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The partition function of an open hadron string is calculated and a procedure is determined for 
the renormalization of the string tension coefficient and of the mass of the quark located at the end 
of the string. It is shown that the Gell-Mann-Low function for the nonperturbative phase of the 
SU(N) gauge theory coincides with the first term of the expansion of thep-function in the strong 
coupling approximation in field theory on a lattice. The string partition function depends only on 
the Euler characteristic of the string world sheet. 

1. INTRODUCTION 

In the limit of a large number of colors N- co the non- 
abelian. SU(N) gauge theory of interacting quarks and 
gluons goes over into the theory of a chromoelectric string, 
binding quarks in a hadron.Is2 The partition function Z of 
this string is in the form of a functional integral over the 
contributions of the world sheet Z of the string x, = x, (z) 
in R and an integral over the inner one-dimensional metrics 
A ( y), defined on the sheet boundary 13 Z (see Appendix 1 ) : 

a,b = 1,2;p = 1,2,3,4. 
Here A is a parametrization of the contour r, m, is the 

bare mass of the quark, 

is the induced metric on the sheet Z. The expression for the 
bare tension coefficient k ,  of the string has the form 

where 6 is a regularization parameter with dimensions of 
length. In the process of subsequent renormalization of the 
quantity k the parameter 6 should be taken to zero. We note 
that Eq. ( 3 )  exactly coincides with the expression obtained 
for this quantity to lowest order in the strong coupling ap- 
proximation' in the Hamiltonian formulation of lattice 
gauge t h e ~ r y . ~  

Let us recall that the hadron string in question arises 
only in the presence of quarks and describes the topological- 
ly nontrivial configuration of the gauge field, which realizes 
the extremum of the two-dimensional effective action S,,, 
defined on the surfaces 8. The action S,, was obtained in 
Refs. 1, 2, and 5 in evaluating the four-dimensional hadron 
field correlators ( A l )  in the framework of the 1/N expan- 
sion. The contribution of the quantum fluctuations of the 
gauge field is small of order oc 1/N (Ref. 2). It is important 
to note that the stable configuration of the string disappears 
in the abelian limit N- 1.' The hadronic string, which arises 

naturally for N% 1, differs from the customary models of 
strings in that it possesses a narrower space of quantum 
states. This restriction is caused by the following specific 
properties of the hadron 

1. Its action is quantized: 

As a consequence the area of the world sheet A ( Z )  does not 
change continuously, as in conventional string theory, but 
discretely. This circumstance should be taken into account 
in evaluating the integral over surfaces in Eq. ( 1 ) . 

2. In the integral ( 1 ) it is necessary to sum only over 
those surfaces, whose curvature scalar is constant and equal 
to 

We take the restrictions (4)  and ( 5 )  into account by impos- 
ing constraints and introducing the corresponding Lagrange 
multipliers into the integrand in ( 1 ) . 

As a consequence of the condition (4)  the full partition 
function Zbreaks up into a sum of contributions from differ- 
ent topological sectors'35 : 

Since the action (2)  is not quadratic in the variable x, ( z ) ,  
the evaluation of the integral ( 1 ) is a difficult problem. In 
order to solve this problem we go over to the first-order for- 
malism by means of the replacement6,' 

One may put the equality sign in the expression (7)  if it is 
agreed that the evaluation of the integral over the metricsg,, 
is taken only in the leading order of the saddle-point approxi- 
mation. 

The variation of the action (8)  equals 
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where 

na is the outer normal to the boundary d 2, ds2 = gab d f  dzb . 
The solution of the equation Tab = 0 for the energy-momen- 
tum tensor ( 1 1 ) has the general form 

where f is an arbitrary function. Substitution of this solution 
into the expression (8 )  for the action S[x,g] gives 

In what follows we agree to systematically ignore loop cor- 
rections to gab so that the following equality is valid: 

which permits one to evaluate the integral ( 1 ) by using the 
action S[x,g] , which is quadratic in x, (2). The symbol % 

indicates that the integral over the metric is calculated only 
to leading order in the saddle-point approximation. The 
summation in Eq. ( 1 ) is carried out over surfaces of genus 
zero, since the contribution of manifolds with genera) 1 is 
suppressed8 by the factor 1/N. 

For this method of evaluation of the functional integral 
( 14) with condition (4)  it is sufficient to implement the re- 
quirement (5)  of constant curvature as follows. According 
to,the Gauss-Bonnet theorem 

the integral over the boundary 8 of the geodesic curvature 
x, is constant as a result of the restrictions (4)  and (5) .  
Therefore the condition (5)  gives rise to the additional con- 
straint 

Taking into account the indicated contribution of the topo- 
logical sector to 1 Q / we may write the partition function Z in 
the form 

Ziqi=Zp*+ZQ-, 

k 
z,. J DX,, (z )  Dg., (z )  D). ( y )  exP! - 2- ~d2zg'gab d.x, dbxr 

2 2  

where a, f i  are Lagrange multipliers. 
We note that the quantization condition, connected 

with the multiplier a, fixes the factor f = 1 in expression 
( 12), since only then is it equivalent to Eq. (4) .  

If at this stage one evaluates the variation of the action 
and sets SSQ/Sgab = 0 one obtains, with Eq. ( 17) taken into 
account, the equation 

with solution 

However our strategy is to first perform the integration over 
the contributions x, (z). Elimination of the resulting diver- 
gences permits the renormalization of the quark mass and 
the string tension coefficient k. It is only afterwards that we 
carry out variation of the resultant expression with respect 
to the metric gab. 

2. EVALUATION OFTHE PARTITION FUNCTION ZIQl 

Since the quark trajectory r is the boundary of the sur- 
face I: (i.e., r = d 8) the metrics on these two objects should 
agree, i.e. 

[the mass m, is included here to ensure correct dimensions 
for the action ( 17) 1. As was noted in Ref. 9a, this identifica- 
tion of the metric is most natural from the point of view of 
unification of the dynamics of strings and particles 
(quarks). After introduction into the integral over A ( y )  of 
theS-function, which takes into account the constraint ( 19), 
we obtain after integration the following factor in ( 17): 

To perform the integration over the variable x, in Eqs. ( 17), 
(20) we represent x, (2) in the form 

2, (2) =5ttCi(z) +YI, (2) r (21) 

where xc' is the solution of the classical equation 

Agx,,c'=O (22) 

with the boundary condition 

which is obtained from variation of the action in ( 17), (20). 
In view of Eq. (22) for x" it is necessary that the integral 

should vanish, which gives rise to the periodicity condition 

xc' (0) =ic'( y,,,,,) . (25) 
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conditions ( 19), (23). With this taken into account expres- 
sion ( 17) for ZQ takes on the following form 

In this manner the classical solution (22) is connected with 
the closed periodic quark orbits r = a 2 .  In particular, these 
orbits have no kinks, we was implicit in formula ( 15). Sum- 
mation over Qin Eq. (4)  is in fact equivalent to summing the 
contributions of all periodic orbits. 

Note that x (4 I d ' ~ g ' ~ ~ y .  ( z )  A,y. ( z )  + 29 d s  
Z 2 a, 

d Z  
x [ y , ( s )  -- y , ( s ) - l ]  + a(+nQ-k.J d'z g " )  

d y 2  r 

is equal at the classical level to 

since 

where 

and according to (23) we have 
Here det' means that the zero modes of the corresponding 
operator were omitted. These modes give rise to the appear- 
ance of factors 

which ensures the cancellation of the corresponding term in 
the right side of Eq. (26). Substitution of the expansion (2 1 ) 
into the action (26) with Eqs. (22) and (23) taken into 
account leads to the following result: 

on the right side of relation (32) (Ref. 10). The quark deter- 
minant, regularized by the <-function method, equals" 

det' ( - d 2 / d s 2 )  = const 9 d s  
ax 

and cancels the analogous factor in (32), connected with the 
zero mode. 

Evaluation of the determinant 
The last term in (28) was obtained using the relations 

[det' ( - A , ) ]  - D / 2 = e ~ ~  (-@ [gl) .  (34) 

where D is the dimension of the space RD (in our work 
D = 4), is carried out by making use of the conformal anom- 
aly, following the method described in Refs. 7,9b, and 12. In 
the gauge 

We perform the integration over y,, (over fluctuations of the 
embedding of the surface 2) using the Neumann boundary 
condition 

any ,  ( z )  --~z"d,y,(z) =0. z&Z. (29) 

we have Further, assume that the periodic classical quark orbit has 
invariant length 

where Y(z,zl;t) is the kernel of the heat equation (see Ref. 
9b) and rI (z) is the kernel of the projector on the zero mode 
of the operator A, with boundary condition (29). In our 
case where x z  (s  = 0)  = x z  (s = L). It is natural to impose peri- 

odicity here on the fluctuation of the quark trajectory 
Y,, [z(s) I ZY,, 0 ) :  

yu (0) =Y. ( L ) ,  d y ,  (0) l d s = d ~ ~ , ,  ( L ) l d s .  (31) 

We note that we have included the interaction of the 
quark with the field of the string by imposing the boundary 

since the operator A, has one normalizable scalar zero mode 
for each of the D dimensions: 
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By making use of the asymptotic expression for 
Y(z,z;t+O + ) ,l27l3 we obtain analogously to Ref. 9b 

Here R (z) is the scalar curvature equal to 

R ( z )  =-dZcp(z) lp (z),  (40) 

and 8, (z) is a planar one-dimensional S-function in the vari- 
able orthogonal to the boundary of the integration region in 
the space of conformal parameters za . 

Integrating (39) we obtain in the gauge (35) 

where the constant does not depend on p.  Here 
ds = d ~ p " ~  = dzexp(p /2), ref is the plane curvature of the 
boundary in the za parameter space, 

is the geodesic curvature; t" is the tangent vector to the 
boundary (to = dzo /ds, t" t" = 1 ); a, is the plane deriva- 
tive in the direction of the outer normal to the boundary 

Let us note that the term in (41 ) containing ln A (2) cancels, 
upon substitution in (34), the factor A ( 8 ) D ' 2  in Eq. (32). 
For that reason we omit it in what follows. 

We turn now to the renormalization of the bare param- 
eters k,, m,. The second and third terms in (41) produce 
divergences in the limit t+O+. The appropriate counter- 
terms needed to eliminate these divergences were introduced 
in Refs. 7 and 9 "by hand." It is remarkable that in a consis- 
tent derivation of the chromoelectric string from a nonabe- 
lian gauge theory the counterterms k,, m, appear automati- 
cally [Eqs. (21, (31, (32)l .  

We define the renormalized quantities k, m with the 
help of the relations 

6-0 

D D 
m. 

ma-m 

(The factor D /48ris extracted here for convenience). After 
carrying out the renormalization we obtain 

where 

As was indicated in Sec. 1, the integral over p in Eq. (46) 
should be evaluated to lowest order in the saddle-point ap- 
proximation only, so that 

where @ is the extremum point of F(p). 
The variation SF/Sp = 0 results in the Liouville equa- 

tion: 

d2cp+ak e s p  q=O, ZEZ (48) 

with a definite type of boundary conditions, which will be 
discussed in Sec. 3. It follows from (48) that the curvature 
scalar (40) equals 

The sign of the curvature is determined by the sign of the 
renormalized quantity k (the quantity a is considered posi- 
tive by definition). Formally the quantity k may change sign 
under renormalization. It will be seen below that this implies 
no contradictions. Accordingly we consider in Sec. 3 both 
versions: R > 0 and R < 0. The final choice of the sign of the 
curvature should be made on the basis of physical consider- 
ations after calculating hadron scattering amplitudes in this 
framework. 

3. SOLUTIONS OFTHE EQUATION 6F/6q=O 

1. R > 0. In this case k is positive and the curvature 
equals 

R=ak=2/a2. (50) 

The solution to Eq. (48) is a constant curvature metric 

p^(z) =exp [i ( z ) ]  = 4 ( l +  lz12/a2) 
=4 ( l+r2 /a2 )  -2, (51) 

where 3 = 1zI2, z = x + iy. 
From the variation SF/Sp in addition to Eq. (48) we 

also obtain the boundary condition on p: 

The last term in (52) is obtained by taking into account (42) 
and the relationsgb 

+ terms independent of p .  Taking into consideration that 
the metric (51 ) is not singular on d B we conclude that (52) 
is equivalent to the two equations 
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'12m exp ( 9 1 2 )  -dNcp-21cf=0, z&X, ( 5 3 )  For 1 Q I > 1 the region 8 = , covers Q once. 
The condition (61 ) (for )Q I = 1 ) makes it possible to 

express the Lagrange multiplier a in terms of the renormal- 
ized parameters k and m.  

Indeed, from ( 6 1 )  and the last integral in ( 5 9 )  we have 
The first of these has a solution when the boundary a B  is a 
circle in the parameter space ( x , y ) .  Then 

x ,=I/?-, &=a,, exp ( & 2 )  =2 (l+r21a2)-l. ( 5 5 )  

Upon substitution of ( 5 5 )  into ( 5 3 )  we obtain the equation 
Taking into account the relation ( 5 0 ) ,  which implies ka2 
= 2 / a ,  we obtain from here an equation for the quantity a :  

which allows one to find the radius of the circle 
4 = x ~ + ~ ~ , x , ~ E ~ B ,  

Its positive solution may be found with expressions ( 5 6 ) ,  
( 5 7 )  taken into account. It has the form 

We shall also evaluate the geodesic curvature of the 
boundary d B .  According to ( 4 2 ) ,  ( 5 5 )  we have 

For kD /m2  1 we obtain from here 

Using Eq. ( 5 6 )  we obtain 

for kD /m2  >) 1 we have a -- D /12n-; for 4kD /3rm2 = 1 we 
have a = D /*a. 

2. R < 0 .  In this case we have k < 0  and the curvature 
scalar equals 

In this way, the renormalized mass of the quark located at 
the end of the string determines the geodesic curvature of the 
boundary a 8. Upon substitution of the solutions ( 5  1 ), ( 54) ,  
( 5 8 )  into the expression ( 4 6 )  for F(p) and evaluation of the 
simple integrals 

Equation ( 4 8 )  takes on the form 

For the solution of this equation it is convenient to make use 
of the metric of the Lobachevski plane in the Klein model 

In this model the boundary of the region 8 is a straight line 
parallel to the real axis: y  = const~y, .  Then xf = 0  and 
a, = - a,. Equation ( 5 2 )  takes the form 

We require that the metric ( 6 6 )  have no singularities. 
Then one must set yo # 0 .  In that case Eq. ( 6 7 )  reduces to the 
equations 

we find that 

'12m esp (cp/2) +d,cp=O, ( 6 8 )  

Substituting @ in the form ( 6 6 )  into the equation ( 6 8 )  we 
find 

Here x is the Euler characteristic ( 15).  
The variation S lnZQ/Sa = 0  in ( 4 6 ) ,  ( 4 7 )  gives rise 

to the quantization condition, which in contrast to expres- 
sion ( 4 )  contains the renormalized tension coefficient ( 4 4 )  : 

We have obtained the same expression for x, as in the 
case R > 0 [see ( 5 8 )  I .  It is most interesting that for R < 0  the 
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renormalized mass of the quark determines not only the geo- 
desic curvature of the boundary ~3 8, but also the curvature 
scalar R. Comparison of the expressions (7 1 ) and (64) leads 
to the relation 

which is characteristic of the Beltrami pseudo-sphere. (Re- 
garding this surface see, e.g., Ref. 14). This circumstance 
permits making the region of definition of the parameters 
z = x + iy in (66) more precise. For winding number Q 
= 1 the properties of the pseudo-sphere imply 0 < x < 2 ~ a ,  

a<y < W ,  y, = a. For arbitrary Q we obtain O<x<2raQ, 
while the range of variation of the coordinate y remains the 
same as before. Substitution of the constant negative curva- 
ture metric (66) into the effective action (46), with Eqs. 
(70) and (7 1 ) taken into account, leads to a result coincid- 
ing in form to that obtained in Sec. 3, 91 for the case of 
positive curvature: 

However, we must note that for a manifold with the topology 
of a disc the Euler characteristic satisfiesx = 1, while for the 
Beltrami pseudo-sphere it satisfies x = 0. 

The quantization rule (61 ) holds as before; it should be 
emphasized here that for R < 0 the terms in the first line in 
expression ( 17) change places, i.e., 

ZQ+fa e x p  (-anQ) = e x p  (-an 1 QI ) ; 
2,-aexp (anQ) =exp (-anJQI) .  

Moreover the variant with R < 0 is distinguished by the fact 
that in this case a relation arises between the parameters m2 
and k (this was already noted in Ref. 9b). Indeed, from the 
condition (61 ) we obtain 

With (64) taken into account we have a lk  I = 2/a2, which 
gives 

a=D/12n. (75 

On the other hand, expression (70) means that 

cc=mz/81kl. (76) 

As a result we obtain 

\ k \  =3nm2/2D, k=I,2m2 for D=4. (77) 

Thus in this case there is only one renormalized parameter, 
whose numerical value should be determined by comparison 
with experimental data. 

The constant q entering expressions (32) and (47) is 

easily evaluated by taking into account that b'" = a/y [see 
(66) 1: 

Collecting together all the results (75), (69), (78), (73) 
obtained above we arrive at the final expression for (17), 
(47) : 

Hence 

Note that for R > 0 the quantity q has a more complicated 
form than (78). In that case we obtain, according to (59) 

It follows from here that q = lQ I f(k,m), where f is a 
function of k and m whose explicit form should be found by 
making use of the relations (57), (50), (63). It should be 
noted that for R <O the results obtained here look much 
simpler than for R > 0. 

4. THE GELL-MANN-LOW FUNCTION FOR THE 
NONPERTURBATIVE PHASE OF THE GAUGE FIELD THEORY 

In Sec. 1 it was noted that the bare string tension coeffi- 
cient (3)  has the formlp5 

ko= (e2/26') C2 (F) . (81) 

Here C, (F) = ( N  - 1 )/2Nis the quadratic Casimir opera- 
tor in the fundamental representation of the SU(N) group. 
In the renormalization process (44) we make the substitu- 
tion 

(the factor D / 4 8 ~  was extracted for convenience in further 
calculations). Here ~k I is the physical string tension coeffi- 
cient, whose numerical value should be fixed by comparison 
with experimental data that are relevant to distances of the 
order of the radius of confinement ( 1 - R ,  ) . Since I k I is a 
dimensional quantity it is natural to write it in the form, 
analogous to ( 81 ) 

where e ( l )  is the renormalized charge. In a nonperturbative 
analysis of a field theory with confined quarks it is natural to 
consider a renormalization scheme in which the string ten- 
sion is fixed3: 

From this condition and from Eq. (83) we easily find the 
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following expression for the Gell-Mann-Low function 

It coincides with the first term in the expansion of the /?- 
function in powers of the charge, obtained previously in the 
strong coupling approximation for the Hamiltonian formu- 
lation of the gauge field theory on a l a t t i ~ e . ~ ? ~  The Hamilton 
formulation is distinguished by being able to separate the 
contributions from the chromoelectric and chromomagnetic 
fields. In the strong coupling approximation the contribu- 
tion of the electric field dominates. At distances l < R , ,  
where the charge is small, it is also necessary to take into 
account the contribution of the magnetic field. In that case, 
as was shown in Ref. 3, a smooth transition takes place from 
expression (85) to the standard formulas for /?(e) in the 
weak coupling approximation: 

The agreement between our results and those of Refs. 3 
and 4 is a natural consequence of the fact that the chromo- 
electric string discussed above was consistently derived'.225 
from a nonabelian gauge theory (to leading order in l / N ) .  

5. CONCLUSION 

Let us indicate the differences between the hadron 
string and the traditional (mathematical) string models, in 
addition to properties (4)  and ( 5). In those models cancella- 
tion of divergences, arising from summing over the inser- 
tions of the string world sheet, is achieved by introducing 
counterterms proportional to the area7 and perimeter9 of the 
sheet. These counterterms are introduced, in fact, "by 
hand." In contrast to this, in our approach the counterterms 
ko,mo appear automatically in the process of deriving the 
string Lagrangian. The second difference has to do with the 
use of the unphysical limit D-+ m , which is needed to justify 
the saddle-point approximation in Ref. 9b. In application to 
the hadron string this requirement is superfluous, since ac- 
cording to the property (5) the summation over surfaces 
should be restricted just to the contributions from the con- 
stant curvature metric. This metric is an extremum of the 
effective action (46), therefore no further corrections need 
be considered. 

According to the result (80) the partition function of 
the hadron stringZ depends only on the Euler characteristic 
x of the string world sheet. The quantity x is a topological 
invariant. For this reason one should conclude that in the 
neighborhood p-@ the theory of the chromoelectric string 
(in a space of dimension D = 4) should belong to the class of 
conformally invariant theories with central charge c = 0. 
Nor can one exclude a connection with the topological theo- 
ries of Witten." 

It was noted in Ref. 16 that in conformal theories the 
exponential growth of the degree of degeneracy g(n)  of the 
energy levels En for n - +  is determined by the central 
charge c of the Virasoro algebra 

g ( n )  o: esp  (2n2nc/3)  '" 

power-law dependence on n. In addition, the Virasoro alge- 
bra is closed (for D = 4). All in all, this may give rise to 
dramatic consequences (in a positive sense) with regard to 
the properties of the hadron scattering amplitudes, which 
should be studied next. 

The author is grateful to A. S. Shvarts for the clarifica- 
tion of certain questions of technical character. 

APPENDIX 1 

Here we clarify the connection between the partition 
function ( 1 ) and the expression for the Euclidean hadron 
field correlator 

I . .  . . , X ) = ~ ( X ~ )  Y  ( 1 )  . . . ( x )  Y  ( x )  ( A l )  

which describes the interaction of color singlet states of 
quark-antiquark pairs 

It was shown in Ref. 2 that to lowest order in the quasiclassi- 
cal expansion in the parameter 1/N the connected part of the 
 orr relator (A1 ) is represented by the functional integral 

Here x, ( y )  are the coordinates of the quark trajectory, 
forming a closed contour T, passing through the fixed points 
X, (k = 1, ..., n), withx, = x(yk);A(y) is the metric on the 
contour r with parametrization y. The quantity h [x(z) ] is 
defined by Eqs. (2)  and (4); B is a normalization constant. 
The action (A4) should be viewed together with the supple- 
mentary conditions (4),  (5) .  According to the character of 
the saddle configuration of the gauge field giving rise to the 
action (a4), the contour r should be viewed as the boundary 
of the surface 8, i.e., r = ~3 8. To take this circumstance into 
account one should introduce into the integral (A3) the 
function S[x, ( y )  - x, [z (y) ]  ] and with its help integrate 
over xu ( y) . As a result we obtain 

where the integral over x, (2) is extended also over the last 
factor in Eq. (A4), with the points x, on d Z held fixed. As a 
consequence Eq. (A5) may be written in the form 

K (r,. . . . . x,, . . . , xn) = ( J IJ dy,,~. ( y k j * ( ~ r x ( z ( ~ * )  1) ) . 

For c = 0 it is to be expected that this law should go over to a Going over to the momentum representation we obtain 
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where the averaging operation is defined by an integral of the 
type (A5), but with points no longer held fixed. 

In order to evaluate the correlator (AI)  it is necessary 
to learn first how to calculate the simpler expression for the 
partition function 

which is the main object of study of the present work. 
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