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The changes of the electric-resistance curve R ( T) produced in a metastable Zn-Sb alloy sample 
that is gradually annealed into an amorphous state has scaling properties. The residual (R,) and 
temperature dependent (R, 1 parts of the resistance are connected by the power law 
R, a (R0)0.75, while the dependence ofR , on Tis described by a universal function in a wide range 
of R,. A fractal branched model of the structure of the amorphous phase is constructed on the 
basis of the fact thatthe amorphization is accompanied by an increase of the specific volume. It is 
shown that the conductivity of an inhomogeneous sample containing a similar fractal system of 
insulating partitions can be reduced to the conductivity of a channel along the trajectory of a 
particle executing Brownian motion, i.e., along a diffusion trajectory. The foregoing relation 
between R, and R, ( T )  can be explained within the framework of this model with allowance for 
the classical size effect. The high-temperature deviations from the universal R , ( T )  dependence 
are due to the finite conductivity of the amorphous phase. 

1. INTRODUCTION 

A metal-insulator transition accompanying a transi- 
tion of a metastable metallic crystal phase of the alloy 
Zn,, Sn,, into an insulating amorphous state was observed 
in Ref. 1. The separation of the amorphous phase could be 
regulated by a stepwise annealing, in which the sample tem- 
perature was raised for a certain time to a value at which the 
sample resistance R began to increase noticeably with time. 
It was found that the amorphization is not uniform and leads 
during the intermediate stages of the process to a macrosco- 
pically inhomogeneous state. This follows from the fact that 
an increase of R by two or three orders of magnitude was not 
accompanied by a substantial shift of the temperature T, of 
the superconducting transition; in a homogeneous state an 
increase of R would mean a decrease of the density of states 
of the carriers on the Fermi level, which would lead to a 
decrease of T, .  The assumption that the amorphous phase 
evolves from chaotically arranged spherical seeds does like- 
wise not agree with experiment: the rather crude heat treat- 
ment used by the authors of Ref. 1 cannot alter smoothly and 
gradually the state of the sample in the immediate vicinity of 
the percolation threshold. 

It was suggested in Ref. 1 that the amorphization takes 
place on the grain boundaries, i.e., on an initially specified 
fixed network of surfaces, and proceeds uniformly on all the 
boundaries. The assumption was that the resistance growth 
is due to an increase of the thicknesses of dielectric films. A 
painstaking examination of the dependences of the electric 
resistance on the metallic side of the transition, which are 
being discussed in the present paper, shows that the amor- 
phous-phase layers are either not tied at all to the grain 
boundaries but are produced and grow independently, or 
else, while tied to the boundaries, do not produce on most 
boundaries the seeds of a geometrically more complex struc- 
ture. 

To clarify the formulation of the problem, imagine a 
sample in the form of an aggregate of grains of average di- 
mension d. Its conductivity can be described by representing 
each grain as a lattice site and connecting neighboring sites 
by resistors. Prior to the start of the amorphization all the 
resistors are equal to p/d, where p is the resistivity of the 

metal. This can be followed by two variants. If the boundary 
resistances become infinite randomly in succession, the con- 
ductivity of the medium is described by the equations of per- 
colation theory. In this theory the resistance growth is due to 
the fact that the conducting channel between contacts be- 
comes gradually longer and thinner, and the resistivity p of 
the conducting channel does not change. The total resistance 
R of a percolation cluster has therefore the simple tempera- 
ture dependence 

Here R, is the resistance of the sample andp, is the residual 
resistivity of the substances making up the metallic cluster. 
The right-hand side of this equation does not change when 
the structure of the conducting channel changes during the 
amorphization, so that in the course of the latter 

The second possibility is that the resistances of the boundar- 
ies increase gradually, being governed by the tunneling prob- 
ability.' Recognizing that the tunneling resistance is inde- 
pendent of temperature, it is easily seen that amorphization 
should not influence the temperature-dependent part of p. 
We have therefore in the course of the amorphization 

Comparison of the changes of the temperature depen- 
dence with change of R, can therefore cast light on the char- 
acter of the structural changes that take place in the sub- 
stance. 

The foregoing considerations govern the content and 
plan of the present article. In the second section we analyze 
those results of Ref. 1 which pertain to the metallic side of 
the transition from the standpoint of the relation between 
aR /aT and R,. This analysis leads to certain conclusions 
concerning the geometric characteristics of the conducting 
channels, which determine the conductivity during the ini- 
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tial stages of sample amorphization. The analysis is based on 
the assumption that both the geometric dimensions of the 
conducting channels and the residual resistivity depend on a 
parameter indicative of the degree of amorphization. This is 
possible if the parameter is the width of the conducting chan- 
nels, and that the carriers in the channels are scattered main- 
ly from their walls. 

In the third section we justify our assumptions. Within 
the framework of elasticity theory, on the basis of the fact 
that the transition to the amorphous state is accompanied by 
an increase of the specific volume, we construct a branched 
(fractal) model of propagtion of the amorphous phase. The 
presence of a fractal system of insulating surfaces leads to a 
specific structure of the conducting channels. Its analysis 
explains the experimentally observed power-law relation 
between dR /aT and R,. 

In the fourth section we demonstrate the presence of a 
correspondence between the conductivity of the conducting 
channel in this model and the conductivity of a conductor 
having the form of a diffusion trajectory. Using this analogy, 
we analyze the influence of the onset of conduction in the 
amorphous phase when the temperature is raised. The de- 
ductions of this analysis are also compared with experiment. 

2. ANALYSIS OF THE DATA ON THE ELECTRIC RESISTANCE 

2.1. Experimental results 

We turn to the experimental R ( T) curves1 pertaining to 
the metallic side of a metal-insulator transition in the course 
of amorphization of a Zn-Sb alloy. The initial alloy sample is 
in a metastable state in a fine-crystalline metallic phase. It 
was obtained by cooling, to nitrogen temperature, a sample 
under pressure, followed by lifting the pressure. During each 
amorphization state, following a stepwise anneal to a new 
state, the resistance R(T)  was plotted in the temperature 
interval 4-100 K, in which heating does not yet alter the 
sample state. 

Figure 1 shows the first seven curves of Ref. 1, plotted in 

FIG. 1. Temperature dependences of the resistance of a sample during 
various amorphization stages. The curves are labeled, besides by the 
numbers 1-7, also by the ratio R,,/Ro, of the residual resistance of the 
sample in the given state to its residual resistance in the initial state. Curve 
1-temperature dependence in the initial state R,,,= 0.61 ma ,  corre- 
sponding top -- 50 pCln cm (Ref. 1 ) . 

( R -  R , ) / L I . E ;  

FIG. 2. The same as in Fig. 1, after renormalization to D = (dR / 
dT) ,= ,, , . Curve 7, which does not fit the universal dependence, is 
shown dashed. 

a scale in which unity for each state of the sample is taken to 
be the resistance R, at 7.1 K, above the superconducting 
transitions. All the curves have a temperature interval 
AT--, 20 K in which R ( T) varies linearly with accuracy not 
worse than 0.1%. Above this interval, the temperature 
growth slows down and the R ( T) plot deviates from linear- 
ity. The deviation is earlier and faster the farther the amor- 
phization has progressed. 

Most important to us at present is that when R, is in- 
creased the relative temperature increment of the resistance 
decreases even on the low-temperature part of the curve, 
where there is no deviation from linearity as yet. It has 
turned out that all the R ( T) dependences in the temperature 
interval from 7.1 K to the value when deviation from linear- 
ity sets in are similar and can be superimposed by dividing by 
a corresponding scale factor (Fig. 2).  We choose this factor 
to be the derivative on the linear section. The accuracy of the 
superposition is not worse than the random scatter of the 
points. The similarity begins to be violated when R, in- 
creases by more than three orders, as demonstrated by curve 
7 of Fig. 2. 

Figure 3 shows a plot of the scale coefficient (the deriv- 
ative on the linear section of the R ( T) curves) against R,. It 
can be seen that over a range of R, exceeding three orders of 
magnitude we have the scaling-type power-law dependence 

FIG. 3. Connection between D = (dR /a,= ,, . ) and R,, for two different , 
samples. Dark points-sample for which the measurement results are 
shown in Figs. 1 and 2. The straight line corresponds to an exponent 
a = 0.75 in Eq. (6). 
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Relation (4)  is the principal experimental result subject 
to further discussion. 

2.2. Geometric factor 

As indicated in the Introduction, the amorphization 
process leads to an inhomogeneous state. We denote the 
characteristic dimension of the inhomogeneity by d and take 
it to be the parameter indicative of the degree of amorphiza- 
tion. We shall refine its physical meaning below, since the 
geometric structure can, generally speaking, be character- 
ized by several lengths. For the time being, even the dimen- 
sionality of this paramater is immaterial. 

We represent the sample resistance in the form 

R(d. T )  =Ro (d) +Rl (d, 7') =Ro ( (1)  +Rl (d) f ( T )  

The first equality determines the subdivision of the re- 
sistance into residual and temperature-dependent, the sec- 
ond reflects the experimental universality of the dependence 
of R on T, and the third introduces a power-law relation 
between the terms R, and R,  in the form 

The value of the parameter d = d l  corresponds to the initial 
state of the sample (curves 1 in Figs. 1 and 2).  

Relation ( 5 ) together with the value a ~ 0 . 7 5  contains 
all the discussed experimental data. 

We express the sample resistance in the form 

R=p+, 

where p is the resistivity and q5 is a geometric factor. For a 
cylindrical conductor, 4 is the ratio of the sample length to 
its cross-section area. In our case q5 depends on the relative 
placement of the insulating amorphous layers, i.e., on the 
structure of the amorphous cluster. The factor q5 is common 
to R, and R,.  

We represent the resistivity p(d,T) likewise by a sum of 
two terms 

p (d,  T) =po (d) + p i  (4 TI, PO (dl ZP (d, 0) (7)  

Using (5)  and (61, we obtain then p,  (d,T) = p ,  ( d )  f( T), 
where 

2.3. Size effect 

The entire analysis that follows will be based on several 
assumptions. 

1. The conductivity of the amorphous phase can be ne- 
glected, and its role reduces exclusively to formation of insu- 
lating partitions between the conducting channels. 

2. The conducting metallic crystalline-phase channels 
exist all the way to the immediate vicinity of the transition of 
the sample into an insulator, with d the effective width of the 
channels. 

3. The metallic channels are subject to a classical size 
effect due to carrier scattering by the channel walls. 

The first assumption imposes an upper bound on the 
temperature interval in which the described model is valid. 
It appears that the conductivity of the amorphous phase can- 
not be neglected wherever the R ,  ( T) plot deviates from the 

linear section of the universal f( T) curve. In other words, 
the interval is narrower the larger R,. However, even on the 
curve 6 (Figs. 1 and 2) (R,/R,, = 1000) it extends all the 
way to T ~ 4 0  K. 

The second assumption will be discussed in Sec. 3. The 
third means that we neglect the mutual influence of the bulk 
and surface scattering processes. In the presence of such an 
influence the significance of the subdivision (7)  itself is low, 
since the dependence ofp, on d can be quite complicated and 
the dependences on d and Tmay not factorize. For example, 
under weak-localization conditions changes of d can lead to 
a change of the effective dimensionality, and as a conse- 
quence to a change of the functional form of thep, ( T) tem- 
perature dependence. The assumption means therefore that 
p, must not be too large, i.e., the model is not applicable in 
the immediate vicinity of a metal-insulator transition. 

In the presence of a size effect, p can be expressed, accu- 
rate to several percent, in the form2 

PP P 1 
P (d, T )  =PO (4 +pi ( T )  = ---; (- + - ) n e d  1 '  

where n is the carrier density,~, is the Fermi moment, I( T) 
is the bulk mean free path, while P = 1 for a wire and 
P =  0.4 for a film. In the latter case d must not be too small: 
I /d < 10, since thep,(d) dependence becomes logarithmic in 
the limit when d g  l. 

Substituting, p, a d -' and p ,  a d O in ( 8) we get 

The experimental value a = 0.75 yields 

@ (d) (1 1) 

It is instructive to compare the resultant v = - 3 with 
other cases. If a sample of volume L is converted into a coil 
of insulated wire with cross section s = d ', its length is 
A = L 3/d 'and#(d) = L 'd -4.Thi~isthestrongestpossibl~ 
power-law dependence of the function q5 on d. A tape ofJ 
width L and thickness d has a length A = L '/d and hence 
4 (d )  = Ld -2.  Finally, q5 may not depend on d at all. For 
example, if an insulated wire of cross section s = d is cut 
into segments of length L and used to interconnect opposite 
side pairs of a cube L 3, with L '/3d segments per pair of 
sides, we obtain a wattled cube with a factor q5 = 1/3L, i.e., 
d a d 0 .  

3. KINEMATICS OF AMORPHlZATlON PROCESS 

3.1. Growth of amorphous phase 

The experimental dependence (4)  differs in principle 
from (2)  and (3) .  This necessitates searches for another 
model of the structure of the sample's amorphous part. We 
start with the premise that a transition into the amorphous 
state is accompanied by an increase of v ~ l u m e . ~  It is clear 
even from the Le Chatelier principle that the transition has 
opposite reactions to the elastic stresses it produces-it is 
hindered in compressed regions and facilitated in the 
stretched ones. For an isotropic elastic medium it is natural 
to assume that a transition is possible when the strain causes 
the specific volume of some region to increase by a critical 
value u,, i.e., if the trace of the strain tensor u,, satisfies the 
condition 
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A spherical seed cannot grow under such conditions, 
for the strains on its surface become negative before long. On 
the contrary, the planes growing a seed in the form of a flat 
disk compress the substance, but this leads on the edge to a 
tension that facilitates the phase transition. Naturally, the 
front of the amorphous phase moves with maximum velocity 
wherever it produces the largest tensile stress, i.e., where the 
left-hand side of (12) is a maximum. Without going into 
details of the complicated question of choosing the shape of 
the front, we confine ourselves to the statement that the 
moving front is similar to a blade that cuts into the metasta- 
ble phase. The stability of the blade edge to breakup into 
needles is ensured by the fact that, other conditions being 
equal, the stresses on the edge of the blade exceed substan- 
tially those on a needle.4 

We formulate now three rules that govern the front mo- 
tion. 

1. Weak planes (regions with small Young modulus) 
encountered in the path of a moving blade rotate the blade. 

2. The thickening of the blade behind the moving edge is 
very slow, since the medium surrounding it is compressed. 
The stress increases with time nonetheless, so that corners 
on the layer and inhomogeneously deformed regions serve as 
seeds for branching of the layers. 

3. The blade is stopped if it has to cross another blade.5 
In particular, if two blades converge at an angle, one of them 
will overtake and cause the other to turn away or stop, de- 
pending on the convergence angle. An exception is a head-on 
encounter. 

We shall apply these rules, formulated on the basis of 
Refs. 4 and 5, to our problem. Layers of the dielectric amor- 
phous phase propagate with practically no increase in thick- 
ness, become branched, and do not intersect. The latter is 
very important, since it means the presence of a mechanism 
that automatically prevents breaks of the conducting chan- 
nel and subdivision of the sample into insulated granules. 
Instead, the conducting channel becomes branched in the 
course of the amorphization and becomes tortuous. The 
amorphous phase takes the form of "cacti"-trees with flat 
trunks and interlaced sprouts. Two-dimensional cuts 
through the structure during various stages of its formation 
are shown in Fig. 4. 

3.2. Characteristic dimensions of structure 

We introduce the concept of generations. Let the initial 
seeds have a density C. The surfaces that develop from them 
can have a characteristic area of order (C-'I3)'. We call 
them the first generation, they form the trunks of the cacti. 
The second-generation sprouts have a characteristic dimen- 
sion (2C) - ' I 3 ,  etc. The number of generations is determined 
by the shortest approach d, and its equal to 

-3 111 (C1"d) /In 2.  

Amorphous sprouts are shown in Fig. 4 by thin lines. 
They have in fact a finite thickness S determined by the value 
of u, and by the change of the specific volume in the transi- 
tion; it should be obtained from the aforementioned problem 
of the front shape. It is probable that S depends on the gener- 
ation of the sprout. The value of S determines the dielectric 

FIG. 4. Two-dimensional cuts of fractal structure of the amorphous phase 
during different stages (1-3) of its formation. Dashed line-trace of se- 
parating surface over which the conducting channels pass. 

properties of the amorphous phase, for example the tunnel- 
ing length. 

This may not be the complete set of characteristic 
lengths of the structure. For example, there should exist one 
more scale-the branching length-which also depends on 
the generation. However, in view of the strong interaction 
via the elastic medium, all the scales cannot be assumed to be 
independent. By way of the simplest assumption we consider 
all the scales of the conducting channel to be of the same 
order. This is in fact the scale d. It is determined, as is also 
the number of generations in the structure, by temperature 
and time. 

The length S, which does not enter directly in the de- 
scription of the conducting channel, is an independent pa- 
rameter. The foregoing arguments involving the concentra- 
tion of the tensile stresses at the edge of a blade and the 
interaction of blades with one another are valid only if d96. 
When d becomes comparable with S in the course of the 
amorphization, the stresses are equalized and coalescence of 
the amorphous layers should set in. At d z S  approximately 
half the sample should be in the amorphous state. Recall in 
this connection that according to Ref. 1 the volume of the 
crystalline phase of Zn-Sb decreases by one-quarter at R / 
R , z  lo3. 

An amorphous cactus is a typical fractal. This is easiest 
to verify by following one of the variants of the definition of 
fractal dimensionality in terms of the "capacity" of a set.6 In 
this variant it is proposed to cover the investigated set with 
cubes of side E and count the number K(E) of these cubes; the 
dimensionality is then In K(&)/ln ( I/&). A physical fractal 
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always has a range of scales E in which it is defined; in other 
words, the dimensionality is approximately constant only in 
a certain interval of s. In our case this interval extends from 
the distance between the initial germs of the amorphous 
phase to d, and dm,, = 6. Since the distance between the 
cactus sprouts and the sprouts are present everywhere, to 
cover one cactus it is necessary to cover the entire volume for 
any E > d .  the dimensionality of an amorphous cactus is 
therefore equal to three. 

3.3. Geometric factor of conducting channels 

Let us break up the volume into regions that surround 
one germ each. Initially each boundary between two regions 
is a surface of dimension C  - ' I 3  and of area C - 2 1 3 .  With 
growth of the amorphous phase, the boundaries of the re- 
gions containing individual cacti become strongly deformed. 
The deformed surface can be superimposed on one of the two 
cacti that separate it. This surface is therefore also three- 
dimensional. 

Current should flow through a network of such sur- 
faces. Since the surfaces are strongly cut-up, the lengths of 
the different paths between two points differ greatly. There- 
fore the current, tending to flow along a path with lowest 
resistance, i.e., the shortest path, tends to gather into ropes 
of current. They can also be called conducting channels. It is 
natural to assume their cross section area to be of order d 2 .  

As the shortest line on a surface of dimensionality three, a 
conducting channel of length large compared with d  has a 
dimensionality two. Over a size C - ' I 3  the length of such a 
channel is C -213d - '. Recognizing that for a cube with edge 
L we have a parallel connection ofL 2C 2 1 3  channels and that 
each channel has LC  ' I 3  segments connected in series, we get 

which coikides with the experimentally obtained depen- 
dence ( 1 1 ) of the factor q5 on d .  

4. DIFFUSION TRAJECTORIES 

4.1. Dimensionality of a conducting diffusion channel 

The trajectory of a Brownian particle-a diffusion tra- 
jectory, is also two-dimensional in a three-dimensional 
space. In fact, consider a simple cubic lattice with dimension 
d. After N steps, the length of a diffusing-particle trajectory 
is Nd, and the average displacement of the particle from the 
start of the motion is N 'I2d. In other words, the trajectory 
increases as the square of the radius of that part of space 
which it occupies. 

This raises the question whether current channels can 
be regarded as diffusion trajectories with steps equal to d .  
This calls for an estimate of the electric resistance of the 
diffusion trajectory with allowance for the self-intersections 
on it. The answer depends substantially on the dimensionali- 
ty l of the imbedding space. If = 1, the resistance is 
R a N ' I 2  d ,  but for {>4 the opposite limit R = Nd is real- 
ized, since in a space of large dimensionality there are no self- 
intersections at all on a diffusion trajectory. In our case, 
= 3, we must estimate the contribution of loops and of 

more complicated configurations. 
Let us show that the dimensionality of a diffusion tra- 

jectory in three-dimensional space remains unchanged if 
loops resulting from self-intersections are excluded. The tra- 

jectory forms a ball contained in a sphere of radius N  ' I 2  d .  
Through each of the N 3 1 2  points inside this sphere can pass, 
with equal probability, a trajectory consisting of N steps. 
Consequently the passage probability is N  - ' I 2 ,  and the prob- 
ability of passing twice is N -'. Therefore the number of 
points passed-through twice, i.e., the number of loops, is 
N 3 1 2 ~  -' = N ' I 2 .  We estimate now the average loop length - 
A. If p ( M )  is the probability of a particle returning to the 
initial point after M steps, then 

N 

Thus, a trajectory of length N has N ' I 2  loops that are on 
the average N  ' I 2  steps long. Therefore, by cutting out all the 
loops, we change the length of the conducting channel by a 
value of the order of the initial length, and the remaining 
length is again of the same order. The geometric factor is 
therefore q5 ( d )  a d  - 3  as before. Although the remaining tra- 
jectory has no self-intersections, its length is by far not equal 
to the length, known in the literature, of the random-walk 
trajectory without self-intersections,' since the algorithms 
of their realization are entirely different. 

In addition to isolated loops, a diffusion trajectory in 
three-dimensional space can contain more complicated con- 
figurations. For example, two loops can have a common sec- 
tion. Three parallel conducting paths connect correspond- 
ing two self-intersection points, so that all sections of both 
loops carry current. By reasoning as above we can show that 
allowance for such configurations likewise leaves the dimen- 
sionality of the conducting channel unchanged. 

4.2. Shunting of loops 

The deviations in Fig. 3 from a universal temperature 
dependence are due to the growth of the conductivity of the 
amorphous phase as the temperature is raised. We are deal- 
ing here not with tunneling but with thermoactivated con- 
ductivity. Let the resistivity of the amorphous phase be 
r(  T )  . Consider a plane central trunk of a cactus, with dimen- 
sions on the order of ( C  - ' I 3 )  2 .  We break it up into squares of 
size d  on both sides. The trajectory moves initially on one 
side of the plane trunk, and then on the other. The bending 
around the lateral sprouts is to us immaterial at present, 
since the corresponding sections of the trajectory are much 
shorter. The probability that a trunk section of sized will be 
passed-through by a trajectory from both sides can be easily 
calculated. It is equal to C2I3d 2 .  Therefore the entire trunk 
contains only few (of order unity) such singular places 
where with rise of temperature the current will flow through 
the main trunk instead of along the trajectory. This shunting 
is more effective the longer the trajectory. Therefore, if the 
layer thickness S is the same on the entire cactus, the first to 
be shunted will be precisely the main trunks. This statement 
remains valid also if 6 depends on the number of the genera- 
tion, but not very strongly. 

We equate the resistances of the conducting channel 
and of the shunt: 

r ( T )  GldZ=p ( d ,  T )  (C-"-l) Id2. 

Neglecting the dependence of p on T  and putting 
p ( d )  a d ,  we get 

r ( T )  d2=const.  (15) 
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FIG. 5. Connection between the temperature at which the shunting action 
of the amorphous phase.is manifested and the residual resistance R,. 

Assuming that r ( T )  a exp( + A  / T  ), we obtain 

or, using (9) and (10) 

A/TT-'1, In Ro ( d )  =const. (16) 

Here y can take on the value 1,1/2, or 1/4, depending on the 
character of the conductivity of the amorphous phase (see, 
e.g., Ref. 8). 

Figure 5 shows, as a function of In R,, the reciprocal of 
the temperature at which the deviations from the universal 
temperature dependence reach 0.5%: 

R, (d ,  T) -R1 ( d )  f (T)x0.005R0. 

The scatter of the points is probably due to a certain leeway 
in the choice of the coefficients R,. Notwithstanding this 
scatter, Fig. 5 can be regarded as a confirmation of Eq. ( 16). 

Unfortunately, however, the accuracy is insufficient to 
determine and to clarify the conduction mechanism in the 
amorphous phase. 

5. CONCLUSION 

In the description of the conductivity of a two-phase 
material it is customarily assumed that the particles of both 
phases are randomly intermixed in an uncorrelated manner. 
This permits the use of percolation theory or of the effective- 

medium theory. We have discussed in the present article the 
conductivity of an inhomogeneous sample with a structure 
of a different type, including a fractral insulating surface. 
This has led to the concept of the conductivity of a diffusion 
trajectory, which can apparently exist independently and 
have its own range of applications. We have succeeded in 
explaining, in the context of the formulated premises, the 
scaling character of the resistance curves R ( T) in the dis- 
cussed experiment at low temperatures, as well as deviations 
from it at high temperatures. 

At the same time, the examination of the conductivity 
led to the problem of simulating the amorphization process 
or, in more general form, of a phase transition occurring in 
an isotropic solid and accompanied by an increase of the 
volume. A large number of the ensuing questions, concern- 
ing the form of the front, the interaction of the blades, the 
distribution of the dimensions d,  the physical limit of 
branching, and others have only been named in this paper. 
They can undoubtedly be objects of further research, both 
theoretical and experimental. It is also important to search 
for new objects to which the concept developed in the pres- 
ent paper can be applied. 
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