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As a simplified model of the Higgs sector of Weinberg-Salam theory, with a very heavy Higgs 
particle and a generation of heavy quarks-a model that requires investigation by means other 
than perturbation theory-the lattice theory of a scalar field and a fermion field with Yukawa 
interaction is considered. Its phase diagram is investigated in mean-field theory. Four phases are 
found: a phase with spontaneous symmetry breaking ( (4) #O), a symmetry phase ( (4) = 0 )  
with massless fermions, a symmetric phase without fermions, and a phase with antiferromagnetic 
ordering. Approximate formulas are obtained for the phase-transition lines, and also for the 
quantity ( 7 ~  ). 

1. INTRODUCTION component scalar field and the simplest discretization of the 

In the Weinberg-Salam theory, which unifies the elec- fermions) has the form'5-" 

tromagnetic and weak interactions, a key role is played by 2 
the scalar fields which, through the Higgs mechanism, give s = - 2k J' -1 GxG,+; -I- T z$x~u (%+; - 9%. ;) 
rise to the masses of the Wand Z bosons. Scalar particles 2.1.1 x, CL 

(Higgs particles) should then inevitably be present in the + ZY@&%, 
theory, but up to now they have not been observed. Their x 

masses are a free parameter of the theory. The question of p = l .  2 .  3. 4. $z=+l. (2)  
how heavy these particles can be is of great interest. In the 
standard SU(2) X U( ) with One complex Higgs The latter condition on the value of the field 4  corresponds to 
doublet @, the scalar sector of which has the form the bare constant A = W .  The simple discretization of the 

( ) 
fermions lead to the result that the model describes a system 
with 16 fermions. 

the mass m, of the Higgs particle is related to the vacuum 
expectation value 7 by the relation mH = (8A) 7. Here, 
7 = (21/2 G, ) - 'I2 = 246 GeV, where GF is the Fermi weak- 
interaction constant. 

Thus, a large value of m, implies a large value of the 
constant A. In this limit it is necessary to analyze the dynam- 
ics outside the framework of perturbation theory, e.g., with 
the aid of lattice regularization. It is then possible to obtain 
an upper bound on A, and hence on m,; namely, m ,  5 700- 
800 GeV (Refs. 1-10). 

In this problem of heavy Higgs particles there has been 
only one large coupling constant A,'and this has made it 
possible to confine oneself to the Higgs sector of the theory 
and to neglect the interaction of the field @ with the gauge 
fields and fermions. This, however, can be done only if the 
masses of all the fermions are small in comparison with 7. 
Otherwise, at least two large coupling constants arise in the 
theory: the Higgs interaction A and a Yukawa-interaction 
constant Y. In both cases, the interaction with the gauge 
fields can be neglected in the first approximation, since this 
interaction is determined by the small electroweak-interac- 
tion constants. This leads to the idea of investigating such 
Higgs-fermion theories on a lattice by nonperturbative 
methods."-'9 

Recently, certain simpler lattice scalar-fermion theo- 
ries with Yukawa interaction (with a one-component scalar 
fieldl1,l5-19 and with a two-component scalar field'3s14 ) have 

been investigated by numerical simulation. Here, the main 
attention has been paid to the determination of their phase 
diagrams. 

The simplest lattice scalar-fermion theory (with a one- 

The study of the phase diagrams of lattice theories with 
fermions by the Monte Carlo method is rather laborious. 
Therefore, it would be useful to have an approximate way of 
determining the phase-transition lines. It is known that in 
the case of the Ising.mode1 [the model (2)  without the fer- 
mions] the mean-field method permits one to find the phase- 
transition point within 10-1 5% (Refs. 20,2 1 ). In this paper 
we shall use this method to investigate the phase diagram of 
the model (2) .  

In Sec. 2 we review the mean-field method in the Ising 
model. In Sec. 3 it is generalized to the model (2) .  In Sec. 4 
we discuss the calculation of the fermion determinant and 
derive formulas for the phase-transition line separating the 
phase ( 4 )  = 0 and ( 4 )  #O. In Sec. 5 we obtain a simple for- 
mula for the fermion condensate ($4). In Sec. 6 we discuss 
the two phases with (4) = 0, which differ in the properties 
of the fermions. In Sec. 7 we derive the formula for the line of 
the phase transition to the phase with antiferromagnetic or- 
dering. 

2. MEAN-FIELD METHOD FOR THE ISING MODEL 

Since the mean-field method becomes exact for large 
spatial dimensionality d, when the number of neighbors of 
each site becomes large, in the following we shall write all 
formulas for arbitrary d. (In the models with fermions, d is 
assumed to be even. ) 

In the Ising model, with action 
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the partition function in an external field h has the form 

The mean-field method permits us to carry out an ap- 
proximate calculation of z as follows (Ref. 20; see also Ref. 
2 1 ) . We rewrite Z in the form 

where 

Here N is the number of sites and H is an auxiliary field, 
which has the meaning of the mean field acting on each spin. 
Then 

where we have made use of the inequality (exp A I >exp(A ), 
and 

Since (7)  is true for all H, we have 

Z 2 sup (2ch H)N exp <2k @x@2+; + (h - H )  2 
H 

x -  P x  

Taking into account that 

( @ x @ , + ; ) ~ =  ( @ X ) H  ( @ x + ; > ~ ,  

<@,)a = th H., 

we obtain a bound for the free energy in the external field: 

where 

W (h,  H )  =- {ln 2 ch H+2kd th2 H+ Ih--11) th H). ( 12) 

The minimum of W(h,H) is reached at 

Equations ( 10) and ( 13) are, obviously, the standard mean- 
field equations. 

In the absence of an external field ( h  = 0)  the state with 
unbroken symmetry ( H  = 0,(4) = 0)  is always an extre- 
mum of the function W(h,H) . However, it can be stable only 
if 

which gives 4kd - 1 < 0, or k < 1/4d. Thus, the mean-field 

method predicts a second-order phase transition at 
k = 1/4d. 

3. MEAN-FIELD METHOD FOR THE MODEL WITH FERMIONS 

The above arguments are easily generalized to the case 
of the model (2).  If we integrate in the partition function 
over the fermion fields, we obtain a boson theory with an 
effective action containing the contribution of the fermion 
determinant: 

where 

and the matrix M has the form 

(This matrix also has Dirac indices, which are not written 
out explicitly. ) 

It is easy to convince oneself that in Eq. ( 12) an addi- 
tional contribution arises from In det M. 

1 
N 

1 + - (In det M ) ,  . 
_I 

All of this makes sense if det M is positive for all configura- 
tions of the field 4. 

Ideally, one ought to calculate the (In det M ), , using 
the fact that the values of 4, at different sites are not corre- 
lated. However, we have succeeded in calculating this quan- 
tity only for small and for large values of Y.  This, neverthe- 
less, gives much useful information about the phase 
diagram. 

First of all, we note that for Y = 0 and Y = w the value 
of In det M reduces to a constant, independent of the field 
4,. Therefore, on the ( Y,k) plane the phase-transition lines 
separating the phase (4)  = 0 and (4)  # O  should begin at the 
points (0, kc ) and ( CO, kc ), where kc is the phase-transition 
point in the Ising model ( 3 ) . 

For Y< 1 we write 

In delM = In dct K + tr ln(6,,+(K-').,Y@,) 

I 
= lo det K - - 1.' ~ r z  (K-l) ,u@u ( X - l )  ,.@.+0 (1.'). ( 18) 

2 ". , , 

Here, tr denotes summation over the space and Dirac in- 
dices, and Tr denotes summation over the Dirac indices 
only. 

The expansion of ln det Mcontains only even powers of 
Y, since the trace of the product of an odd number of y- 
matrices is equal to zero, and 

229 Sov. Phys. JETP 70 (2), February 1990 M. A. Stefanov and M. M. Tsypin 229 



To calculate (In det M ), , we note that, the allowance for 
(10) and (19), 

We obtain 

1 
'In dot M ) .  = ln det K - - Y 2  th2 HTI-z (K-2)xz  

2 
.T 

1 
+O(Y4)=In det K +- NDcY2 th2 H+O(Y4) ,  (21) 

2 

where D = 2d'2 is the number of components of the Dirac 
fermion" and 

Ford  = 4 we have c = 0.6197 ... . 
Thus, we obtain the expression 

W ( h ,  If) =-{In 2  ch H+2kd th2 H+ ( h - H )  th H 

+'/,DcY2 th2 H 

+ O ( Y 4 ) }  +const. (23) 

The mean-field equation now has the form [to within terms 
o( y4) I 

The condition for stability of the solution H = (4)  = 0 has 
the form 

Thus, the curve of the second-order phase transition 
( (4)  = 0- (4)  $0) on the ( Y,k) plane for Y( 1 is de- 
scribed by the equation 

For Y$- 1 we write 

1 In det M = 11, drt ( Y Q ~ , . )  + tr ln( 6%. + - K,.@.) 
Y  

In the first term we use (4, ) D  = 1. Terms with odd powers 
of 1/Y are absent. Taking into account K,, = 0, and also 
(20), we obtain 

1  (In det M),=Nln Y D  - -th2 H ~ r z  (K2 ) ,+O(1 /Y4 ) .  
2 Y2  

X 

(28) 
Using the explicit form of K,, [see ( 16) 1, we find 

whence 

W ( h ,  H) = - { l n  2 ch H+2kd th2 H+ (h-H) th H 

dD + - th' H + o ( I / Y ~ ) }  + const. 
4 Y Z  

(29 

The corresponding condition for stability of the phase with 
(4)  = 0 has, to order O( 1/Y 4),  the form 

whence the equation of the phase-transition line is 

4. CALCULATION OF THE FERMION DETERMINANT IN 
LEADING ORDER IN l / d  

The calculation of the phase-transition lines can be im- 
proved if we bear in mind the following two circumstances. 

First, the stability of the solution (4) = 0 is determined 
by the sign of 

Therefore, to study the stability it is sufficient to calculate 
W(h = 0, H )  to terms of order H *, or, equivalently, to terms 
of order 2, where 

Second, the mean-field method, which is, generally 
speaking, approximate, becomes exact as d-t co . It gives the 
correct answers for all quantities in the leading order of the 
expansion in l/d. If in each order of the expansion in 1/Y we 
retain the leading term in l/d (just as, in the l/Nexpansion, 
in each order of perturbation theory in the coupling constant 
one takes the leading term in l/N), it is possible to sum the 
resulting series: 

1 
( ln  det M),=N ln Y D  +( tr l n ( 6 ,  + K ~ . @ ~ ) )  

H 

To each term in this expansion there corresponds a diagram 
in the form of a closed broken line with vertices at the points 
x,y,,y2 ,..., y, -, . Since Kxy #O only if x and y are nearest 
neighbors, the links of the broken line should join neighbor- 
ing sites. Typical diagrams in order 1/Y are shown in Fig. 1. 
Each lattice site through which the broken line passes an odd 
number of times gives a factor a. Sites through which it 
passes an even number of times give a factor 1. 

It can be seen that various types of diagram contribute 
to the terms of order 2. Each of them appears with a factor 
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a b c d The matrices K- ' are nonlocal, and therefore the diagrams 
do not have such a simple form as in the expansion in 1/Y. 
However, as d +  co the matrix K - ' becomes more and more 
local. Its matrix elements have the form 

" " ~ 1 ~ ~  y, sin p, (C siin pv)-l . v 

FIG. 1. Typical diagrams in order 1/Y6 in the expansion ( 3 3  ). The black 
circles denote unpaired vertices; each of them gives a factor a. The dia- 
grams a and b have order d, diagram c has order a4, and diagram d has 
order 8 .  

equal to the number of ways of placing the diagram on the 
lattice. Diagrams of the type in Fig. la, i.e., all possible "dou- 
bled broken lines" with noncoinciding ends, are especially 
interesting. In leading order in d there are t(2d)n/2N of 
them. It seems highly plausible that all the other diagrams 
giving a contribution proportional to 2 appear with a factor 
with a lower power of d. Indeed, for a fixed n and d%n the 
leading contribution in d, proportional to (2d) "I2 , is ex- 
hausted by the diagrams whose first n/2 steps are in n/2 
different directions. Of these, only doubled broken lines all 
n/2 links of which go in n/2 different directions give a con- 
tribution of order 2. 

In the framework of this assumption it is easy to calcu- 
late the part of (In det M ), proportional to 2. In each or- 
der in 1/Y the leading term in l/d is equal to 

where the factor ( 1/2) " ( - 1 )" /' is the product of the ma- 
trix elements Kxy , and the factor n takes into account the 
different ways of labeling the vertices. Thus, in this approxi- 
mation the contribution to N ' (In det M ), proportional 
to 13 is equal to 

and the equation for the phase-transition line takes the form 

What is the region of applicability of this formula? Of 
course, it agrees with (3 1 ) , but it is clearly not correct for 
small Y. It is reasonable to assume that the region in which it 
is applicable is bounded by the radius of convergence of the 
series, i.e., Y 2  > d /2 (see Fig. 4, curve BB ', below). 

In the region of small Y the quantity (In det M ), can 
be expanded in a series in Y: 

(In det M ) ,  = In det K+(tr In (6,;+YK,,-I@,) >fI 

where 

sin' p.+ipy) . (39) 

If at least one coordinate y, is odd, then G &  ' = 0. If all the 
y, are even, then 

GO,-' = j d a  exp (- $) I-J I,"" ,, ( a / 2 ) ,  
0 Y 

where I, (x)  is a modified Bessel function. Thus, K & ' is 
nonzero only if precisely one coordinate yPo of the pointy is 
odd and the others are even. It is easy to convince oneself 
that, for large d, 

It can be seen that for d - co the matrix element K G  ' 
(where x and y are nearest neighbors) becomes the leading 
one. Calculating it, we obtain 

We adopt the hypothesis that in the calculation of the 
series (37) in leading order in done can neglect the correc- 
tions O( l /d 2, in (42). For example, in order Y2 an exact 
calculation gives [see (21 ) and (22) 1 

(In det M),=const+'/ ,NDcY20",  (43) 

where 

ddp 
- 1 

c = lm(Z sin2 P') 
P 

= j d a  eap ( - a d / 2 )  ( I .  ( a / 2 )  ) 1 = 2 / d + ~ ( ~ / d 2 ) .  (44) 
0 

On the other hand, substituting K - '  = - (2/d)K into 
(37) gives 
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i.e., gives the correct answer in leading order in d. 
The substitution K -  ' = - (2/d)K reduces the series 

(37) to the series (33), if in it we make the replacement 
Y+ d /2 Y. As a result, the equation for the phase-transition 
line takes the form [cf. (36) 1 

The situation with the region of applicability of this formula 
is analogous to the case of large Y: It gives an explicitly in- 
correct result for Y+ a, and so it is logical to assume that it 
is applicable where the series (37) converges, i.e., for 
Y < d /2 (see Fig. 4, curve AA ', below). 

We note that the regions of applicability of the formulas 
(36) and (46) join at Y2 = d /2, where they both give the 
same result2' : 

5. THE FERMION CONDENSATE 

In the preceding section we have studied the phase 
structure of the model (2 ) ,  using as the order parameter the 
vacuum expectation value (4) of the scalar field. This, how- 
ever, does not give information about the properties of the 
fermions in the given theory. In Refs. 15-1 7 it was noted that 
the fermions behave substantially differently for small and 
for large values of Y. Therefore, it is of interest to study 
quantities involving the fermion propagator. For this, we 
introduce into the action (2 )  an extra parameter m (the bare 
mass of the fermion ) : 

= erp ( -SB + ln det B) . i@xu=Kxu+Y~x6,u+rn8,. 

(47) 
The value Z ( m )  can be calculated by the mean-field meth- 
od, as above. Equation ( 17) takes the form 

1 + - (lo det M>.}.  
N 

(48) 

Above, in essence, we calculated (In det M),  to terms 
of order 2, for m = 0. the terms of order am and m2 can be 
calculated in an analogous manner. First we make use of the 
expansion in 1/Y: 

1 
(In clet M),=N In YD+ (tr lo [ 6 ,  + (m6,,+KX,) @.I) 

H 

The contribution of each term of this expansion to the terms 
proportional to m2 can be depicted by diagrams analogous to 
those considered above. The vertices of the closed broken 
line are the points x,y ,,..., y, _,  , and among these are two 
pairs of coinciding points (corresponding to the two terms 
ma, ). Typical diagrams in order 1/Y are shown in Fig. 2. 

As before, we assume that in the calculation of the con- 
tribution of order m2 in leading order in d it is sufficient to 
take into account only diagrams of the "doubled broken 
line" type (Fig. 2a). The contribution of these diagrams in 
order 1 / Y  (here n is even) amounts to 

Summing over all even n, we find that the contribution of 
order m2 to N -  ' (In det fi ), in this approximation is equal 
to 

The contribution of order m a  in the expansion (49) is 
described by the same diagrams as the contribution of order 
m2, but instead of one of the vertices m we have an unpaired 
4, (see Figs. 2a and 2b; these diagrams now arise in order 
1/Y ') . The contribution of diagrams of the "doubled broken 
line" type in order 1/Y" (here n is odd) is equal to 

1 -Dmon(2d) ( n - L ) / Z ( - l )  ( n - 1 ) l Z  - 
nYn ( i ) - I N .  

(52) 

Summing, we obtain the contribution to N -  ' (In det M ), 
of orders ma: 

In the region of small Y we use the expansion of 
(In det M ), in powers of Y. With the same assumptions as 
were made in Sec. 4, we find the contributions top 
N -  ' (In det M ), of order m2 and mcT: 

Combining (511, (53) for Y2>d/2and  (54) for Y2<d/2,  
we have 

FIG. 2. Typical diagrams in order l / Y X  in the expansion (49), giving a 
contribution proportional to m2. The light circles are vertices giving a 
factor m, and the black circles are unpaired vertices giving a factor a. 
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Taking into account that 

we can calculate the fermion condensate (more precisely, 
the lattice fermion propagator at coinciding points) : 

In Ref. 17, the fermion condensate ($:@) (there is no 
summation over x and the Dirac indices a)  was calculated in 
the approximation of nondynamical fermions (the 
quenched approximation) in the model (2) on a 83 X 16 lat- 
tice for k = 0.08. It is easy to convince oneself that in this 
problem neglect of correlations of the field 4 at different 
points in the approximation of a large d leads to the same 
formula (58). 

In the approximation of nondynamical fermions the 
fermion condensate is equal to (the index q denotes 
"quenched") 

where 

If we neglect correlations of the field #,, we obtain 

1 a I 
(@), -<tr M-')H = --<In det a>, 1 ,=, ND dm ND 

where (...), is defined in (8), H is chosen from the condi- 
tion (4) SH = (4)  = a, and we have made use of Eqs. ( 5 3 ) 
and (54). A calculation by the Monte Carlo method for 

FIG. 3. The fermion condensate in the approximation of nondynamical 
fermions. The curve corresponds to formula (61) for a = 0.55, and the 
points are the result of a calculation by the Monte Carlo method" for 
k = 0.08 on an g3X 16 lattice. 

k = 0.08 on an 8 3 ~  16 lattice gives (q5),H-0.55. Substitut- 
ing a = 0.55 into (61), we obtain the curve depicted in Fig. 
3. 

It can be seen that for Y <  (d  /2) 2 1.4 the formula is 
in very good agreement with the results obtained by the 
Monte Carlo method. For Y <  1.4 the agreement becomes 
substantially worse. This happens, in our opinion, for the 
following two reasons. First, in this region the applicability 
of the approximations used the calculation of (In det M ), 
can become worse. Second, the fermions become light, and 
in a Monte Carlo calculation on a 83 X 16 lattice strong fi- 
nite-size effects can arise. 

6. THE TWO DIFFERENT PHASES WITH (4) =O 

We return to our model. We note that 

The fact that, according to (55), in the region a = 0 this 
four-fermion correlator changes discontinuously in passing 
through the boundary Y = ( d  /2) 'I2 implies a first-order 
phase transition at Y = ( d  /2)'12. [In the calculation of 
(62) it is necessary to take into account the dependence of H 
on m by virtue of the relation 

dW(h=O, H ,  m)ldH=O. 

One adds to ( 55) the term 

which is continuous at Y = ( d  /2) 'I2. It is easy to see that 
this term corresponds to the contribution to the correlator 
(62) from an intermediate state containing one scalar 4.1 
Thus, the region a = 0 is not just a single phase in which 
there is no spontaneous symmetry breaking, but is divided 
into two regions, characterized by different signs of 
a W(h = 0,H,m)/dm2 at m = 0. 

The calculation d W/am2 in the theory of massive free 
fermions (i.e., for Y = 0)  in leading order in d gives 

It can be seen that a positive value of this quantity corre- 
sponds to a very large fermion mass m > ( d  /2) i.e., m is 
greater than the inverse lattice constant. 

Thus, for Y < d /2 and the theory contains the field 4 
and massless fermions, while for Y > d /2 it contains the 
field 4 and very heavy fermions, i.e., the fermions cease to 
exist as long-wavelength degrees of freedom. 

We have calculated the quantity (55) for a = 0. Since it 
has a continuous dependence on a, the phase-transition line 
on which it experiences a discontinuity extends a certain dis- 
tance into the region of spontaneously broken symmetry, 
where af 0 holds (see Fig. 4).  This agrees with the calcula- 
tions in the approximation of nondynamical fermions in Ref. 
17, in which, in the region a = 0.4-0.8, a discontinuous in- 
crease of the fermion masses was observed at Y r  1.4. 
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FIG. 4. Schematic illustration of the phase diagram of the model ( 2 ) .  The 
curves for (D = 4 )  AA ', BB ', CC', and EE' are second-order transition 
lines, described by Eqs. (46), (36),  and (66). The thick vertical line is a 
first-order phase transition; we do not know the exact position of the point 
G. The ferromagnetic phase is indicated byJ; the paramagnetic phases byp 
andp', and the antiferromagnetic phase by af: 

7. THE ANTIFERROMAGNETIC PHASE 

Up to now, we have considered the phase transition 
from paramagnet ( (4)  = 0)  to ferromagnet ( (4)  #O) . Fer- 
romagnetic order corresponds to the configuration 4, = 1. 
In the Ising model (3) ,  however, for negative values of k 
antiferromagnetic order becomes favored: 4, = c,, where 

The corresponding phase transition is easy to study if in the 
original theory we make the replacement 

It is easy to see that the action (3)  has the same form in the 
new variables. Ferromagnetic order 4, = 1 in the new vari- 
ables corresponding to antiferromagnetic order in the origi- 
nal variables. Thus, in the Ising model a paramagnetic-anti- 
ferromagnetic phase transition arises at k = - kc .  

On the phase diagram of the model (2)  in the (Y,k) 
plane the phase transition under consideration should occur 
on certain lines, starting at the points (0, - kc ) and ( CU,  

- kc ). These lines can be calculated by means of our ap- 
proximations. 

It is easily verified that the action of the model (2) does 
not change its form if in it we make the replacements 

k+-k, (P,-tx'P,, 
- 

+ ~ X P  (it, 2 )%. $. + erp  ( i ~ l ~ ) k ,  (65) 

8. CONCLUSION 

We have investigated the very simple lattice model (2)  
with scalar fields and fermion fields in Euclidean space by 
the mean-field method. To calculate the fermion determi- 
nant we used the fact that in this approximation correlations 
of the scalar field at different lattice sites are absent, and 
expanded in l/d, where d is the dimensionality of space. 

By investigating the stability of the symmetric phase 
( (4, ) = 0) we obtained an approximate phase diagram for 
the model (Fig. 4).  We found a ferromagnetic phase 
( (4, ) f 0), lying above the lines AA ' and BB ', an antiferro- 
magnetic phase, lying below the lines CC ' and EE ', and two 
paramagnetic ( (4, ) = 0)  phases p and p', differing in that 
in phase p massless fermions are present while in phase p' 
they are not. The latter two phases are separated by a first- 
order phase transition, which occurs at Y = (d  /2) and is 
characterized by a discontinuity of the quantity (62). The 
line of this phase transition can extend a certain distance into 
the region of the ferromagnetic phase. The presence of this 
transition is consistent with the results of calculations by the 
Monte Carlo method in the approximation of nondynamical 
fermions.I5-'' Inasmuch as we studied only the local stabil- 
ity of the symmetric phase, it is possible, in principle, that 
other first-order phase-transition lines are present on the 
phase diagram. 

Using our approximate methods, we obtained a simple 
formula (58) for the fermion condensate; this formula is in 
good agreement with the results of calculations by the 
Monte Carlo method" (see Fig. 3 ) . 

The phase diagram of Fig. 4 was obtained to lowest or- 
der in the expansion of l/d. Ford = 4 certain differences can 
be observed. For example, the points A ' and B ' may be non- 
coincident, with slightly different ordinates. it is unlikely . . 
that the lines CC ' and EE ' pass into the region k -+ - co ; lt is 
more likely that they lie against the line YEZ ( d  /2) ' I2 - 1.4. 

Our calculations show that the most interesting phe- 
nomena in lattice Higgs-fermion theories occur in the region 
k <O, and, therefore, it would be especially interesting to 
investigate this region by the Monte Carlo method. 

It would also be interesting to extend the mean-field 
method to models with A # cu , to more-realistic many-com- 
ponent theories, to models with Wilson fermions, etc. Our 
preliminary calculations in a model with a two-component 
field 4 give good agreement with the phase-transition lines 
found by Stephenson and thorn tor^'^^'^ by the Monte Carlo 
method. 

We are grateful to I. V. Andreev, S. M. Apenko, and M. 
B. Voloshin, who drew our attention to this problem, and to 
Ya. I. Kogan and V. A. Fa'inberg for useful discussions. 

APPENDIX 

We can calculate det M for the configuration 

1, xf xo, 
%={ 

-1, x=x,, where xo=(O,O ,..., 0). . ( A l )  

The Fourier transform of the matrix M( 16) for this configu- 
ration has the form 

Now, in order to obtain the equation of the paramagnet- 
antiferromagnet phase-transition line in our approximations 
it is sufficient to make the replacements (65) in Eqs. (36) 
and (46), as a result of which we obtain 

(see Fig. 4, curves CC ' and EE ') . 
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It is convenient to normalize det Mby the determinant of the 
matrix Mo corresponding to the configuration 4, = 1. It is 
obvious that 

det Mldet Mo=det M /de t  ~ ~ = e x p  tr In M hio-' ,  ( A 3 )  

where Go (the Fourier transform of M o )  coincides with the 
first t 2 ~  in the right-hand side of ( A 2 ) .  The expression for 
tr In MM, ' is easily calculated by expanding it in a series. 
As a result, we obtain 

det M=det M o [ I - 2 Y 2 F ( Y )  I D ,  (-44) 

where, for N-+ co , 

For large d,  we have 

d 
F ( Y ) =  (-Z+ r)-', 

and therefore 

det M z  (de t  M,)  [ ( d - 2 Y Z )  D / ( d + 2 Y 2 )  ( A 7 1  

vanishe. uhen Y 2  = d /2. Ford  = 4 we find that det M = 0 
for Y =  1.3647 ... . 

' I  The fermion part of the action (2) can be diagonglized in the Dirac 
indices by a unitary transformation of the fields + and (Ref. 22). 

The action then decomposes into a sum of D = 2d'2 terms, each of 
which the action of a Kogut-Susskind (KS) fermion. The results of our 
paper can be generalized trivially to the theory containing an arbitrary 
(even) number D of KS fermions. 

'I Thevalue Y2 = d /2isalsoremarkablein that, forthisvalue, thefermion 
determinant vanishes for certain configurations of the field 4 (see the 
Appendix). It is evident that the poor convergence of the algorithms for 
inverting the matrix M for d = 4 and 1.2 < Y< 1.6 (Refs. 16, 17) is 
connected with this. 
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