
Nonlinear theory of magnetoacoustic oscillations and of acoustic cyclotron 
resonance in metals 

V. A. Burdov and V. Ya. Demikhovskii 

Gorky State University 
(Submitted 14 July 1989; resubmitted 18 September 1989) 
Zh. Eksp. Teor. Fiz. 97,343-358 (January 1990) 

The damping coefficient of a longitudinal acoustic wave propagating in a metal in an oblique or 
perpendicular magnetic field is calculated. The nonlinear dynamics of electrons at cyclotron 
resonance is investigated with action and angle as the variables. It is established that electrons 
with a complex spectrum can have in an oblique or perpendicular magnetic field nonlinear 
resonances, for which the Hamiltonians are given. A connection is established between the 
parameters of the effective Hamiltonians and the geometry of the Fermi surface. The distribution 
functions of the resonance electrons are obtained and the variation of the line waveforms of 
magnetoacoustic and cyclotron oscillations of the absorption coefficient with increase of the 
sound amplitude is analyzed. 

1. INTRODUCTION 

Acoustic cyclotron resonance and magnetoacoustic os- 
cillations of the absorption coefficient of sound in metals 
placed in a magnetic field B parallel to the z axis are known 
to be due to sound-wave interaction with resonance-electron 
groups. The relation between the component of the aver- 
age velocity of such electrons along the magnetic field and 
their cyclotron frequency w, is given by 

where w is the wave frequency and k ,, is the component of 
the wave vector k along the z axis. If the wave propagation is 
perpendicular to the direction of the magnetic field B, rela- 
tion ( 1 ) goes over into the cyclotron-resonance condition 

The resonance conditions ( 1 ) and (2)  were obtained with- 
out allowance for the influence of the wave on the trajector- 
ies of the resonance electrons. To develop a nonlinear theory 
of sound damping in metals we must solve the equations of 
motion of carriers having a complicated dispersion law ~ ( p )  
in a magnetic field and in a wave field of finite amplitude. 

We obtain in the present paper solutions of such equa- 
tions of motion in the vicinities of the resonances defined by 
conditions ( 1 ) and (2).  We use for this purpose a resonant 
perturbation theory' that makes it possible to solve this 
problem by introducing slow and fast phases at the reso- 
nance (and also the actions canonically conjugate to them) 
and by averaging over the fast phase. Calculation has shown 
that two different types of motion can be realized in the vi- 
cinity of the resonance (1) in an oblique field. If the reso- 
nance cross section of the Fermi surfacep, = const does not 
lie on a section corresponding to an extremal value of the 
derivative dS/dp,, where S the area of the intersection then, 
as will be shown below, the effective Hamiltonian takes the 
form of that of a mathematical pendulum. The dynamics of 
electrons described by this Hamiltonian is quite well known. 
If, however, the resonant cross section is at an extremum of 
dS/dp,, the effective Hamiltonian assumes the non-stan- 
dard form ( 18 ), and the dynamics of the particles at such a 
resonance has a distinctive character. 

Analysis of the dynamics of resonance electrons has 
made it possible to solve the kinetic equation near the reson- 
ances and to calculate the damping coefficient in the strong- 
nonlinearity regime, i.e., under conditions when the charac- 
teristic frequency of the particle oscillations at the resonance 
i3 is much higher than the electron-collision frequency 
YET; '. The nonlinearity parameter is thus the quantity 
a = (5rp ) - I .  It follows from the calculations that in an 
oblique field, just as in the linear theory,' there appear two 
types of magnetoacoustic oscillations connected, respective- 
ly, with the boundary points and with the extremum of dS/  
dp,. By virtue of the different dynamics of the electrons, 
however, the dependence of the absorption coefficient on the 
amplitude of the longitudinal sound wave is different in 
these two cases [see Eqs. (40) and (44) below]. 

In a perpendicular magnetic field and in the field of a 
longitudinal sound wave the dynamics of electrons with a 
complicated spectrum, when the cyclotron frequency de- 
pends on Sandp, , differs substantially from the dynamics of 
electrons with a quadratic dispersion law, when the cyclo- 
tron frequency is constant. In the former case the effective 
Hamiltonian with the action and angle as variables has, after 
averaging over the fast phases, the standard form of the 
Hamiltonian of a mathematical pendulum [see (25) 1, with 
the reciprocal mass in this Hamiltonian proportional to 
dw,/dS. For a quadratic electron spectrum, when dm,/ 
dS=O (in the terminology of Ref. 1 such systems are called 
degenerate) the nonlinearity in the equations of motion is of 
a different nature and is manifested at sound intensities ap- 
parently not yet attained in experiment. 

The calculation, in Secs. 3 and 4, of the distribution 
function and of the absorption coefficient at cyclotron reso- 
nance has shown that, just as in the linear t h e ~ r y , ~  oscilla- 
tions are produced in the sound-absorption coefficient by 
electrons having a cyclotron frequency that is extremal with 
respect top,, but the amplitude of the oscillations is smaller 
in the nonlinear regime by a factor a3I2. 

The plan of the paper is the following. In Sec. 2 we use 
the action and angle as variables for electrons having a com- 
plicated spectrum and located in a magnetic field. A reso- 
nance perturbation theory is used to construct effective 
Hamiltonians for resonances of various types in oblique and 
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perpendicular magnetic fields. In Sec. 3  we solve the kinetic 
equation and obtain the distribution function in the region of 
isolated resonances. The last section is devoted to calcula- 
tion of the sound-absorption coefficient and to a discussion 
of the results. 

2. NONLINEAR DYNAMICS OF AN ELECTRON IN THE FIELD 
OF A SOUND WAVE 

To describe the dynamics of an electron in the field of a 
sound wave and in a magnetic field B we introduce first the 
action and the angle as the variables of the unperturbed sys- 
tem. Choosing beforehand the gauge of the vector potential 
A in the form A = (0, Bx, 0 ) ,  we write for the initial unper- 
turbed Hamiltonian 

where x, = cp, /eB = const is the coordinate of the center of 
the Larmor orbit. We change from the variables p, , x, p, , z 
to new canonical variables I, 9, j, , Z. The action variable I, 
defined in accordance with the usual rules 

is proportional to the area of the intersection S of the Fermi 
surface ~ ( p )  = E~ with the planep, = const. 

The change to the new canonical variables is made us- 
ing a generating function F, that depends on the new mo- 
menta and on the old  coordinate^.^ If this function is chosen 
in the form 

Fz  ( I ,  pz, x-XO, 2 )  =zFZ f 3 ~ ~ ( 1 ,  P",, x - x o ) ~ ~ ,  

the connection between the old and new coordinates and 
momenta is established by the following expressions: 

Since the momenta p, and j, coincide, we shall no longer 
distinguish between them. The equations of motion in the 
new variables take the simplest form: 

p,=o, A =  "I0 ( I? pz)  = u, ( I ,  P.) = c~.s~.  
3 P Z  

( 5 )  . dHo( I ,  pz)= Q,,(I, p,) = const. f=O, 6 =  
d I 

The difference between the new variable Z = K t  and the 
coordinate z is due to the nonuniform motion of the particle 
along the magnetic field. 

The contribution to the Hamiltonian ( 3 )  from the in- 
teraction between the conduction electrons and the longitu- 
dinal sound wave is 

H , = A i k  (p )  u, ,=-ku ,~  (p) cos (kllz+k,x-ot),  ( 6 )  

where A, (p)  is the strain-potential tensor, u, is the strain 
tensor, u, is the amplitude of the displacement of the lattice 
atoms, 

A (p)  =iL, sinZ cp+Ax, sin 2rp+A,, cos2 cp, 

and q, is the angle between the vector k and the z axis. The 
total Hamiltonian, with action and angle as variables, is now 
written according to ( 4 )  in the form 

H=E ( I ,  pz) -kuoA(.B.) cos (kl lZ-kI ,Az (6 )  +k,xO 
+k,Ax(6) - o t ) .  (7 )  

We transform to a reference frame that moves along the 
magnetic field with velocity w/k ,I . We introduce simulta- 
neously a new phase II ,  = k ll Z + k ,  x, - wt and its canoni- 
cally conjugate momentum P = p,/k , using the generating 
function 

A Fourier expansion, periodic in the angle 9, of the pertur- 
bation in (7 )  yields 

+ m 

H=E ( I ,  P )  --UP - v,(I, ~ ) c o s ( $ - m f i + r p ~ ) .  ( 8 )  

where 

ku ,  
V.. ( I ,  P )  = -- I j d 6 h ( B )  erpli(kr-wt+m6-$1 I I 

2n -,, 

are the Fourier expansion coefficients and p,  are the 
phases. 

Let us examine in greater detail the dynamics of the 
particles in the vicinity of an individual I th resonance. The 
resonance condition ( 1 ) follows from the constancy of the 
phase $ - I9 + pI ~ c o n s t .  In the spirit of resonant pertur- 
bation theory,' we introduce a "slow" phase 
a = $ - I9 + pl and a phase 0 = 9. The connection 
between the old and new canonical variables is obtained with 
the aid of the generating function 

and is given by the expressions 

Changing in the Hamiltonian ( 8 )  to resonance variables and 
averaging over the fast phase, we obtain the effective Hamil- 
tonian that describes the particle motion in the vicinity of the 
I th resonance: 

A rigorous corroboration of the procedure of averaging the 
Hamiltonian over the fast phase is contained in the Ref. 1 
(see Ch. 2).  Since the Hamiltonian ( 1 1 ) is independent of 
the variable 0 ,  the momentum Pp canonically conjugate to 
this variable remains constant near the resonance. Expand- 
ing next the Hamiltonian 

in a series in Pa - PI up third order inclusive [PI is the value 
of the momentum Pa corresponding to condition ( 1 ) 1, we 
get 
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+A (5) ( P ~ - P , ) ~ - v ,  cos a, 
3! dPa3 p , , ~ ,  

where (6'" H@ :: ) pppl denotes that the derivative is taken 
at a constant value of Pg at the point Pa = P,. The term 
E (  PI, PB - IP, - wPI in ( 12) is a constant that plays no 
role in the analysis of the system dynamics. The first deriva- 
tive takes the form 

at resonance. flbviously, the second and third derivatives 
can be represented in the form 

Calculation of the partial derivative 

at constant PB can be reduced to calculation of the derivative 
taken at the value E = const (neglecting the low frequency w 
of the wave). Obviously, any function F(Pa, &(Pa, Pg ) ) 
satisfies the relation 

and since the first derivative (d&/aP, )pD is equal to zero at 
resonance, we have 

Using the well known relation 

we easily obtain 

For the second derivative taken at the point Pa = PI we have 

and, if the I th resonance lands on a section where the deriva- 
tive dS/aP, is extremal, we have in accordance with ( 14) 

In this case the expression for the second derivative becomes 
quite simple 

As a result of the foregoing calculations, the effective 
Hamiltonian at the I th resonance is 

G R 
H = -(Pa-P,) '+ -(P,-P,) 3-V, cos a ,  

2 3 (16) 

where G and 2R stand for 

If the resonance does not coincide with the extremum of the 
function aS/aPa, the coefficient G differs from zero and we 
can neglect in the Hamiltonian ( 16) the term of third order 
in the deviation from resonance. The Hamiltonian ( 16) goes 
over then into the well-studied Hamiltonian of a mathemat- 
ical pendulum 

the role of the mass is assumed by 

and the potential-energy amplitude is V, (PI ). 
If, however, the I th resonance coincides with the extre- 

mum of the function aS/aP, and the coefficient G is equal to 
zero, we are dealing with a Hamiltonian that is cubic in 
pa - p,  

H 
H = - (Pa-PI)  3-Vl cos a. 

3 
(18) 

This last case is also of great interest for an analysis of non- 
linear phenomena in metals placed in a magnetic field, since 
the many perculiarities of the linear susceptibilities of a met- 
al are determined just by the electron located on the Fermi 
surface near the section corresponding to an extremum of 
as /dP, . 

Let us examine the phase trajectories of the Hamilto- 
nian ( 18). It follows from the equations of motion 

that the equilibrium positions correspond to the points 
Pa = PI (where a = m), and that these stationary points 
can be regarded as a result of coalescence of stationary points 
of the "center" and "saddle" type. The evolution of the 
phase trajectories when the I th resonance reaches the section 
(dS/aPa ),, is illustrated in Figs. 1 and 2. Figure 1 shows the 
solutions of Eq. ( 1 ) at fixed I and three different values of B. 
It can be seen that when the I th resonance reaches an extre- 
mum of dS/dP, (case b) the equation k ij, - w - Iw, = 0 
has a unique solution. In stronger fields (case a )  there is no 
solution at all, while in weaker fields there exist two reson- 
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ances corresponding to one and the same number I. The 
phase portraits corresponding to these three cases are shown 
in Fig. 2. The trajectories shown in Fig. 2c have been ob- 
tained with the aid of the general-form Hamiltonian ( 16). In 
a weaker magnetic field the two resonances shown here and 
corresponding to the same 1 diverge, and the phase trajector- 
ies become the trajectories of mathematical pendulums. 
When two resonances merge (Fig. 2b) the phase curves are 
determined from the equations of motion ( 19) and the Ham- 
iltonian resonances corresponding to one and the same num- 
ber I. The phase portraits corresponding to these three cases 
are shown in Fig. 2. The trajectories shown in Fig. 2c have 
been obtained with the aid of the general-form Hamiltonian 
( 16). In a weaker magnetic field the two resonances shown 
here and corresponding to the same I diverge, and the phase 
trajectories become the trajectories of mathematical pendu- 
lums. When two resonances merge (Fig. 2b) the phase 
curves are determined from the equations of motion (19) 
and the Hamiltonian ( 18); the separatrices joining station- 
ary points are specified by the equations 

It follows from the equations of motion that the time of mo- 
tion on the separatrices is infinite. 

In stronger magnetic fields, the resonance condition is 
not met for any value of Pa, there are no stationary points on 
the phase plane, and the phase trajectories are smooth curves 
(Fig. 2a). 

The case of wave propagation perpendicular to the 
magnetic field calls for a separate analysis. The Hamiltonian 
and the equations of motion for this case are: 

H-e (p,. I )  - r, V,,,(I, p,) cos (mB-wt+rpm), 
m 

(20) 

I = - r, m ~ ,  ( I .  p,) sin (m8-wt+qm) ,  (21) 
rn 

The Hamiltonian (20) can be obtained from the general 
expression (7)  in which we put k ,, = 0 and expand the per- 
turbation in a Fourier series in the angle 9. The Fourier- 
expansion coefficients Vm are given by 

n 

ku,  
v.(I.P,)=-- 1 5 d B a ~ ( B ) e r p [ i ( k r ( 0 ) - m B )  I 1 .  

-,, 

FIG. 1 .  Graphic solutionofEq. (1 )  writtenin theformdS/dP, = 2 ~ e l B /  
c for three different values of the magnetic field B (it is assumed that 
w = 0 ) .  

FIG. 2. Phase portrait of the dynamic system ( 1 1 )  in the vicinity of 
P, = P,, . In case a the resonance condition ( 1 ) is not met, in cases b and c 
the phase trajectories were plotted with the aid of the Hamiltonians (16) 
and ( 18), respectively. 

Obviously, for perpendicular propagation of the wave 
the momentum p, is conserved, and enters in the Hamilto- 
nian as a parameter. In contrast to free electrons, in metals 
with complicated spectra there is realized as a rule the non- 
degenerate case, i.e., ci' '&/a1 ' #O. Therefore, introducing the 
resonance phase and action, we write down the effective 
Hamiltonian for the I th resonance defined by the condition 
(2)  by retaining in (21) only one resonant term with m = 1. 
Introducing next the slow phase a = I8 - wt + q,, and neg- 
lecting in (22) small terms of order Vm we obtain the equa- 
tions of motion for the I th resonance in the form 

I =-lV, sin a,  

jl=lo,-0. 

The Hamiltonian corresponding to the system (23) can be 
expressed as 

H = ~ E  ( I ) -WI -LV ,  cos a. (24) 

Expanding next (24) in terms of small deviations from the 
resonance action I, determined from condition (2),  we ar- 
rive again at the standard mathematical-pendulum Hamilto- 
nian: 

G 
H = - l ( I - 1 , )  2--1Vl cos a, 

2 
where 

The characteristic oscillation frequency at cyclotron reso- 
nance is correspondingly 

and the resonance width is given by 

We shall need the results of the present section to solve 
the Boltzmann kinetic equation and find the distribution 
functions of the resonance particles. 

3. DISTRIBUTION FUNCTION OFTHE RESONANCE 
PARTICLES 

The kinetic equation, with action and angle variables, in 
the field of a longitudinal sound wave propagating at an an- 
gle q, to the magnetic-field direction, is of the form 
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of the trapped and untrapped particles, 

where P, I, *, and &are defined with the aid of (8) as follows: 

f = z rnvm sin ($-mD+y.), 

The collision integral is written in the relaxation-time ap- 
proximation, rp is the departure time, and fo(H + wP) is the 
local-equilibrium Fermi distribution function. Putting as 
usual f = fo + g, we obtain for the g function the equation: 

= ofor V ,  sin 
n 

(27) 

Since we assume that the sound attenuates little over one 
wavelength and we seek stationary solutions in the field of a 
wave with specified amplitude, we put dg/dt = 0. 

To obtain Eq. (27) in the vicinity ofthe I th resonance, it 
is convenient to change over to the resonance variables 
Pa ,a,PB, p, and defined in accordance with ( 10). It is neces- 
sary next, as in Ref. 5, to expand the g function in a Fourier 
series with respect to the fast phase f l  and average with re- 
spect to it in the Boltzmann equation. After averaging, the 
equation for the "slow" part of theg function takes the form 

ag . ag g l o ' s i n a .  (28) (k,,F,-o-lo,)- - V ,  sin a- + - = oV f 
d a dPa TP 

As shown in Ref. 5, the fast terms and distribution functions 
discarded in the averaging are of higher order of smallness in 
the wave amplitude compared with the slow component g. l' 

We consider first the case when the I th resonance deter- 
mined by ( 1 ) does not land on an extremum of dS/dPa. We 
can then confine ourselves near resonance to terms linear in 
Pa in the expansion of the function 

Introducing - next the dimensionless velocity 
s = (Pa - PI )/Pand the dimensionless time T = i3, t, we get 

d g  d g  
S -  - sina- + a,g=oP,f,'sin a, 
aa ds 

where?jl = ( v, /G) ' /~,  63, = (GV, ) 'I2, anda, = ( i 3 , ~ ~  ) -'. 
A solution of Eq. (29) by the method of characteristics is 
given in Ref. 5 (see also Ref. 6 ) .  In our case it can be written 
in the form 

gt=oHJof [aLa-sl, 

gut=oHlfof [al (a-a) - (s-s) 1 ,  

where g, and g,, are respectively the distribution functions 

3t - s = ------- F (a/2, x )  
u=n 

xK ( x )  ' K(x)  l 

F(a/2,x) and K(x)  are incomplete and complete elliptic 
integrals of the first kind. Trapped particles correspond to 
1x1 > 1 and untrapped ones to 1x1 < 1. 

We turn now to the case when the I th resonance coin- 
cides with an extremum of dS  /dPa. As shown in the preced- 
ing section, the expansion of the function k , I  & - w - Iw, 
begins then with the quadratic terms: kI lFz - w - la, -- R (Pa - P, )'. Changing again to dimensionless variables 

we obtain the kinetic equation 

d g dg s2 - - sin a - f a,,g=~P,d,' sin a,  
3 a d s 

where 

The solution of (31) is similar to that of (29) 

but 
T 

( T  is the period) is not expressed in terms of elliptic inte- 
grals, while the variables f and 5, now equal to 

differ from the previously introduced a and E. 
To conclude this section, we obtain the solution of the 

kinetic equations under conditions of cyclotron resonance in 
a perpendicular magnetic field. 

It is easy to verify that the kinetic equation for the aver- 
aged distribution function takes, in accord with the Hamil- 
tonian (24), the form 

Changing in (33) to the dimensionless action and dimen- 
sionless time 

where 

and solving this equation by the method of characteristics, 
we get 

Here, as before, a = (Zr, ) -' is the nonlinearity parameter. 
The value of X,  is defined by the relation 
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and specifies the distance, along the action axis I, between 
the resonance surface I, (p, ) and the Fermi surface for the 
given value of p, , while IF  (p, ) is the action on the Fermi 
surface. 

Let us calculate the integral in (34). Recognizing that 
the integrand is, apart from an exponential, a periodic func- 
tion of time with periods T(x) = 2xK(x) and 
T(x) = 4K( 1/x) for untrapped and trapped particles, we 
can change over in (34) to integration over a single period. 
The integral over the period is evaluated with the aid of a 
delta-function and, in an approximation linear in the small 
parameter a, we have 

1 - 2 ~ , / T - a ( l - 2 ~ , / T )  T ,  O<T<T, 
-2ao/T+a (2.tOlT) ( 7 - T / 2 ) ,  z o < ~ t T - z o  
1 - 2 ~ ~ / T - a ( l - 2 ~ , / T )  ( T - T ) ,  T-T,<T<T, 

where r,, is the instant of time at which X(T) = X F .  From the 
equations of motion we obtain 

r0=xF (arcsin (-;; ' - 7 " ) " : x  

for untrapped particles and 

for trapped ones. 
It must be noted that the function (36) describes, at 

fixed x ,  the distribution of the untrapped particles if the pa- 
rameter X ,  (p, ) is in the range 

and the distribution of the trapped ones is in the range 

In the opposite case the distribution function vanishes. The 
shaded regions in Fig. 3 correspond, according to (37) and 
(38), to allowed values of the parameter XF (or of the mo- 
mentum p, ) for a given x corresponding to untrapped or 
trapped electrons. 

FIG. 3. Regions of the values of the parameter X ,  (shaded sections), in 
which theg-function differs from zero at a fixed value of x. For x = x, the 
values of X, lie in the interval X ,  (X, ( X ,  ("untrapped" particles); for 
"trapped" particles we have - X,<X,<X, for x = x,. 

4. SOUND-ABSORPTION COEFFICIENT. DISCUSSION OF 
RESULTS 

The obtained distribution functions yield the sound- 
damping coefficient in a metal with a complicated dispersion 
law, placed in an external uniform magnetic field. We calcu- 
late to this end the work performed by the wave on the reso- 
nance particles (the angle brackets (. . . ) denote averaging 
over the wavelength) 

and use the energy-balance equation in the wave + particle 
system 

where 

c-=- x v  , cos ($-rnO+vm) 

is the potential energy of the particle in the sound-wave field, 
f = (kr - w t ) / k ,  

is the nonequilibrium density of the resonant particles, r is 
the damping coefficient, and So is the sound-wave average 
energy-flux density. 

In an oblique magnetic field, the coefficient of damping 
by isolated resonances that do not coincide with an extre- 
mum of aS/aP,, is calculated with the aid of (30) and (39) 
just as in the case of an isotropic quadratic spectrum, i.e., by 
analogy with Ref. 5. The result can be written in the form 

I 

where the summation is over all the resonances on the Fermi 
surface, and y, is the linear damping coefficient in the Ith 
resonance and is equal to 

4n3m,2 (P,) 0 
111 = ( 2 d )  3 p ~ , 2  cos ( P I  (41 

while co is the speed of sound. The difference between the 
nonlinear damping coefficient and the linear one is due to the 
appearance of an additional small factor 2a, 4 1 indicative of 
the efficiency of electron capture by the resonances. 

To analyze the dependence of the absorption coefficient 
(40) on the magnetic field, we examine the behavior of each 
of the coefficients V, ( P I  ) [see Eq. (9) ] that determine the 
contribution of an individual resonance. It is known that in 
the linear theory the absorption is a maximum if the plane 
p, = p, is tangent to the strip k . v = w on the Fermi surface, 
i.e., at the "boundary" points p, =p,. The coefficients V, 
are usually determined at the boundary point itself (or far 
from it) by the stationary-phase m e t h ~ d . ~ . ~  To describe the 
waveform of the oscillations, however, we must know the 
coefficients V, not only at the boundary point, but also in 
some of its vicinity. To calculate the integral (9)  we shall 
therefore use the following procedure. Expanding the argu- 
ment of the exponential in terms of the angle I? in the vicinity 
of the value 9 = w (p, ) ( w  (p, ) is the solution of the equation 
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and we assume here that w(p, ) = 0), we get 

@[ (6 )  =kr-~t-$+16=@, ( w )  + @ , ' ( w )  ( 8 - w )  

where it is taken into account that @;'(w) - k . vl=O. Cal- 
culating the derivatives Q; (w) and Q;" (w) and substituting 
their values in (9 ) , we get 

where Ai(x, ) are Airy functions, and x,, equal to 

is taken at the resonance point p, = p, . Thus, according to 
(42) and (43) the Fourier component of V, (PI ) is a maxi- 
mum when the plane p, =p ,  is tangent to the strip 
k . v = w, i.e., at the boundary point. At the tangency point 
the angle w is equal to zero, as is also the argument x, of the 
Airy function. It is easy to verify that k - v(w) - o, and 
with it x,, becomes larger than zero for convex sections of 
the Fermi surface, and that the Airy function, and hence also 
the coefficient V,, decreases rapidly when the resonance 
moves farther away from the boundary point. If p, <p,, 
however, the argument of x, becomes negative when the 
magnetic field is decreased, and the Airy function oscillates. 
This behavior of the coefficients V, explains, according to 
(40) and (41), the magnetoacoustic oscillations of the ab- 
sorption coefficient: its next burst is produced by the reso- 
nance reaching the boundary point. The oscillation period of 
the absorption coefficient as a function of the magnetic field 
does not depend on the wave amplitude and is determined, 
just as in the linear theory, by the expression 

2ne 
A (B- ' )  = 

ck cos rp I d S l a ~ , ( , ~  

It follows from the foregoing that the nature of the magneto- 
acoustic oscillations and their form are the same in the linear 
and nonlinear regimes, but in the latter case, according to 
(40), the damping coefficient is decreased by 2a, times as a 
result of particle capture. 

Everything said above concerning the behavior of the 
coefficients V, holds true under the condition kr, B 1 ( r ,  is 
the characteristic dimension of the orbit in a plane perpen- 
dicular to the magnetic field). 

As noted above, magnetoacoustic oscillations can be 
due also to the I th resonance reaching an extremum of the 
function aS/dp,. At this point, on the one hand, the elec- 
tron-state density is high, and on the other the dynamics of 
the electron at the I th resonance is not standard. It is of 
interest therefore to consider the magnetoacoustic oscilla- 
tions connected with this extremal point. 

By calculating the work A performed by the wave on the 
particles at the I th resonance and using the distribution func- 
tions (32) and the balance equation (39), we can obtain for 
the nonlinear absorption coefficient the expression 

where Cis given by the integral 

The calculations yield C =  1.98, and r,, is the linear 
damping coefficient at the extremal point. Equation (44) 
determines thus the decrease of the amplitude of the absorp- 
tion peaks with increase of the sound intensity. It  must be 
noted that in contrast to the oscillations connected with the 
boundary points, where the damping decreases according to 
(40) like u, the absorption peaks connected with the 
extremum aS /dp, decrease like u, I. 

In the nonlinear regime there is not only a decrease of 
the oscillation amplitude, but also an increase of the widths 
of the resonance peaks. It was noted earlier that the reso- 
nance described by the Hamiltonian ( 18) takes place when 
the resonance value of PI occurs exactly at the point P,, in 
the magnetic field B, . When the magnetic field deviates from 
this value, the resonance splits into two, as shown in Figs. 2b 
and 2c. A change from one type of motion described by the 
Hamiltonian ( 18) to motion with a pendulum-type Hamil- 
tonian (17) takes place when the separation of the reson- 
ances is of the order of FeX. Obviously, it is this transition 
which determines the absorption width S (B - I )  as a function 
of the reciprocal magnetic field in the nonlinear regime. Us- 
ing the definition of Ex and the resonance condition, we can 
obtain S(B -I): 

A B )  1 6 (B- ' )  = -- 
k,, lp a,, ' 

where I,, is the electron mean free path. Thus, in accordance 
with (45), the peak width S(B -') is a& ' times larger than 
the linear width (see, e.g., Ref. 7). 

We turn now to calculate the work performed by the 
wave on the particles and to determine the sound-absorption 
coefficient for the case of perpendicular propagation. The 
starting point for the calculation of the work per unit time is 
the expression 

Changing in (46) to integration over the new variables x,, 
p,, X, and a, and retaining in the potential energy Uonly the 
resonance term - V, cos a, we obtain after integrating with 
respect to x, the work on the I th resonance: 

A = - - -  eBW j d p ,  dX daJV,g sin a. 
(anfi13 c 

Before proceeding with the calculations we must note 
the following. We know that the main contribution to the 
absorption coefficient in acoustic cyclotrom resonance is 
made by electrons on the section with a cyclotron frequency 
that is extremal with respect to p, . It is precisely for these 
electrons that we calculate the work A when the resonance 
condition w = Iw: is met. The final result does not depend 
on whether the cyclotron frequency is a maximum or a mini- 
mum and, to be specific, we shall assume that the resonance 
lands on a section with the minimum cyclotron frequency. 
For these electrons the connection between p, and the pa- 
rameterx, is, according to (35), 

where the valuep, = p,, corresponds to an extremum of the 
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cyclotron frequency. The expansion has no linear term, for it 
can be easily verified that 

and vanishes when the I th resonance reaches a section with 
extremal cyclotron frequency. The value of the second deriv- 
ative X g  on the extremum is 

1 d ' o  xFrJ = - (+ ) 
J o e 1  dpZ .' 

We change now to integration over the new variables 
XF,x, and r. With allowance for (47) we get 

4 d x  d X , d ~  
d p , d X d a =  -, 

x (XP"(P,,)XF)'" ' 

After integrating and using Eq. (34) [the limits of the inte- 
gration with respect to dXF are given by ( 37) and ( 38) ] we 
get ultimately, for magnetic fields B ensuring satisfaction of 
the resonance condition w = l o r ,  

where 
nlZ 

The numerical value of the integral in the square brackets in 
(48) is 0.038. Using (48) and the definition (39) of the ab- 
sorption coefficient of sound at the cyclotron-resonance 
point w = Iwy: 

where 

is the linear damping coefficient. It can be shown that yo in 
(50) agrees fully with the damping coefficient obtained by 
Kaner.3 

Thus, in the linear regime, if the resonance condition 
w = Iw: is strictly met, i.e., practically at the absorption 
maximum, the damping coefficient decreases in proportion 
to the small nonlinearity parameter raised to the 3/2 power. 
In the Landau nonlinear-damping theory the damping coef- 
ficient is usually linear in the parameter a. In the case consid- 
ered the additional decrease of the damping is due to the 
relative (compared with the linear regime) decrease of the 
characteristic number of electrons participating in the ab- 
sorption near the sectionp, = p,, . The additional small fac- 
tor all2 appears upon integration over dp, : whereas in the 
linear regime the p, width of the interval of effective elec- 
trons is proportional to Y'! ' ,  in the nonlinear regime the ef- 
fective region is proportional to i31 /2 .  On the other hand, it is 
well known that if the coefficient I? is linear in the parameter 
a, the width of the characteristicp, region in the linear and 
nonlinear regimes is determined respectively by the frequen- 

cies Y and 5 .  Note that if the acoustic-cyclotron resonance 
condition is met for an electron group having a cyclotron 
frequency w, (p, ) # m y ,  it can be shown that in this case we 
have 

for any resonance (yo, is the linear absorption coefficient). 
A change in the nonlinear regime should also take place 

in the width (with respect to the reciprocal magnetic field) 
of the resonance-absorption peak. This width can be deter- 
mined from the condition that the distance from the reso- 
nance surface to the Fermi surface should be of the order of7  
in the action variable at ap, value corresponding to an extre- 
mum of the cyclotron frequency. It is easy hence, using the 
resonance condition, to obtain an expression for the absorp- 
tion-peak width in the nonlinear regime: 

where 
dm, 

= (T ) C = ' F , P  ,=p . .  

The ratio of the peak width to the oscillation period A(B -') 
in the reciprocal magnetic field is obviously 5/wr.  We note 
in addition that according to (5 1 ) the nonresonance peaks 
broaden in the nonlinear regime, so that 

where S, (B -') is the peak width in the linear regime. 
We note in conclusion that in the present paper the re- 

sonances ( 1 ) and (2) appearing in oblique and perpendicu- 
lar propagation of a sound wave were assumed to be isolated, 
i.e., the frequency difference w, between the resonances was 
much larger than the resonance width 5. As shown in Ref. 5, 
with contemporary experimental techniques it is possible to 
realize the inverse situation: 

and obtain resonance overlap on a larger part of the Fermi 
surface in a metal or semimetal. Under these conditions the 
electron dynamics becomes stochastic, and magnetoacoustic 
oscillations and acoustic cyclotron resonance cannot be de- 
scribed in the context of the theory developed here. Such a 
calculation will be carried out in a separate paper. 

It should also be noted that nonlinear magnetoacoustic 
oscillations were investigated earlier by K o ~ u b . ~  His main 
assumption was satisfaction of the inequality 

meaning that the Lorentz force acting on an electron is 
weaker than the acoustic-wave strain force. In addition, it 
was assumed that the angle q, between the magnetic field and 
the wave vector of the sound is close to ~ / 2 ,  and that the 
force acting on an electron in the magnetic-field direction is 
weak while the momentump, remain constant. In contrast 
to Ref. 9, we assume in the present paper an angle q, - 1 and a 
strong magnetic field 
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meaning that the parameter b defined by (53) satisfies in this 
case the inequality 

For this reason, the nonlinear behavior, investigated in the 
present paper, of magnetoacoustic oscillations differs sub- 
stantially from Kozub's r e~u l t s .~  He predicted, in particu- 
lar,9 for the T ( B  -') curve new peaks which are missing 
from the linear theory and are connected with the existence 
of resonances defined by the condition 

It can be shown5 that under conditions whose satisfaction 
was assumed above the absorption at half-integer resonances 
( n  = 2)  is proportional to the square of the amplitude of the 
sound wave, whereas absorption at the fundamental reson- 
ances ( 1 ) is proportional to u,- (see (40) 1. Consequent- 
ly, observation of additional absorption peaks caused even 
by the strongest half-integer resonances is not very likely in 
our case. 

"Equation (28) can also be obtained directly from the effective Hamilto- 
nian (11). 
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