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Corrections to the energy and wave functions of a many-electron system of interacting atoms are 
evaluated in general analytic form, taking into account the degeneracy of states in accordance 
with the Young tableaux. The rule for writing down the perturbation operator for such systems is 
formulated in terms of the ground and excited state vectors that are antisymmetric in the 
interchange of electrons between centers. A perturbation theory in which one of the parameters is 
the degree of overlap of the wave functions is used to derive the secular equation of the theory. 
Examples of unpaired interatomic interactions due to exchange and superexchange effects are 
examined. 

1. INTRODUCTION 

  on relativistic mechanics makes extensive use of per- 
turbation theory based on extrapolations such as the Ray- 
leigh-Schrodinger series.' The theory then provides a basis 
for the description of a great variety of quantum phenomena 
on the atomic and molecular scale. Applications of this theo- 
ry become less problematic in the context of the principle of 
indistinguishability of identical particles and the symmetri- 
zation (or antisymmetrization) requirement for the wave 
function of a set of interacting particles that follows from 
this principle. 

It would seem that, for a system of electrons for which 
these requirements follow from the Pauli principle, they can 
be readily taken into account by applying the usual perturba- 
tion theory to the basis of unsymmetrized state, and using 
the antisymmetrization procedure post factum in each ex- 
pansion term that determines the correction to the wave 
function in the particular perturbation-theory order. How- 
ever, this procedure is unsatisfactory and can lead to results 
that are definitely incorrect. The point is that the perturba- 
tion operator used to construct the Rayleigh-Schrodinger 
series does not cover interactions due to the overlap of the 
wave functions of electrons belonging to different centers- 
,nuclei, ions, or molecular cores. the way the perturbation is 
written down itself depends on the way the electrons are 
distributed over the centers. In the case of the ground-state 
energy correction for a multicenter molecular system, we 
immediately have a difficulty when the correction is evaluat- 
ed as the matrix element between identical symmetrized 
states: the initial perturbation operator will also act on the 
"foreign" term in the wave function, and the distribution of 
electrons over the centers in the latter will require a change 
in the form of the perturbation operator. The resulting con- 
tradiction cannot be removed by the usual perturbation-the- 
ory techniques. Moreover, the theory does not even involve a 
parameter representing the overlap of the wave functions 
because exchange forces are not represented in the perturba- 
tion. 

The features that we have just mentioned are also found 
to appear, and are simultaneously taken into account, in the 
vibrational procedure. For example, the exchange contribu- 
tions are considered in the Heitler-London method and 
themselves contribute significantly to the perturbation over 

typical intermolecular separations. The method based on the 
"hybridization" of molecular orbitals is also found to dem- 
onstrate the importance of overlap and takes it into account 
correctly provided the initial or trial wave functions are suit- 
ably chosen. Variational methods are always based princi- 
pally on intuition, and are used precisely when perturbation 
theory "does not work". This disadvantage is obviated when 
the perturbation theory is developed from first principles as 
a two-parameter formalism, i.e., wher. it contains a param- 
eter that appears explicitly in the perturbation, and a further 
implicit parameter that represents the degree of intercenter 
overlap. A variant of this type of theory is described in Ref. 
2; here, we consider the development of this theory and some 
new aspects of it that are associated with the degeneracy of 
states. 

Exchange forces play a decisive part in the formation of 
valence bonds. The overlap of the electron shells of atoms in 
a molecule is responsible, in the final analysis, for the remov- 
al of the degeneracy in the spin states of electrons that corre- 
spond to different Young tableaux. The effect of total spin on 
energy splitting is indirect and is due to the symmetry of the 
wave functions, but the evaluation of this splitting can also 
be carried out by exchange perturbation theory (EPT). An 
analogous situation occurs when the effect of nuclear spin 
angular momenta on the energy states, or the terms of di- 
atomic molecules such as oxygen (ground-state term 
38, - ), is taken into account. This effect is unrelated to hy- 
perfine interaction, and is entirely due to the particle inter- 
change symmetry.' Exchange "selects" the energetically 
most appropriate of the nuclear Young tableaux. 

Bashkin2 has examined the ferro-or ferrimagnetism ef- 
fect in a binary Boltzmann gas containing the light electron 
component. Here again, we can apparently use EPT to iden- 
tify energetically most appropriate electron spin orienta- 
tions. 

The tendency in modern quantum physics is for phe- 
nomena determined by the multiparticle character of quan- 
tum interactions to become increasingly significant and topi- 
cal. It is precisely in this direction that we must look for 
fundamental physical factors responsible for conceptual 
connections between processes occurring at radically differ- 
ent levels, i.e., atomic on the one hand and macroscopic on 
the other. The overlap of electron shells may be due to the 
interchange of electrons along a chain of atoms. This leads to 
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quantum superexchange effects when the entire ensemble of 
atoms or molecules is involved in the interaction. It is clear 
that this type of effect is significant in the theory of ferro- 
magneti~rn,"~ the theory of molecular chains (polymers), 
and in other phenomena due to multiparticle interactions. 

We now briefly describe the situation encountered 
when a time-independent perturbation theory with ex- 
change is con~tructed.~ A number of difficulties arise when 
an attempt is made to construct a theory in which the correc- 
tions to wave functions are antisymmetrized with respect to 
the interchange of electrons. First, if the total Hamiltonian is 
symmetric with respect to the interchange of identical parti- 
cles, subdividing it into perturbed and unperturbed parts 
means that the latter is antisymmetric because it is due to a 
particular distribution of labeled particles over the atoms. 
When the basis of eigenfunctions of this unperturbed Hamil- 
tonian is employed, the corrections to these functions are 
found to be antisymmetric. On the other hand, if we use the 
basis of antisymmetric unperturbed wave functions, then we 
have the difficulty of having to orthogonalize the functions 
of this basis. A number of theoretical techniques, presented 
in the monograph of Ref. 6, employ a basis in which the 
excited-state vectors are not orthogonalized. The require- 
ment ofsymmetrization is extended only to the eigenstates of 
the principal energy level. The theory then proceeds to a 
kind of compromise between different requirements, which 
is achieved by introducing the variational method at some 
stage of the calculations. 

The variational stereotype was successfully overcome 
and a number of perturbation theories taking into account 
the symmetrization of states in all orders in the interaction 
parameters were constructed in Ref. 5. The procedure used 
to evaluate the expansion coefficients for the required func- 
tions in the unperturbed basis, which is described in Ref. 5, is 
also used in developing the EPT, and is therefore described 
below. The procedure is based on the use of projection opera- 
tors in the space defined by the ?asis of symmztric states of a 
set of identical particles: I\V) = A I \V), whereA is the symme- 
trization operator. 

2. FUNDAMENTALSOF EPT 

The exchange interactions between closely spaced 
atoms involves the participation of outer-shell electrons of 
these atoms. These shells can include not only the outermost 
valence shell, but also inner shells adjacent to the last shell 
and providing an appreciable contribution to the overlap en- 
ergy. For example, in the case of iron, the s and d shells with 
the maximum (equal to four) principal number must be re- 
garded as outer shells. The overlap of d shells in solid iron is 
smaller than the s-shell overlap, but is responsible for the 
spin coordinate of atoms by exchange forces. In general, a 
total of N >  2 electrons will participate in the interaction of 
each pair of atoms. 

We now turn to the two-center problem, i.e., the inter- 
action between two atoms A and B separated by a distance R, 
and containing N, and N ,  electrons in the outer shells, so 
that N = N ,  + N , .  The total antisymmetric wave function 
for the set of two atoms when their interaction is neglected 
can be written in the form of a simple product of atomic 
functions that include the spinor parts: 

where the subscript 1 of the state vector on the left-hand side 
represents a particular distribution of labeled electron over 
the atomic centers. For example, if we interchange electrons 
labeled 1 and NA + 1 we obtain the state vector I @,) , and so 
on up to the vector I@, ), where p is the number of inter- 
changes of electrons belonging to different atoms. The atom- 
ic wave functions describe the ground state of each of the 
atoms. At the same time, the spin angular momenta of atoms 
A and B are fixed, and each corresponds to a particular 
Young tableau. In other words, we shall assume that the 
procedure of symmetrization and alternation in the vari- 
ables belonging to each of the atoms is complete. The combi- 
nation of the Young tableaux for an atomic pair leads in 
general to r different Young tableaux for the pair as a whole. 
Each of the states labeled a = 1,2, ... determines a particular 
value of the resultant spin of the atoms. If we neglect the 
interaction, all these states will have the same energy, which 
will be equal to the sum of the energies of the individual 
atoms. Degeneracy will be taken into account later. For the 
moment, let us consider one of the resultant Young tableaux 
for a paired set of atoms (for example, with a = 1 ), assum- 
ing for the sake of simplicity that it is the only one. 

To obtain the state vector for a paired set atoms that is 
antisymmetric in electron interchanges, we must form the 
algebraic sum of vectors I@, ) with allowance for the parities 
g, of the interchanges and then multiply this sum by the 
normalizing factorf: We shall indicate this vector by an an- 
gle bracket: 

P 

where, because of normalization, 

Next,we define the operator representing projection 
onto the subspace of antisymmetric states by the relation 

and take the Hamiltonian for the system in the form of the 
sum 

where the subscript 0 labels the unperturbed Hamilto- 
nian of the (isolated) system of atoms that has been m2de 
symmetric in electron interchanges, and the operator V is 
the s i~ i la r ly  symmetrized perturbation operator. The oper- 
ator H,, is the unperturbed Hamiltonian corresponding to 
the distribution of electrons over the atoms for which the 
state of the atom that is unperturbed by2he interaction is 
described by the state vector IT''), where V, is the perturba- 
tion operator for this distribution (labeled i). 

In the absence of interaction between the atoms, the 
ground-state wave vector satisfies the equation 

which can be obtained by summing the Schrodinger equa- 
tions for the states /ai ). If we suppose that the interaction is 
small, we can write the ground-state wave function and ener- 
gy in the form of the following series: 
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In the first approximation in the perturbation, the 
Schrodinger equation takes the form 

The solution of this equation in the absence of degeneracy is 
obtained in Ref. 5, and is given by the following expressions: 

h 

where Pis the operator representing projection onto the sub- 
space of vectors that is complementary to the ground-state 
vector. In the expression for the correction to the wave vec- 
tor, the sum is evaluated over the excited states with energies 
E i  in the zeroth-order approximation. If we neglect the 
terms containing the overlap integrals, we find that the first 
two expressions in (9)  become identical with the well known 
results obtained in the usual perturbation theory. 

3. SECULAR EQUATION WITH EXCHANGE 

If we take into account the degeneracy of the states of 
the atomic pair in the total spin (in accordance with the 
Young tableaux), we have to write the required state vector 
in the form of the following double sum: 

where the 0 indicates the state vector of the unperturbed 
system a is the number of one of the resulting Young tab- 
leaux and n = a, b are the subscripts of the corresponding 
ground (with energy E, = E I: ) and perturbed (with energy 
E ) states. If we put a = 1, n = a, we obtain the unper- 
turbed state vector used in the last section. In the first ap- 
proximation we have instead of (8)  

The usual method of reducing ( 1 1 ) to an algebraic sys- 
tem for the expansion coefficients, in which the equations 
undergo scalar multiplication by some unperturbed state 
vector, is now found to be unsatisfactory: the symmetrized 
state vectors with different indices are not orthogonal to one 
another. We therefore use a mathematical device that en- 
ables us to avoid this difficulty: we use the completeness of 
state vectors of the form I @ ) ,  i.e., 

where the prime marks simple products of atomic state vec- 
tors that differ by the interchange of one of the electron pairs 
between the centers (see Sec. 2). The number of such inter- 
changes and, correspondingly, the number of equations such 
as ( 12) is p for each fixed index a determining the type of 
Young tableau. 

The above sums enable us to write the right-hand side of 
(11) in the form 

The final result in (13) was obtained by a change of vari- 
ables, by a reduction to integrals in the first term in brackets, 
and by using (2).  We can now rewrite ( 11) in the form 

Since the state vectors /\V:, ) are linearly independent, the 
expression in braces in (14) must vanish for each pair of 
numbers a, n. In principle, this is then the solution to the 
problem of finding the expansion coefficients. In the first 
approximation, we have 

(E~o-E~o) can =x ~ ( m a n l ~ ~ - ~ l  yo:). 
PJP (15) 

Substituting n = a in this expression, we obtain a homo- 
geneous set of equations for the coefficients cia = c,, that 
define the correct wave function in the zeroth-order approxi- 
mation. By equating to zero the determinant of the system, 
we obtain the secular equation 

det (Vag-ArlfiE') =O,  (16) 

in which the matrix elements are given by 

(the subscript a has been omitted). In contrast to the con- 
ventional formulation, the secular equation given above 
takes into account the intercenter overlap of the electron 
wave functions. When the vector IT) is the product of coor- 
dinate and spin Young tableaux, we have A,,, = S,,, be- 
cause of the orthogonality of the latter. This case will be 
examined later. 

Next, we introduce the projection operator 

where we have omitted the subscript a of the state vectors, 
and the operator S, that acts on the superposition of vectors 
corresponding to different Young tableaux selects the term 
containing the zubscript y and retains only this term, in ac- 
cordance with P, I \V;) = 0. Applying the above operator to 
both sides of ( l l ) ,  we finally obtain the equation for the 
expansion coefficients in the first order: 
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The next step is based on the orthogonality and complete- 
ness of the basis of simple products @, . , and is completely 
analogous to the derivation of ( 14). Equation ( 19) then as- 
sumes the form of the condition that the superposition of 
linearly independent antisymmetric states must be equal to 
zero. Applying the operator Fy to this superposition, using 
the idempotency property Ft = & of the projection opera- 
tor, and equating to zero the expansion coefficients in front 
of the linearly independent vectors, we obtain the following 
relation for the required corrections to the state character- 
ized by the subscripts y, a:  

where n #a in the sum on the right-hand side. If we neglect 
overlap, this becomes identical with the well known expres- 
sion obtained in the usual perprkation theory. To verify 
this, we must insert the sum P, V between the operators 
2 I@, ) (@, I. The term with n = a in (20) will then vanish 
identically, and the terms containing the second component 
of (18) will also vanish form #a. The result is that only the 
terms containing the matrix elements of the form 

h 

will remain in the final expression, where Vi is the antisym- 
metrized perturbation operator introduced in Sec. 2. 

4. INTERCENTER SUPEREXCHANGE 

The fluorides of transition metals, such as MnF,, exhib- 
it the property of antiferromagnetism at sufficiently low 
temperatures. The crystal structure of these compounds is 
such that the magnetic interactions involve nearest-neigh- 
bor atoms lying at the corners of an equilateral triangle with 
the anions F occupying two of the corners and the cation 
Mn2 + occupying the third. The valence shall of the fluorine 
ion is similar to that of neon, and the valence shell of manga- 
nese have five electrons with unpaired spins. 

The exchange interaction in MnF2 crystal cannot be 
explained in terms of ordinary exchange between manganese 
ions because of the presence of another element between the 
ions (in this case, fluorine). The antiferromagnetic ordering 
of electron spins belonging to the manganese ions can be 
explained in terms of the perturbation theory in the Young 
tableaux. 

Let us now consider an arbitrary pair of electrons with 
opposite spins in the outer shell of the fluorine ion. We label 
them 1 and 4. Next we take one electron from each of the d 
shells in the manganese ions that are closest to the fluorine, 
and label then 2 and 3.Finally, we consider spin Young tab- 
leaux of two types (see Fig. 1 ). The coordinate parts of the 
wave vectors are described by analogous schemes, with the 
rows and columns interchanged. 

We use p ( i ) ,  $(i), *(i) to denote the coordinate parts 
of one-electron wave functions of the ith electron that refer, 
respectively to the fluorine ion and the manganese ions lying 
on either side of the former. The coordinate part of the total 
state wave vector, described by the Young tableaux a (see 
Fig. 1 ) has the form 

a 

FIG. 1. 

where f is the normalizing coefficient and the expression in 
braces gives the explicit terms representing only the pair in- 
terchanges. The ellipsis represents negligible contributions 
that account for the interchanges of a large number of elec- 
trons, and also the interchanges of electrons belonging to the 
manganese ions. The exchange contributions corresponding 
to these terms in the interaction energy are very small be- 
cause they result from the multiple overlap of the wave func- 
tions of electrons belonging to different centers, or because 
these centers are far apart. We must now also write down the 
spin part of the state vector for this diagram. In the usual 
notation, we have 

The interaction operator includes the usual Coulomb 
terms representing the interaction between electrons belong- 
ing to "foreign" centers, the energy of attraction to these 
centers, and the repulsion energy between the ionic centers. 
This operator is obviously symmetric in the interchange of 
any of the interacting electron pairs. 

The matrix element V,, (for n = a )  that corresponds to 
diagram a contains a direct contribution to the interaction 
energy that is independent of the spin direction, and also an 
exchange contribution that depends significantly on the 
overlap of the wave functions and is different for different 
orientations of the electrons spins in the system. It is precise- 
ly these exchange contributions that finally determine which 
mutual orientation of the spin angular momenta of the elec- 
trons is energetically appropriate. It will therefore be suffi- 
cient to confine our attention to this kind of contribution. 
Since the interchange terms in the function given by (21) 
have alternating signs, and, as already noted, the interaction 
operator is invariant under the pair interchanges, the corre- 
sponding exchange contributions to V,, in this sum is found 
to be zero. It may be said that the exchange energy is zero for 
states described by Young tableaux of type a (see Fig. 1 ). 
The spins and, consequently, the magnetic moments of elec- 
trons belonging to the manganese ions have opposite direc- 
tions in pairs, which corresponds to the antiferromagnetic 
state of the lattice. 

If we now turn to the Young tableaux of type b (see 
figure), we find that, in contrast to (21), the interchange 
terms in the coordinate part of the state vector all have the 
positive sign. This behavior is typical for equally directed 
spins. In accordance with the Heitler-Landau method, the 
overlap of wave functions leads in this case of a higher energy 
of the system, i.e., Vbb > Va,, and numerical estimates con- 
firm this. The off-diagonal matrix element is V,, = 0 be- 
cause of the readily proved orthogonality of spin vectors cor- 
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responding to different Young diagrams. 
The exchange energy for the other Young tableaux is 

also found to be higher, which is readily verified. This means 
that the antiferromagnetic state does indeed occur in crystal 
lattices of this type. The effect of superexchange in the inter- 
center interaction produces a reduction in the energy of the 
state with mutually correlated spins. 

We emphasize in conclusion that none of this demands 
an evaluation of corrections to the energy of the system in 
second-order perturbation theory when the intermediate ex- 
cited states3 are considered because the entire energy-lower- 
ing effect is essentially already present in the first-order 
terms of the usual perturbation theory. 

APPENDIX 

Projection operator 

The antisymmetrized function for the system is the sim- 
ple product of the state functions of the individual atoms 

and is the eigenfunction of the unperturbed Hamiltonian 
with the corre_sponding distribution of electrons in atoms in 
A and B, i.e., H ,  cPo = Eoa0, where 

The function a, in which electrons numbered 1 and k + 1 
have been interchanged is also an eigenfunction of the opera- 
tor Ho, with the same interchange, i.e., we can write out the 
following set of equations: 

We now label these equations so that, on the right, we 
obtain the function corresponding to the coordinate part of 
the Young tableaux for which the symmetrization procedure 
is being carried out: 

The result is 

We now introduce the operator /Zi = I@, ) (<Pi 1 : 

where3 = ( a i  1, so that 

Substituting ( A 2 )  in ( A 1  ) , we obtain 

If we put 

we obtain the following equations for the symmetrized func- 
tion, which we have used as the starting point of our analysis: 

A 

or HoIY,) = E O I Y Z ) ,  where 
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