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We show that it is possible to find an analytic solution of the nonlinear Schrodinger equation that 
takes account of third-order dispersion and relaxation of the nonlinearity of the medium. We 
identify the domain of existence of nonlinear solitary waves, which take the form of "bright" and 
"dark" solitons. 

With the current utilization of optical fibers as the 
transmission medium in long-distance communications sys- 
tems, nonlinear (soliton) operating modes appear quite 
promising-they make nondispersive propagation of light 
pulses feasible at very high data rates, they improve noise 
immunity, and they make new frequency bands accessible.' 
The development of methods for generating ultrashort light 
p ~ l s e s ~ - ~  (shorter than 100 fsec) and ongoing improvement 
in the technology required to produce optical fibers meeting 
prior specifications have provided a powerful impetus for 
research into the physics of nonlinear interactions at femto- 
second time-scales. 

The possibility that a high-frequency signal might de- 
velop and evolve with a soliton envelope in an optical fiber 
was first examined by Hasegawa and Tappert.6 There it was 
shown that under certain circumstances, the process is ade- 
quately described by the nonlinear Schrodinger (NLS) 
equation: 

where @(z,t) is the slowly varying amplitude of the electric 
field distribution 

E ( 2 ,  t )  =@ ( 2 ,  t )  esp  i ( k z - m o t )  

along the fiber, t and z are the temporal and spatial coordi- 
nates, respectively, 

provides a quantitative measure of nth order dispersion at 
the signal carrier frequency w,, and us = (PA ) - ' is the 
group velocity of the medium. The physical meaning of the 
existence of soliton excitations in a single-mode optical fiber 
is that under certain conditions, the dispersive spreading of a 
wave packet can be exactly cancelled by nonlinear self-in- 
duced compression due to the (Kerr) dependence of the me- 
dium's refractive index on the field strength: 
n = n o +  n2lEI2. 

The inverse scattering method (ISM) provides a math- 
ematically sound basis for the description of nonlinear wave 
fields; it has been used to prove rigorously that the NLS 
equation ( 1 ) supports soliton solutions, and to investigate 
the dynamics of N-soliton processes.7 

In the simplest case, if the group dispersion is negative 
( 0  ;; < 0 )  , Eq. ( 1 ) is satisfied by the function 

the so-called "bright" soliton; .r = t - z/u. Its parameters 
are related to the coefficients in Eq. (2 )  by 

7 0 - a  = 2p 1 Poll 1 -aZ 
I Po" I" 

where a = l/vs - l/u, u is the soliton envelope velocity, 
,u>a2/2)P :I is the shift [relative to k(w,) =Po] in the 
wave number, and Aw is the frequency shift (relative to w,) 
due to pulse self-modulation. Ultrashort pulses of this kind 
in optical fiber were first detected experimentally in 1980.8 

If the group dispersion is positive ( 0  ;; > O), the solu- 
tion of Eq. ( 1 ) is a "dark" ~ o l i t o n , ~  

with a complex temporal envelope. The parameters of this 
solution are 

A practical embodiment of dark-soliton excitations in 
an optical waveguide was recently reported by Krokel et 
al. lo 

The development of optical communications technolo- 
gy has stimulated theoretical studies of pulse dynamics in 
fiber, and these have refined and supplemented the model 
implicit in Eq. ( 1 ) . There exist operating regimes in which 
the NLS equation ( 1 ) is incapable of describing the pulse 
dynamics, which must be modeled by introducing new 
terms. For example, at frequencies for which P ;; ~ 0 ,  a de- 
scription of the dispersive deformation of a signal requires 
that the next order of dispersion (terms -P 7) be taken into 
account. The fact that the nonlinearity is not instantaneous 
(due to the term -&,n2/w,n,) can lead to asymmetrically 
shaped signals and the formation of shock waves." It be- 
comes crucially important to take these terms into consider- 
ation [essentially terms of higher order in an expansion like 
( 1 ) ] when one attempts to describe the propagation of high- 
power femtosecond light pulses,' as effects due to third-or- 
der dispersion become comparable to those due to second- 
order dispersion (as is clear from a comparison of the 
second- and third-order dispersion lengths, i.e., 
z r '  = 6 /o ;; and 2:' = .ri/P ), and the nonlinear re- 
sponse time of the medium is of the order of several femtose- 
conds.I2 These effects result in the following modified ver- 
sion of the NLS equation ( 1 ) : 
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The role played by the terms -0 ," and - w, ' in this equa- 
tion has been analyzed by Hasegawa and Kodama13 using 
soliton perturbation theory based on the ISM. The varia- 
tions in pulse velocity and occurrence of frequency modula- 
tion obtained in Ref. 13 are consistent with numerical re- 
sultsI4 obtained for 0: = 0. It has been pointed out15 that 
with 0 g = 0, Eq. (6) is completely integrable, and the first 
three integrals of the motion for this equation have indeed 
been foundI6; furthermore, it has been shown16 that soliton 
states like (2') can exist (in contrast to the NLS equation) 
even for 0 &' > 0. Another instance in which the last term in 
(6)  can be neglected (formally, wo- co for 0 $0) has 
been the subject principally of numerical studies. ''.18 Final- 
ly, we wish to draw attention to Ref. 19, in which it was first 
demonstrated (apparently for the first time) that exact soli- 
ton-like solutions exist for Eq. (6).  

In our present work we have attempted to solve the 
modified NLS equation (6)  analytically. We have proposed 
a special procedure,whereby it becomes possible to write out 
the simplest solutions of (6)  explicitly, be they crests or 
troughs in the amplitude of the temporal envelope (one-soli- 
ton solutions), and to determine the region in which a given 
solution exists. In addition, we have related our results to 
those obtained by other a u t h ~ r s . ~ ~ l l ~ ' ~  

We therefore seek traveling-wave solutions, to the origi- 
nal equation (6) ,  

where "running" time is r = t - z/v. Plugging Eq. (7) into 
(6),  we obtain an ordinary differential equation for the func- 
tion f ( r ) ,  

with coefficients 

We can now show that when certain relationships hold 
among the coefficients (9),  some (although of course not 
all) solutions of the third-order equation (8)  are identical to 
the solutions of a somewhat simpler second-order equation. 
To this end, we rewrite (6) in the form 

d 
- {f"+imff+ [ b+m (a-m) ] f+dl f l Z f }  
dz 

where m is real. It is then clear that when 

C 
-= b+m(a-m), 
a-m 

Y 
d=- 

a-m 

the problem reduces to an investigation of the equation 

Substitution of the explicit form of the coefficients (9)  into 
( 11 ) yields a relation between v and m, 

as well as one between u and a, 

Here we have introduced the convenient dimensionless 
quantity r ]  = 60 &'/w$ g ,  which at a given carrier frequen- 
cy w0 is a parameter of the fiber. Equation ( 12) is the time- 
independent form of the NLS equation corresponding to 
( 1 ), so the desired solutions of Eq. (6)  will take the same 
form as (2)  and (4).  

Next, we determine the conditions under which self- 
localized states of the temporal envelope resembling (2)  or 
(4)  can arise in a system described by Eq. (6).  We can make 
use of (9)  and (14) to calculate the parameters of the 
"bright" soliton Qb(z,.r) given by (2): 

Clearly, the solitary wave Qb(z,r) appears when 0 y < 0. It 
is also apparent from (15) that Aw and p determine the 
parameters 70 and @, of the soliton pulse, as well as its veloc- 
ity: 

P 0 ,,-2--P" A m  
0 0  Y 

[see ( 14) 1. If with the aid of ( 15) we now rewrite Eq. ( 13) 
in the form m = 2(v - Am), the physical meaning of m be- 
comes clear: it governs the frequency modulation of the non- 
linear pulse. Using (14) and (15), we can determine the 
range of propagation velocities accessible to a bright soliton 
in a fiber as a function of the parameter r] characterizing the 
material: 

In the limit as /3 -0 and o,- w simultaneously, Eq. (6)  
goes into Eq. ( 1 ) with r] - 1, and the expressions ( 15) be- 
comes identical to (3). Departures of the parameter r ]  from 
unity attest to the need to take higher-order terms [by com- 
parison with ( 1 ) ] into account in the pulse-dynamics equa- 
tion (6).  

There is one aspect of this treatment to note here that 
we believe to be important. The condition /3 7 < 0 is neces- 
sary for the existence of femtosecond soliton-like pulses. In 
conventional single-mode fibers, /3 ;;' > 0 holds and only in 
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overcompensated light guides with a flat dispersion curve 
can one have f l  r < 0. Nonlinear femtosecond pulses are 
therefore only stable in structures of the latter variety, and 
their attenuation in conventional light guides,12 all else 
aside, can be accounted for by the violation of the necessary 
condition f l  r < 0. 

Likewise, we can use (9),  ( 13), and ( 14) to find typical 
parameters of a "dark" soliton Qd ( z , ~ )  as given by the mod- 
el (6):  

v = A o ,  t i=m/2 ,  
c,lo(q-I) 1 A',,=---- 

4 Ti 

Soliton-like troughs of this kind exist for all cubic dis- 
persions with f l  r > 0, and they can take on velocities that 
correspond to the inequality 

As rn increases, the domain of existence of a dark soliton 
shrinks. The quantity T, = m/2 specifies the phase shift of 
the complex temporal envelope of a dark soliton relative to 
the rapid oscillations of the carrier at a particular point z, 
and it governs the depth of the trough in Qd ( z , ~ )  [see ( 16) 1. 
I n t h e l i m i t a s ~ ~ + O a n d w , +  03 (q-*l),Eqs. (16) goover 
to (5) .  

It is important to note that the procedure proposed 
above for finding soliton (or more accurately, soliton-like) 
solutions of the modified NLS equation, as well as the results 
derived therefrom, are valid only if one makes equivalent 
allowance for cubic dispersion and relaxation of nonlinear 
polarization in the medium. We know that the envelope of a 
femtosecond light pulse in a fiber can be stabilized in bright 
or dark soliton form because of the mutual cancellation of 
dispersive (second- or third-order) and nonlinear (due to 
stationary and non-stationary polarization of the medium) 
deformations of the pulse. Equation (10) formally reflects 
this cancellation process. Therefore, in particular, if the per- 
tinent conditions of a problem make it possible to neglect 
higher-order terms in the expansion of (6),  then a proper 
transition from (15) to (2)  or (16) to (4)  requires f i r -0  
and wo+ 03 simultaneously, with q-+ 1; if the opposite is 
true, then the proposed computational method is inapplica- 
ble. For example, if we put f l ;  = 0 in Eq. (6)  but 
w = const # w , then for f i  6 < 0 the solution of this equation 
is the function 

This result was obtained in Ref. 11, which also contains ex- 
plicit expressions for the parameters &, g(O) ,  and X .  Even 
structurally, the functions W ( z , ~ )  and @ ( z , ~ )  [compare 
(2) and (17) ] differ are markedly different. Likewise, when 

ma-+ 03 but f l  r = const+O, it is all but impossible, in gen- 
eral, to solve (6) exactly. 

The exact solutions of Eq. (6) obtained above are finite- 
energy solitary waves which retain their shape during propa- 
gation. Solutions with these properties have come to be 
known as solitons in the broad sense that this term is used, 
although they are scarcely true solitons in the sense of the 
ISM.' Nevertheless, the patently obvious analogy between 
the modified NLS equation (6)  and the Hirota equatioq20 
which is integrable within the scope of the ISM, must be 
pointed out; the distinction lies in the structure of the last 
term of Eq. (6).  

Methodologically speaking, the very fact that Eq. (6) 
possesses exact solutions is important. In the femtosecond 
regime, the description of signal propagation in a fiber can 
start with the presence of stable soliton-like pulses like (2), 
( 15) or (4),  ( 161, making it possible to derive new analyti- 
cal results, perhaps without even reverting to the use of a 
computer. 

It is to be hoped that the results that have been obtained 
may serve in large measure to help prepare for an experimen- 
tal search (especially at femtosecond pulse widths) for sta- 
ble, localized pulses, which are ideal instruments for data 
transmission over fiber-optic communications lines. With 
regard to recently initiated work (see, e.g., Ref. 10) on the 
detection and investigation of dark solitons, our present 
analysis of pulse behavior when P r > 0 is most timely. 
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