

-so+-- 
2 L=O sin nv sin n (pL+v) 

X 
(21+ 1) ypZ'+' (R) sin2 @ (R) 

= 0. 
R2p2 (R) 

h 

Since the interaction operator V, . does not appear explicitly 
in (A7), and the expression contains only the parameters E, 

and y of the 3P resonance, we may conclude that the choice 
of vLO' in the form given by (A2) is not a significant restric- 
tion on the generality of the final result given by (A7). 

2. EVALUATION OF THE MATRIX ELEMENT OF THE 
NONADIABATIC INTERACTION BETWEEN THE IONIC AND 
COVALENT TERMSAND THEIR PSEUDOCROSSING 
PARAMETERS 

From now on we ignore the influence of all the nonhy- 
drogic levels of the atom A** other than the nS level. This 
means that we retain only the L = 0 term in the sum over L 
in (A7). Since we are only interested in the effect of the 3P 

t resonance on the Rydberg levels, we also put 1 = 1. We then 
have 

[pZ (R) 12-E,-yp3 (R) ctg nv] sin n (po+v) = - I )  sin npo/sin nv, 
(-48) 

where 

b (v,  R) =3yp (R, v)sin2 (D (R) /RZ. 

Since there is no interaction between the covalent Rydberg 
nS level vL0' and the adiabatic term viO' that splits from the 
pure Coulomb level during the interaction with the ionic 
configuration (Fig. lb),  the energy levels can be determined 
from the equations 

'/2p2(R, vC(O1) -eO-yp3 (R ,  vC(O)) ctg nvc(0)=O, 
(A91 

sin n (po+v,(O') =O. 

Near the pseudocrossing point, the right-hand side can 
be simplified to read 

b(v, R)sin npo/sin nv-- (-l)"+'b(n', R) ,  
v,(0)=n'=n-p 0 .  (A101 

When R -R,, , the shift of the adiabatic Coulomb term vp' 
and of the covalent term YP' is much less than unity. Using 
this result near the pseudocrossing point, we have 

sin n(po+ n'+v-n*) - (-1) "n (v-n'), ( A l l )  
l/zpZ(R, v)-~o-yp~ (R, v)ctg nv 

-'12pZ (R, vC(O)) - - ~ ~ - y p ~  (R, v,(O)) ctg nv 
=yp3 (R, v,(O)) [ctg n~ , (~) -c tg  nv] 
=yp3(R, v,(O))n (V-V,(~)) /sin2 nv,"). (A121 

Thus, (A8) can finally be reduced to the following quadratic 
form if we use (A10)-(A12): 

(0)  b (n', R) sin2 nv,'" 
(v-n') (v-v. ) = 

n2yp3 (v(P), R) ' 

whose solutions are 

1 [ (v:" ;n8)' b (n*, R) sin2 nv:" 
v ( R )  = -(n*+vdO) ) * + 

2 nzyp3 (v;O)) 

Near the crossing point defined by vf" = n*, the splitting 
A E  of the adiabatic terms in the matrix element of the nona- 
diabatic interaction A (R)  is 

-t, 
4 b  (n', R )  sin2 nv? 

nzn*'yp3 (R, viO') (A151 

2 sin nv,'" (R) 
A (R) = 

nn'3 (A161 

The splitting AE"' in the neighborhood of the crossing 
point R b:' of the ionic term and the Coulomb level with 
quantum number n is found by solving the equation obtained 
from (A9): 

Av tg nAv=yn3p3 (R, n), 

where AY = vS0' - n, R !f' = 2nZ/( 1 + 2n2~ ,  ) . If 
?ryn3p3< 1 ,  then 

AE") (R, n)=2 [yp3(R, n)/nn3] '", (A171 

whereas for ryn3p3 1 we have 

The crossing point R,, (n* ) can be determined by using 
the real positive root x, of (A9) with Y?' = n*; 

where 

p= [EOY-' tg npol'"x, x= [ (8y '~~)- '  tgZ npo] '". 

We then have 

At the point R,, (n*) ,  the difference between the term slopes 
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can be found by differentiating (A9): 

AF= I f  3yp (Rw, n') ctg npo 
Rc,2 (n') [ I+nyp3 (R,,, n') n'Vsinz nyo+ 3yp (R,,, n*) ctg np,]  ' 

For n* > n,*, the second term in the denominator of this 
expression is much smaller than the first or the third, so that 

AF= 
2 sin2 ny, (I+S/cFrEv-l ctg npo) 
nRCI.' (n*) n*3i', 

l (-421 

where 2yp3(R,,,n*) = r,,pZ(R,,,n*) = 2Zr. 
Near the point R,, (n* 1, the exchange interaction A (R ) 

can be written in the form 

A ( R ) Z A ,  (R,,)  sin @ (R ,  n*) , (-422) 

where 

A. (R, , )  =6Ih [nnt3RC,&','"] -' sin np,. 

In the limit of a verl narrow resonance (E,? 4 1 ), the re- 
duced parameters E, and r, become equal to E, and 
4.2"2 y~:'~, and the Landau-Zener parameter calculated 
from (A16) and (A21 ) becomes identical with the corre- 
sponding exponent obtained by the approach proposed in 
Ref. 13 [cf. ( 7 ) ] .  
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