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In this paper, we investigate the quantum analog of Lorentz scattering from the "magnetic" field 
of a local cosmic string, a phenomenon manifested by scattering asymmetry. For low-momentum 
incident particles (in the rest frame of the string), Lorentz scattering looks like a soft asymmetry 
in the cross section with a maximum near the classical value. The effect also occurs in the presence 
of a Bohm-Aharonov amplitude. A caustic appears near the classical scattering direction for 
high-momentum incident particles. We close with a discussion of possible physical effects. 

1. INTRODUCTION 

Cosmic strings, whose existence was first proposed by 
Zel'dovich' and Kibble,2 have been employed in a variety of 
cosmological structures (e.g., see Ref. 3). In the present pa- 
per, we discuss certain novel effects that occur when charged 
particles interact with a local (gauge) cosmic string. This 
sort of interaction has been examined prev iou~ly~,~  in papers 
that treated the scattering of fermions carrying charge e by a 
string with flux 2.rr/eO for integer values of a = e/eo. A calcu- 
lation of the scattering amplitude for a charged particle with 
momentum k g m ,  where l/m is the characteristic trans- 
verse size of the string, can be found in Ref. 4. For k s m ,  
partial amplitudes have only been found for values of the 
orbital momentum jg k /m ,  while the dominant terms in the 
total scattering amplitude are those with jof order k /m. The 
results reported by de Vega4 for low-energy scattering were 
subsequently partially reproduced by E ~ e r e t t , ~  but with cer- 
tain more general assumptions about the form of the interac- 
tion between the fermion and the string. Furthermore, the 
latter paper treated the dynamics of a string in plasma or 
ionized gas, taking into account bremsstrahlung due to the 
interaction of charged particles with the string. In Ref. 6, 
Alford and Wilczek noted that there exist grand unified the- 
ories in which a = e/eo is not necessarily an integer; it is then 
necessary to make allowance for Bohm-Aharonov scatter- 
i r ~ g , ~  which can turn out to be the dominant effect. 

In the present paper, we wish to study a certain effect 
which, as far as we are aware, has never been discussed in the 
literature. We have in mind the quantum analog of Lorentz 
scattering in the "magnetic" field of a string (note that local 
cosmic strings are basically analogous to Abrikosov fila- 
ments in type I1 superconductors8; in the context of field 
theory, they first appeared in the paper by Nielsen and Ole- 
sen,9 who generalized them to the non-Abelian case), which 
is manifested by scattering asymmetry. In a quasineutral 
plasma, this results in the formation of diametrically op- 
posed currents carried by oppositely-charged particles. For- 
mally, we have examined the scattering of electrically 
charged particles in a magnetic field, but actual cosmic 
strings (e.g., see Refs. 3,5,6) carry a current associated with 
the nonelectromagnetic spontaneously broken gauge group 
G, which does not pose a problem when the particles consid- 
ered are nontrivially transformed by the spontaneously 
broken generators of G. In this paper, we shall not discuss 
specific string models, and shall henceforth simply refer to 
the magnetic field. 

In Sec. 2, we determine the scattering amplitude at low 
energies ( k g  m)  and for arbitrary values of a = e/eo. Be- 
sides deriving the asymmetric term (sin 9, where 9 is the 
scattering angle) responsible for Lorentz scattering-which 
thus far has not appeared in the literature-we also take 
account in our complete equation of Bohm-Aharonov scat- 
tering for nonintegral a ,  which was not done in Refs. 4 and 5. 

In Sec. 3, the scattering amplitude is calculated at large 
energies in the rest frame of the string ( k s m ) .  It is then not 
legitimate to use the Born approximation-the eikonal ap- 
proximation must be used instead. Diffraction around the 
string leads to a swallowtail caustic,I0 and the branch of the 
caustic with the maximum amplitude coincides with the 
classical Lorentz-scattering trajectory. For large a (ion 
scattering?), diffraction peaks show up within the caustic. 

Section 4 deals with physical applications of the Lor- 
entz scattering at hand. We consider several examples for 
which either the slow- or fast-scattering approximations are 
applicable. We discuss charge-separation effects related to 
string motion in plasma, and in particular the interesting 
possibility of matter-antimatter separation in an AlfvCn 
wind as a hypothetical alternative to the standard mecha- 
nism for generating the baryon asymmetry of the uni- 

We also discuss the vibration of a loop-like string 
in the presence of oscillations in plasma of particles having 
different charge-to-mass ratios. We show that the presence 
of caustics can lead to interesting collective phenomena with 
strong density fluctuations. At the conclusion of Sec. 4, we 
discuss the spontaneous generation of angular momentum 
perpendicular to the plane of a string as it contracts in the 
vacuum in a theory with parity violation. 

2. SLOW-PARTICLE SCATTERING AMPLITUDE 

To obtain the scattering amplitude, we solve the Dirac 
equation in the field of a string assuming minimal coupling, 

For stationary solutions, 
a$= (ncr+pia3+MP) g, 

n=p,-eA. 

The momentum component along the string (directed along 
the z axis) can be eliminated by a boost, whereupon the sin- 
gle equation for the bispinor 
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leads to two independent equations in the spinors 

Thus, the three-dimensional problem can be reduced to 
two dimensions. The first pair of equations differs from the 
second only in the sign of the spin-magnetic coupling, and 
for the minimal coupling case, states of opposite spin differ 
solely by a shift in the numbering of the levels arising from 
the super-symmetry of the problem.I3 We ignore effects of 
any anomalous magnetic moment, which breaks the super- 
symmetry and gives rise to small changes in that part of the 
scattering amplitude symmetric under the replacement 
19- - 0 for particles with spin oriented either parallel or 
antiparallel to the z axis (which is directed along the string). 
From here on, we study only the first pair of equations ( 3 ) .  

Solutions are classified according to eigenvalues of the 
angular momentum operator j, 

j = - id /do + uJ2, 

where a, is a Pauli spin matrix. The angular momentum 
eigenfunctions take the form 

Some straightforward calculations yield the equations for& 
and g, : 

(5) ,A0(r )  = (1  -Z(r)) /e , r=a(r) /e , r .  Express- 
ing g in terms off, we obtain 

( j - a a )  ( j -aa-I )  
j /  + [kz - + e x ]  fj=o. 

r2 
(6)  

The general solution of Eq. ( 6 )  contains both incoming 
and outgoing waves in some ratio fixed by the requirement of 
regular behavior at r-0. For slow-particle scattering, there 
is also a range of distances r for which l/m < r g  l/k. Within 
this range of r, one can ignore both the magnetic field term 
and the r-dependence of as(r) in Eq. (6).  The only thing that 
remains is the long-range Bohm-Aharonov potential, which 
shifts the angular momentum, j-j - a, so that solutions 
may be expressed in terms of the Bessel functions J of order 
j - a - 1/2. At the same time, for r <  l/k, one can construct 
a solution by iterating with respect to k ', starting with the 
exact solution for k = 0. Over the indicated range 
( l/m < r <  l/k),  the asymptotic behavior of these two solu- 
tions can be matched. This was the approach taken by de 
Vega4 for integer a. Following his method, we obtain solu- 
tions in the region of interest in the form 

J- , j - , - l l , ,  ( k r )  +2aMj 

where Lj and M, are defined by the integrals 

Here 

Making use of Eqs. (4) ,  ( 7 ) ,  and (8),  we obtain the 
total wave function for the upper component of the spinor g, 
for r )  1/m (the lower component is uniquely related to the 
upper, and we omit it here) : 

q = exp (ij0-iW2) Aj  
j>o 

x J - ( j - a - ~ / ~ ~  ( k r )  ] + r( exp ( i j 0 - i 0 / 2 ) ~ ~ [ I - , ~ - . - , ~ ~ ,  ( k r )  
j < O  

The coefficients A and B may be determined from the conti- 
nuity conditions ( 10) at large r using a wave function of the 
form 

i e i k r  ,-it312 f 
exp (- ikx+iae)  + ~ i n n a + ~ e ' ~ '  (11) 

(2nikr) '" cos 0 /2  

which consists of the incident plane wave and a scattered 
wave (the Bohm-Aharonov contribution to the scattering 
amplitude is given explicitly). Equation ( 10) contains terms 
of different order in the small parameter k /m. We can also 
expand the coefficients A,, Bj,  A jO', and B,!" in k /m; these 
are determined by matching the leading terms in Eq. ( 10) 
with the plane wave and the Bohm-Aharonov scattered 
wave in Eq. ( 11 ). A recursion relation between A,!"' and 
Bj"' can then be obtained by requiring, at each iteration, 
that there be no incoming waves. Note that the second term 
in the sum over positive momenta is reduced by powers of 
k /m only for j > a - 1/2, while for j = [a] + 1/2 the sup- 
pression is weaker than k '. For the latter waves, afinite num- 
ber of iterations is never sufficient; for terms that die out 
more rapidly than k ', on the other hand, just one iteration is 
enough. The added precision of a second iteration would not 
be justified, since in deriving Eq. ( l o )  from (4),  (7),  and 
(8),  we have already neglected terms of order k 2. 

We now examine the case 0 <a< 1. The result for arbi- 
trary a will be presented at the end of this section. 

Using the relation (see Ref. 7) 
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z erp ( - i d 2  (j-a) +in /4)  J ~ - , - , ~ ,  ( k r )  exp (ij6-i0/2) 

+ z e x p  ( i n / 2 ( i - a )  - in /4)  J - ( ~ - ~ - $ ~ ~ )  ( k r )  exp (ij0-iW2) 

e - i 8 / 2  

-. exp (- ikx+ia0)  + i  sin nu,  
(2nikr) ''I cos 0 / 2  

(12) 

we obtain from ( 10) 
AjcO)=esp ( - i n  ( j - 2 )  /2+in /4) ,  
B,'O'=esp ( i n  ( j - a ) / 2 - i n / 4 ) ,  

and for the recursion relations, we obtain 

x exp ( in  ( j -a - ' l z )  )B,'"-l'. 

Some simple manipulations (for j = 1/2, we sum a geomet- 
ric series) yield the scattering amplitude 

n exp (ij0-i0/2+ian) 
x- r ( j - ~ + ~ / ~ )  r ( j + l / z - ~ )  

~ ( a - j ) + i  n  exp (ij0-i0/2-ian) 
+ Z ~ U M ~ ( + )  -)-- r (a-j+v2) r ( ~ - j + l / ~ )  

1<0 

(15) 

The function f ,,, is of the form 

F(n-1) eian sin n a  

where we have made the substitution 8-0 + T, so that now, 
in contrast to Eq. ( 1 1 ) , 8  is the scattering angle. As a -, 1, the 
expression for f ,,, becomes 

where y is Euler's constant. 
At a = 1, amplitudes with j not equal to 1/2 agree with 

the amplitudes in Ref. 4 (up to an overall sign on the S ma- 
trix); for j  = 1/2, our result ( 17) differs from de Vega's Eq. 
(3.20) by the term ir/2 in the denominator. The importance 
of this term lies not in the fact that it renormalizes the loga- 
rithmic constant, but that by virtue of its being imaginary, it 
gives rise to an asymmetry in the cross section under the 

transformation 8- - 8. This same asymmetry is responsi- 
ble for Lorentz scattering. 

Taking terms of order k into account, the cross section 
is 

X' [I-2Lsl,kZ In ( k / A )  cos 0-nLhk2 sin 01, (18) 

" l u m r  I 
A-2m e x p { - y - 2 1 , h 7  x g ?  a 

The angular dependence arises from interference between 
the S and P waves ( j = 1/2, j = 3/2), where the term in 
sin 8 results solely from the fact that the amplitude ( 17) has 
an imaginary part (due to the term i ~ / 2  in the denomina- 
tor). The sign of the contribution to ( 18) that is odd in 8 
obviously agrees with the sign of the Lorentz force. 

For a < 1, the Bohm-Aharonov terms must also be tak- 
en into consideration; in return, one can ignore the P wave, 
which falls off faster than k *. The corresponding cross sec- 
tion takes the form 

r ( ~ - i )  . 
X cos n u  sinz 6 / 2  r ( I - U )  

2 ( .  -a) 

sin na sin 0+ 0 ( k 4 ( ' - " ) ) ) .  

We see that the asymmetry has the same sign, but due to the 
Bohm-Aharonov terms, forward scattering makes the domi- 
nant contribution to the cross section. 

Finally, let us consider essentially arbitrary positive 
values of a. Let a lie in the range (n,n + 1 ) . The present case 
does not reduce to the previous shift of momentumj by n. We 
see from the discussion preceding Eq. ( 11) that partial 
waves with momenta in the range from 1/2 to n - 1/2 must 
be iterated in the same was as the partial wave with momen- 
tum n + 1/2 (or 1/2 in the case n = 0). Formally summing 
the series over negative powers of k /m, we obtain for these 
waves an additional contribution to the amplitude 

i 2c, -- sin n u  exp ( i j0 - i0 /2) ,  
(2x ik)  '" I-cj 

where 

with c, $1 forj < n. Summing the dominant terms in (20) for 
jfrom 1/2 to n - 1/2, we obtain the correction to the Bohm- 
Aharonov amplitude, so that the resulting amplitude differs 
from the usual one by a phase factor; it takes the form 

- 1 exp (-i0/2+in0) 
sin na 

(2nik)  '" sin 8/2 
(21) 

[compared with ( 12) there has been a shift 8-+ 8 + T I .  
Note that when it undergoes interference with the am- 

plitudes (20), this phase factor is cancelled by the corre- 
sponding angular dependence of (20). The same can also be 
said about interference with the unscattered wave. To lead- 
ing order in k, and taking into account the interference of the 
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amplitude (21 ) with the wave (20) having j = n + 1/2, the 
cross section is 

I'(u-n- 1) 
x cos n (a-n) sin2 0/2+ 

I ' (n f1 -a )  
Z(a-n) I' (a-n-4) 

+ 4 a ~ n + 1 h ( S )  r(n+l-a) sin n (a-n) sin €I ). 

As-a tends to n + 1, the Bohm-Aharonov amplitude vanish- 
es, and it then becomes necessary to take account of waves 
with momentum n - 1/2 or n + 3/2, which are of order k '. 
In that event, the cross section will have the form 

do 
-= 

n 
d0 2k (In2 ( k l A )  +nV4) 

1 k 
2aLn+h + -) k3 ln - cos 0 

2aLn-,/, A 

n 1 
- - (2a~.+% - -) ir2 sin 01. 

2 2aLn-11, 

Notice that the modified amplitude (21 ) can be derived 
from a generalization of Eq. ( 12), 

exp(in (n+u)/2) J-,.,., ( k r )  eir&e 
n<O 

e i k v  e-iO/2-irn(e-n) 
,e-lkx-iae -i ------- sin na.  

(2nikr)'" cos 0/2 (24) 

3. FAST-PARTICLE SCATTERING AMPLITUDE (k/mg 1) 

As we did for slow-particle scattering, we shall write the 
squared equation for the upper component of the spinor: 

It makes no sense to use the Born approximation to find the 
fast-particle scattering amplitude, since it is appropriate 
only for partial waves whose momentum is much less than 
k /m, while the important momenta here are of order k /m. 
Instead, we make use of the eikonal approximation by as- 
suming a wave function of the form p = exp{iS). We then 
obtain 

Representing S as a series in negative powers of k, 
s = S ' O '  + S'" , 

we obtain the equations for S ' O '  and S'" : 
k2- (VS(O)-eA) 2=0, 

2 (V S(O)-eA) VS(")-iV2S'")-e%=0. (27) 
The solution of the first of these must be of the form 

which then yields the equation for S'" : 

where n is the vector field of unit normals to the wavefront. 
From (28), we obviously have 

krot n=-eE1, ]HI =a. 
Taking advantage of the vector identity [n,rot n] 
+ (nV ) n = 4 grad n2, we obtain 

We next introduce new variables (1,t) such that the tan- 
gent vectors to the curves of constant t (rays) coincide with 
n: 

ax (1,  t)/al=n,, ay (1 ,  t)/d1=n2, 
x(l=-m, t )  =-m, y(Z=-m, t)=t. (31) 

In these new coordinates, Eq. (30) takes the form 

We proceed to solve this system to leading order in l/k. 
Then n, = 1 + O(l /k2) ,  n2 = 1 + O(l/k) .  Accordingly, 

1 

t 1 ,  ~ ( 1 ,  t )  a t  + j dl1 n2(lf, t ) .  
- .% 

Since any rotation of n takes place within a narrow zone near 
the center of the string (where the magnetic field is located), 
while y (1,t ) begins to deviate from t only after leaving that 
region, to leading order in Eq. (32) it is legitimate to replace 
Z(x(1 , t ) ;  y(l , t)) by R(x ( l , t ) , t ) .  Keeping in mind that 
x(l,t) =I, we find 

I 

e 
n , ( l , t ) a  -- J % ( x , t ) d x + ~ ( l / k ~ ; ,  (33) 

k -m 

Turning to Eq. (29), the right-hand side of which contains 
the divergence of n, we use (33 ) and (34) to find that 

where 
1 1 

e d%(x,  t )  " -1-1- J -- e a % ( ~ ,  t )  
d l + -  J x 

k 
dx. 

d t k - m  
dt - = at 

whereupon it is clear that on the curves x(l( t ) , t )  and 
y(l(t) , t) ,  with I ( t )  given by 

1 I 

the right-hand side of Eq. (29) diverges, which indicates the 
presence of a caustic, near which the eikonal (geometrical 
optics) approximation ceases to h ~ l d . ' ~ , ' ~  It can also be seen 
from Eq. (35) that we have I- k /m2. Then since the magnet- 
ic field R ( x ,  y )  is confined to distances of order l/m, and 
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furthermore since Z ( x ,  y )  is an even function of x, the 
equation for I (  t )  simplifies considerably: 

l ( t ) = h . l q ' ( t ) ,  

Note that q( t)  is the classical momentum transfer (for fast 
particles). The parametric equation of the caustic in vari- 
ables x and y is 

x ( t )  = k l q 1 ( t ) ,  
Y ( t )  = t - q ( t ) l q f  ( t ) .  (37) 

As t-0, qf(t)+O, q(t)--q,,,, andy(t) /x( t)-  - q,,,/k. 
As t- - w ( l ( t )  exists only for t<O), q( t)  -exp{ - mt). 
Accordingly, x (  t)  - expimt) and y - t. The caustic that ap- 
pears is thus a swallowtail catastrophe (see Ref. 10 and Fig. 
1).  There should be a luminous region within this type of 
caustic; it attains its maximum intensity, as we shall show 
below, at the lower limit of the caustic. 

The scattering amplitudes are calculated in two stages. 
First, we find the wave function in the region 
l/m 4 x 4  k /m2, solving the eikonal equation. In order to 
find the wave function in the region of interest ( x b  k/m2), 
we make use of Huygen's principle,14 having first carried out 
a gauge transformation to eliminate the Bohm-Aharonov 
potential from the region of positive x. We then have for the 
wave function 

where df is the integration measure along the wave front, 
qCf), is the wave function on the front, regarded as the 
source of secondary waves in the Huygens principle, and 
RCf) is the distance from a point on the front to the point of 
observation. Substituting the gauge-transformed function 

and expressing R ( f) in terms of the ratio x/y (forward scat- 
tering is significant), we obtain 

k '" 
T ( X ,  Y ) =  [=] exp ( ikx+iky2 /2x)  

X J ds erp {-ik0s+iks2/2x- 
- m  

+is(" ( f )  - i d  ( f )  - i kx! ) .  (38) 

From Eq. (28) for S ' O )  and the asymptotic behavior of 
Sasx -  - W ,  

FIG. 1 .  The solid curve shows the location of the caustic; the dashed curve 
indicates the direction of classical scattering with maximum momentum 
transfer. 

we find for x )  l/m, neglecting exponentially small correc- 
tions like exp( - mx), 

Substituting this expression into (38), we obtain the wave 
function in the scattering region: 

9 ( x ,  y )  = [& ] exP { ikx+iky2/2x)  

x 7 ds eap{ikOs+iks2/2x-i j ( t )  dt  } (39) 

wher;J/x is the scattering anile. Calculating the value of 
(39) by the method of steepest descent, we obtain the condi- 
tion for an extremum in s, 

If the scattering angle is positive, then s has but one extre- 
mum, of order y = Ox, and then q(s) is of order exp{ - my) 
( 1. This extremum corresponds to the unscattered wave in 
the upper half-plane. In general, for a negative scattering 
angle, there are three extrema, with one also corresponding 
to the unscattered wave (swill then be of order y, y < O), and 
the other two being solutions of the equation 

[there are two solutions because q(s) is even], with s<y. 
These two solutions give rise to the scattered wave, and exist 
only in the range of scattering angles from 0 to - q,,, /k. In 
other words, in the fast-particle approximation, the maxi- 
mum scattering angle is of order m/k< 1. The latter is the 
same as the angle defined by the asymptote of the caustic 
equation, and it is also the maximum angle in classical scat- 
tering. Outside this range, solutions of the equation for the 
extremum lie in the complex plane, leading to exponential 
damping of the scattered wave (shadow region). Below we 
will discuss only the scattered wave. 

Calculating the Gaussian approximation to Eq. (39) in 
the scattering region, we obtain diffraction peaks for the 
scattered wave at 

where s(9) is the positive root of the equation for the extre- 
mum, 

0 

= P for S, 1/m. This is a valid equation when 

a condition satisfied for large a and solutions not too close to 
the caustic. The caustics in this approach are the curves 
which (40) approaches at infinity (q' - 0), the Gaussian ap- 
proximation then being inapplicable. Near the caustic, the 
Airy approximation  hold^.'^,'^ The amplitude at the (low- 
er) caustic is given by 
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where + ( x )  is the Airy function, +(0) = 0.629, ..., and for 
a, 1 the correction goes as a - 2'3 . 

If it is assumed that the mass of the Higgs field forming 
the cladding of the string is much greater than that of the 
vector field m, then the region over which the magnetic field 
falls off is much larger than that cladding. In that region, the 
magnetic field is 

and 

Expanding (39) in powers ofq, one can obtain the scattering 
amplitude explicitly in series form. For n- = 1, in which case 
there is no Bohm-Aharonov scattering, 

The term linear in the angle is responsible for the asymmetry 
of interest. 

From (42), the optical theorem yields the total cross 
section, which in the present case takes the field 

a = (8,rr/k) "21m fe -''"'4. 

Straightforward calculation with (42) gives the forward- 
scattering amplitude: 

This cross section falls off with increasing k, like the Lorentz 
force, leading to particle scattering which itself is propor- 
tional to the velocity of the incoming particle. Note that for 
scattering from the usual short-range potential, the cross 
section would be down by a factor l/kn . 

Equation (43 ) is consistent with the estimated ampli- 
tude of the cross section at the caustic (41), assuming that 
all scatter%g takes place at angles between 0 and Om,, . 

4. PHYSICAL EFFECTS 

We now discuss several effects for which angular asym- 
metry can turn out to be significant in the scattering of 
charged particles by a string moving through a plasma or 
ionized gas. In the rest frame of the string we have some 
incident particle flux scattered by the string. 

The fast-scattering case is applicable to particles that 
are heavy enough-those whose mass M satisfies the condi- 
tion 

As we have shown in Sec. 3, this type of scattering in the rest 
frame of the string engenders a caustic whose focus is at a 
distance R = k /m2 from the center of the string, at an angle 
of order m/k from the direction of motion of the incident 
particle. Interference between the scattered and unscattered 
waves can be neglected at distances greater than R. The flux 
density at distance r' from the string then takes the form 

wherei1,i ' are the unit vectors in the rest frame of the string. 
The density is determined by the ratio of the absolute value 
of the flux density to the velocity 

n1+6n'=n'(I + u c o s  r' 0') .  ( 44b 

where n' is the unperturbed gas density and 8 ' is the scatter- 
ing angle, both taken in the rest frame of the string. A Lor- 
entz transformation is required in order to go over into the 
laboratory coordinate system. The density and flur 'hen 
transform as a four-vector, and from (44) we have 

If I "  n+(n=n( 1 + -om 8') , (45 1 

where n is the unperturbed density in the laboratory frame, 
while r' and 6' ', which are defined in the rest frame of the 
string, are related to the lab coordinates rand 8 by 

tg 0=y tg Of ,  r sin 0=r' sin 8' 

Note that if in the rest frame of the string the caustic 
coincided with the direction of motion of the particles, the 
latter should now have a velocity component in the direction 
of motion of the string and should cross the caustic (see Fig. 
2) .  If the string is moving, this density nonuniformity ex- 
tends behind it. The motion of this density inhomogeneity is 
a typical collective effect (propagation of the density in- 
homogeneity is not accompanied by motion of the scattered 
particles in the same direction). For a string moving in plas- 
ma, twc ~ c h  nonuniformities can arise, symmetrically dis- 
posed . . ~ u t  the string's plane of motion. This effect occurs 
both for motion of a planar segment of a string and for an 
oscillating loop. In the latter case, (45) may be generalized 
in a natural way: 

where L is the length of the string. 
Another interesting effect we wish to discuss here is the 

charge separation that takes place when a string moves 
through a plasma. The effect shows up for both fast and slow 
scattering, i.e., the mass of the plasma particles is immater- 
ial. For the slow-scattering case with a = 1, the cross section 
for particles of one sign is given by Eq. ( 18), and the charge 
excess is determined by twice the asymmetric term 

dAo -=- n:kLH 
sin 0. 

dB InZ ( k / A )  +n2/4 
Multiplying (47) by the flux n V, where n is the plasma den- 
sity and V is the string velocity in the laboratory framp we 
obtain the charge excess accumulated on the upper half- 
plane per unit string length per unit time: 

FIG. 2. The dashed line indicates the location of the lower branch of the 
caustic in the lab frame; arrows indicate the direction of particle motion at 
the caustic. 
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The cross section has been calculated in the rest frame of the 
string, but for slow scattering, relativistic corrections are 
negligible, and the total excess charge does not depend on 
the reference frame. As for the angular distribution and ve- 
locities of the particles, we have 

0=0'/2, V=2 V' cos 8'12. 

where the primed variables are measured in the rest frame, 
and the unprimed variables are measured in the laboratory 
frame. 

For Bohm-Aharonov scattering it is necessary to make 
use of Eq. (19); instead of (48), we then obtain 
d ( N + - N - )  , - - 4a sin3 na ($)21'-a' r (u - I )  

L~I. nV.(49) 
dt  nk sin2 0 / 2  l'(1-a) 

Here, in passing to the laboratory frame, small-angle scatter- 
ing becomes scattering at 90". 

In the fast-scattering case, the total charge excess per 
unit string length per unit time in the laboratory frame of 
reference [see (43 ) 1 

This charge distribution can lead to the generation of 
baryon asymmetry, for example when a string passes 
through an electron-quark plasma. The magnitude of the 
baryon charge excess generated by the string over its entire 
history is inversely proportional to the distance from the 
horizon to the  lane of motion of the string. 

lar to the plane of confinement. This effect is associated with 
the creation of pairs accelerated by a moving string. In a 
theory with parity violation (left-handed currents), newly 
created pairs carry unit angular momentum; pairs can only 
have zero momentum when the chirality of a massive fer- 
mion changes (as in the decay15 T-pv) ,  which provides 
additional suppression M /E ,  where E is the energy of the 
pair. A massless particle (neutrino?) always conveys unit 
angular momentum. Because of the charge separation in- 
duced by a magnetic field, strings are preferentially created 
with a certain projection of their angular momentum on the 
axis perpendicular to the plane of the confined loop. Among 
the possible manifestations of this phenomenon might be the 
information of a Kerr black hole when a loop disappears 
beyond the horizon. Note that in that event we are dealing 
not with a point singularity but a loop singularity," a more 
natural one for a string, as opposed to a Schwarzschild point 
singularity, which would be quite natural for particles. 

As the present paper went to press, the authors learned 
of a preprint17 in which the modified Bohm-Aharonov am- 
plitude ( 2  1 ) was derived for a > 1. 
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Finally, we note that in odd-P theories, a confined loop 
in vacuum will acquire an angular momentum perpendicu- Translated by Marc Damashek 
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