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Dynamic equations for the antiferromagnetic vector 1 are used in a study of the structure of 
moving domains in antiferromagnets whose symmetry allows for the occurrence of weak 
ferromagnetism. It is shown that inclusion of terms linear in respect of d l/dt ensures a satisfactory 
description of lowering of the symmetry of a moving domain wall the structure of which is then 
described by equations which are not Lorentz-invariant. The absence of the Lorentz invariance of 
these dynamic equations leads also to the possibility of instability of a moving domain wall. 
Consequently, phase transitions involving changes in the symmetry and structure of a domain 
wall may occur at some critical value of its velocity. This critical velocity can be low compared 
with the limiting velocity of the wall. 

The dynamics of domain walls in weak ferromagnets 
has been investigated experimentally quite thoroughly. A 
theoretical description of the experiments on steady-state 
motion of a domain wall has been based on Lorentz-invar- 
iant dynamic equations for the antiferromagnetic vector 1 
(for a review, see Ref. 1 ). In the Lorentz-invariant models 
the only effect of the motion of a domain wall is a reduction 
of its thickness xo in accordance with the law 

xo-xo( 1 - v2/c2) 

where v is the domain wall velocity and c is the velocity of 
spin waves in the linear part of the dispersion law. The sym- 
metry of a moving domain wall is exactly the same as that of 
a wall at rest. However, the symmetry approach developed 
in Ref. 2 shows that these representations are of limited va- 
lidity. It is shown there that the motion of a domain wall 
usually lowers its symmetry. 

A preliminary analysis of the dynamics of a domain 
wall in a magnetic material of the MnF, type demonstrates 
that allowance for the magnetic anisotropy of a weak ferro- 
magnet in a phenomenological model can lower the symme- 
try of a domain wall, and the limiting velocity v, is then 
considerably less than c. The example used in Ref. 3 demon- 
strates that inclusion of invariants such as m13, m15, etc. 
(where I and m are the components of the antiferromagnetic 
1 and weak ferromagnetic m vectors) in the expression for 
the energy of a weak ferromagnet can alter significantly the 
dynamic characteristics of a domain wall even when the con- 
stants in front of these invariants are very small. 

Since the symmetry of specific weak ferromagnets ad- 
mits a large number of different invariants-consisting of 
the components of the vectors m, 1, and their derivatives- 
we face the question as to which approximation is capable of 
providing a satisfactory description of the nonlinear dynam- 
ics of a weak ferromagnet. We shall adopt the following cri- 
terion: we shall assume that the model is satisfactory if it can 
predict correctly the lowering of the symmetry of a moving 
domain wall (compared with the one at rest) predicted in 
Ref. 2. It is found that a consistent phenomenological de- 
scription of the symmetry of a moving domain wall can al- 
ways be provided by inclusion in the energy density of a weak 
ferromagnet of a term which is of the Dzyaloshinskii interac- 
tion type 

where Mo is the sublattice magnetization and the nature of 
the tensor Du is governed by the magnetic structure of a 
weak ferr~magnet .~ 

A phenomenological model developed using Eq. ( 1 ) 
can be used to predict a number of new never before dis- 
cussed phenomena, such as an instability and dynamic 
modification of a domain wall (phase transition) at a finite 
value of the wall velocity, and to identify the actual condi- 
tions that must be satisfied in order to observe experimental- 
ly these phenomena. 

1. MODEL. GENERAL CONSIDERATIONS 

The dynamics of a weak ferromagnet can be described 
by a Lagrangian 2 {I) 

Here, c = gMo(aS/2) 12; g = 2,u0/6; ,uo is the Bohr 
magneton; a and S are the inhomogeneous and homoge- 
neous exchange constants, respectively; M i  w, (1) is the 
magnetic anisotropy energy. The first three terms in Eq. (2)  
represent the usual Lorentz-invariant Lagrangian of a weak 
ferromagnet'~~ and the last term is related to the Dzyalo- 
shinskii interaction of Eq. ( 1) (see Refs. 3 and 7) .  In this 
description the magnetization M of a weak ferromagnet is 
determined by the vector 1 and by the derivative a Vat:  

The structure of the tensor D, is governed by the sym- 
metry of a weak antiferromagnet4 and the magnitudes of its 
components are determined by the physical nature of the 
Dzyaloshinskii interaction. The main term in w, is due to 
the antisymmetric exchange: wp' = d ""' (n [ml] ) (n is a 
unit vector along the selected axis), but its contribution to 
the Lagrangian reduces to the total derivative with respect to 
time and does not appear at all in the equations of motion. In 
addition to wp', the expression for w, includes a large num- 
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ber of relativistic invariants and these invariants determine 
the effects observed in the dynamics of a domain wall. 

We shall use the angular variables I, = sin 8 cos p, 
I, = sin 8 sin p ,  and I, = cos 8, for the vector 1 and select the 
polar axis e, along the equilibrium direction of the vector 1. 
In terms of these variables, the last term in the Lagrangian 
9 becomes 

where the functions Ai ( 8 , ~ )  and A2(8,p) are determined by 
the structure of w,, i.e., by the tensor Dv( l ) .  The dynamic 
equations for the angular coordinates 8 and p can be ex- 
pressed conveniently in terms of the following "Lorentz-in- 
variant" variables 

where co is a spatial variable along the normal to the domain 
wall plane and v is the wall velocity. Using Eqs. ( 1 ), ( 3  ), and 
(4),  we can write down these equations in the form 

where the dot and the prime denote the derivatives with re- 
spect to T and f,  respectively; M i  w, (8,p) is the anisotropy 
energy. The term with D(8,p) appears because of variation 
of 2, [see Eq. ( 4 ) ] :  

A uniformly moving domain wall corresponds to the 
solution of the type 8 = B ( f )  and p = f.  The structure of a 
domain wall is governed by a system of second-order equa- 
tions 

a wa a0"-aqf2  sin 0 cos 0 - - - vcp' D (0, c p )  -- 
80 (I-u2/c2) '" gM06 - 0, 

8 wa 
a (cp'  sin2 0 )  ' - - + ~ 0 '  D -- (0,cp) 

- 0. acp ( I - v 2 / c 2 )  '" gM,6 (9)  

We shall be concerned mainly with uniaxial crystals and for 
these crystals we have 

w,= (B12) (Zx2+1," +z, (I),  

whereas the expressions for ilr, are given in Table I. 
Equations (6),  (7)  or ( 8 ) ,  (9)  differ from the standard 

equations4s5 by the presence of terms with the first deriva- 
tives with respect to < and T, proportional to the function 
D(8,p). It is these terms that depend on the domain wall 
velocity v and govern the characteristics of the domain-wall 

dynamics. If in the case of some magnetic materials the value 
of D(8,p) is identically equal to zero, the dynamics of a 
domain wall of any type can be "Lorentz-invariant" and at 
any velocity v#O the wall structure should be described by 
expressions that can be deduced from the equations describ- 
ing a domain wall at rest by applying the Lorentz transfor- 
mation of Eq. (5) .  The solution for v = 0 is found readily if 
it corresponds to 8 = 8(<) and p = po = const, where po is 
governed by the relationship dw, (8,p)/apo = 0. We then 
have to solve only one equation for 8(<) and the first integral 
of this equation is known: 

In the case when D(8,p)  = 0 we can readily solve also the 
problem of the stability of a domain wall: a wall at rest is 
stable if aw; /ap > 0; if it is stable (or unstable) for v = 0, it 
remains so at any velocity v < c (Ref. 8).  However, ifD(8,p) 
is not identically equal to zero [and we shall show that 
D(8,p) #O applies to all magnetic materials in which the 
Dzyaloshinskii interaction is possible] the simple solution 
represented by 8 = 8(c) and po = const may not exist for 
v#O. In this case both an analysis of the structure of a do- 
main wall when v#O and an investigation of its stability are 
not trivial tasks. In particular, there are no general methods 
for solving the system of equations (8)-(9). The latest prog- 
ress has been made by finding exactly integrable  example^.^ 
but Eqs. ( 8) and (9)  do not reduce to these examples for any 
one of known weak ferromagnets. 

It is found that a fairly complete analysis can be carried 
out for any weak antiferromagnet either exactly or allowing 
for the natural smallness of the parameters of O/S,  d /  
(Pa) "', etc. where d is the Dzyaloshinskii interaction con- 
stant. Moreover, it is found that the great variety of the be- 
havior of domain walls in different weak ferromagnets can 
be divided into several universal classes. It has been found 
that the variants of lowering of the symmetry of a domain 
wall compared, with the one at rest, pointed out in Ref. 2 
(loss of a geometric center of a domain wall, symmetric or 
antisymmetric with respect to < emergence or tilt of the vec- 
tor 1 from the po = const plane, typical of the v = 0 case and 
denoted by SE and AE, respectively) are largely responsible 
also for the effects at a finite velocity: stabilization of a do- 
main wall on increase in v or a loss of its stability, nature of 
the dynamic modification of a domain wall of one type into a 
wall of a different type, etc. We shall now provide a concrete 
analysis of these relationships. 

2. DYNAMICSOFA DOMAIN WALL WITH cp#const, 0=6(5) 

In an analysis of the motion of a domain wall we face 
first of all the question of whether when u#O we are still left 
with the simple solution with p = po = const and 8 = 8(c) 
for the system of equations (8)-(9) typical of the case when 
v = 0. Obviously, Eqs. (8)  and (9)  have such a solution if 
D(8,p)  and dw/dp vanish for the same value of p = p,. 
Table I allows us to list readily the corresponding cases; it is 
sufficient to write down w(1) in terms of the angular vari- 
ables representing a given ground state of a weak ferromag- 
net. 

In the case of a weak ferromagnet with 1 along the Z axis 
(easy-axis weak ferromagnets) the dependence of W, on p is 
governed by the anisotropy in the basal plane: 5 (8 ,p) .  In 
this case a weak antiferromagnet with an n-fold axis is char- 
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acterized by aw/aq, a sin(nq,). Orthorhombic weak ferro- 
magnets of the orthoferrite type and also easy-plane uniaxial 
weak ferromagnets exhibit a dependence of w on q, governed 
by the terms which are now quadratic in 1 and we then have 
aw/ap a sin2p. In the case of all easy-axis weak ferromag- 
nets with an even [in accordance with the terminology of 
Turov-see Ref. 11 principal axis we have 
D(B,p) a sin(np) and aw,/aq, a sin (nq,). Otherwise, if 
u#O, we have all the solutions p, = ( ? ~ / n )  k, where k is an 
integer, as in the case v = 0. If the principal axis is odd, then 

D(B,q,) a sin(nq, /2) [or it is proportional to cos(nq, /2) ] 
and if v#O only those domain walls "survive" which are 
characterized by k = 2m (k  = 2m + 1 ), whereas in the case 
of the remaining walls we have q, #const and 
1 emerges from the initial rotation plane (symmetrically or 
antisymmetrically). The case of a domain wall with a non- 
planar rotation of 1 will be considered later and we shall now 
return to an analysis of the solutions characterized by 
p0 = const. 

The structure of a domain wall for the case when 
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q, = q,, = const is governed by the function 8(f) and can be 
readily found from the first integral of Eq. (8);  for example, 
in the case of an easy-axis weak ferromagnet, we find that 

where x, = (a//?) the function R is small because of the 
smallness of id/?, and the number a = + 1 governs the sign 
of a domain wall.' In writing down Eq. ( 10) we have allowed 
for the fact that w(8,p) = 0 when 8 = 0. Although the par- 
ticular solution of the ( 10) type with q, = q,, = const is ex- 
actly the same as in the Lorentz-invariant case, the absence 
of the Lorentz invariance in the case of the complete system 
of equations may be manifested in two ways: a )  lowering of 
the symnetry of a domain wall because of a reduction in the 
symmetry of the distribution of M; b)  loss of the stability of a 
domain wall at some finite value of the velocity v. We shall 
see later that these two effects are interrelated. We shall con- 
sider how they are manifested. 

In some weak ferromagnets the symmetry of a moving 
domain wall is exactly the same as for a wall at rest and such 
domain walls can be conveniently called kinematic domain 
walls (Table I ) .  The following feature should be mentioned: 
according to Table I, a domain wall is kinematic if D(8,p) is 
an even function of cos 8, i.e., it is an even function of f if we 
allow for Eq. ( 10). In the case of some other weak ferromag- 
nets which have the domain wall solution q, = q,, = const, 
but are characterized by D(8,p)  a sink@ cos 8, the symme- 
try of a moving wall is less than that of a wall at rest because 
of lowering of the symmetry of the function M(<) .  By way of 
example, we shall consider a domain wall in an orthoferrite 
characterized by 6' = 8(f) and by q, = q,, = 0, z-. In this case 
we readily obtain from Eq. (2)  that 

2M,  4v ae, ICl,=M,=O, M,= --(d, ,+d)c0~0 - ---, 
6 g6Mo dl; 

where (d,, + d )  is the effective Dzyaloshinskii interaction 
constant. It is clear from the above expression that if v # 0, 
the geometric centers of a domain wall found fromthe distri- 
butions I(<) and m(f )  (for the values of f characterized by 
I ,  = 0 and m = 0)  are not identical and we cannot in general 
introduce the concept of a geometric center of a domain wall. 
This loss of the center is a manifestation of the lowering of 
the symmetry of such walls during their motion (Table I ) .  

It therefore follows that all the domain walls character- 
ized by q, = q,, = const and 8 = 8(f) can be divided into 
two classes: kinematic walls and those exhibiting a loss of the 
center. We shall now investigate the stability of these do- 
main walls by writing down 

0=0, ( 5 )  + 6 ( l ; )  e'"', cp=cpa+pe'"'/sin Oo.  (12) 

and finding the spectrum of w 2  for a problem linearized in 
terms of 8 and p. In view of later applications, we shall con- 
sider the problem for an arbitrary domain wall without in- 
voking the condition q, = const. The equations for 9 and p 
can be represented in the form 

where R2 = (wx,,/c)~, x,, = (a//?) 

are the Schrodinger operators, and the other terms are small 
because of the smallness of the parameters D and ii//?: 

P 1 2  s in  0,= ( l lp )  (a2~/acp,ae,)  + (ucp,'/2) [p6 (c2-u2)  1 -'lldDldrp,~ 
+ [cp,'sin 20,+ ( v D / 2 )  [p6  ( c Z - u z ) ]  -".I (dldx-0,'ctg O n ) ,  

Here, D = D(O,,q,,), iir = iir(Oo,po), and the terms lin- 
ear in R are omitted because-according to the calcula- 
tions-they do not influence the stability of a domain wall. 

In the suksequenL analysis it is important20 note that 
the operators HI and H, kave zero eigenvalues HI sin 8, = 0 
for any domain wall and H2(d8,/df) = 0 for a domain wall 
characterized by q,, = const. In the case of an easy axis or an 
or thorhombic~eak fe~romagnet char2cterized b~ GI, g/? 
the operators HI and H, are close to H, , where H, is the 
Schrodinger operator with a nonreflection potential and the 
familiar complete set of the eigenfunctions {ICI,,$,) is de- 
scribed by 

where L is the size of a magnetic sample alcng the normal to 
the domain wall. 

The general system of equations ( 13)-( 14) will be used 
to study the stability of kinematic domain walls and those 
exhibiting loss of their center. In this case we have 
q, = q,, =^const, lI(O,,q,,) = 0, and dD /doo = 0, so that 
F,, = 0, F12 = 0, F2, = 0, and it is sufficignt to consider the 
spectrum of the problem described by (H, + F2,)p = R2p 
in the case of these domain walls. 

Kinematic domain walls 

In the case of all kinematic domain walls both terms in 
F,, are even functions o f f  (Table I ) .  In view of this and 
because of the smallness of iir//?D(/?a) I/', the minimum val- 
ue of the eigenvalue of the problem Kt2 is governed by a first- 
y d e r  perturbation theory correction to the zeroth level of 
H2 : 
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where 

The following natural result is obtained from Eq. (21 ) : 
if v = 0, a domain wall is stable if d 25/dpi > 0, i.e., the sta- 
bility depends on the energy conditions. This answer is valid 
for any domain wall at rest, including a domain wall exhibit- 
ing loss of its center or nonplanar rotation of 1 (specific ex- 
pressions for R2 will be given later). 

However, if v#O, contributions of the second term to 
Eq. (21) begin to manifest themselves and at some value of 
the velocity we find that R2 may reverse sign, meaning do- 
main-wall instability. It is interesting that the sign of the 
second term in the case of these kinematic domain walls de- 
pends on the sign of the velocity, so that the stability of a 
domain wall depends on the direction of its motion. This 
result can be made clearer by noting that in the case of a 
kinematic domain wall we have D(8,p) ccd(sin 8 )2m+ ' ,  
where m = 1, 2, ... (Table I ) .  We therefore have 
e fD(8 ,p)  a dxoa(sin 8)2'm + ", where a = + 1 determines 
the sign of a domain wall, i.e., the sign of the vector 1 in the 
ground state of a weak ferromagnet when 6 = + m [see Eq. 
( 10) 1. Therefore, the velocity occurs in the combination vud 
in the condition of stability of a kinematic domain wall is 
given by Eq. (21 ), which once again demonstrates that if 
M( + W )  =0 ,  the sign of the quantity d l (  + m )  can be 
found by dynamic experiments (the question of determina- 
tion of the sign of d 1 is discussed in Ref. 10). Therefore, an 
experimental study of the dynamics of a kinematic domain 
wall can be used to find the sign of d 1 (forced motion of a 
domain wall in antiferromagnetic phases of weak ferromag- 
nets was achieved in the experiments described in Ref. 11 
and other methods for an experimental study of such dy- 
namics are proposed in Ref. 12). 

By way of example we shall give the value of R2 for the 
easy-axis phase of tetragonal weak ferromagnets with the 
even principal axis for which (see Table I )  we have d 'w/dg, 
= 2P4 sin4 8 cos 4p  and dD /dpo = 4d sin68 cos 447: 

A similar result [presence of identical angular factors in 
front ofboth terms in Eq. (21 ) 1 applies to all those magnetic 
phases of weak ferromagnets which have only kinematic do- 
main walls. For example, in the case of kinematic domain 
walls in orthorhombic weak ferromagnets or in the easy-axis 
phase of hexagonal weak ferromagnets with an even axis we 
have, respectively, 

Such "symmetry-governed" kinematic domain walls 
behave as follows (Fig. 1). If v = 0, one possible kinematic 
domain wall is stable [for example, in the case of a weak 
ferromagnet with the 41+ ' axis and with p ,>  0 this is a 

domain wall with cos 4p0 > 0, i.e., with po = ( ~ / 2 ) k f .  This 
domain wall loses its stability at a specific value of the wall 
velocity which is v = + u, if od < 0 or v = - v, if a d  > 0; at 
these values of v another domain wall of the same type be- 
comes stable [cp, = ( ~ / 4 )  (2k + 1 ) ]. It should be noted 
that according to Eq. (22) the quantity 

contains a ratio of small parameters P,/d aP4/P and (/?/ 
6 )  I/', and can be small compared with the value of c. Expres- 
sions of the same type can readily be obtained for other kine- 
matic domain walls. The value of v, is particularly small in 
the case of hexagonal weak ferromagnets characterized by 
p6/P"Io-3. 

The stability diagram in Fig. 1 is typical of all the sym- 
metry-governed kinematic domain walls. However, in the 
case of some weak ferromagnets (those with the 41 - ' axis, or 
cubic materials-see Table I )  kinematic domain walls may 
coexist with domain walls exhibiting a symmetric emergence 
of 1 out of a plane. Their behavior is different. We shall con- 
sider this behavior by discussing the example of an easy- 
phase axis of a weak ferromagnet of the MnF2 type with the 
41. - ' axis. In this phase a domain wall is kinematic only if 
sin 2p0 = 0, i.e., if cos 4p0 = 1. Allowing for possible values 
of po and the explicit form of D(B,p), we find from the gen- 
eral expression for R2 that 

and this means that the dependence of R2 on p0 is different 
from that given by Eq. (22). It follows from Eq. (24) that if 
for v = 0 there are two stable kinematic domain walls with 
rotation of 1 in a plane containing the z axis and one of the 
odd twofold x (p, = 0 , ~ )  or y (47, = n/2 ,3~/2)  axes, then 
both these kinematic walls remain stable only if lul < u,, 
where 

A further increase in the absolute value of the velocity 
causes each of these domain walls to lose their stability: one 
when v > 0 and the other when v < 0 (Fig. 2). However, if/?, 
<O, then at low velocities all kinematic domain walls are 
unstable, but they may become stable in the range iul > v, 
(one when v > v, and the other when v < - u,), as demon- 
strated below in Fig. 4. 

We thus find that in spite of some differences an analy- 
sis demonstrates a number of common properties of domain 
walls such as the asymmetry of the ranges of their stability 
relative to the sign of the velocity u and a linear dependence 
of v, on the anisotropy constant p in the basal plane: v, 
z @/dl (6/P) whenD-0. 

FIG. 1 .  Ranges of stability of kinematic domain walls in a weak ferromag- 
net of the 4: + ' type plotted for the parametersfid :, 0 and ud > 0. Region I: 
po = (?r/4)  ( 2 k  + 1 ) ;  region 11: p,, = (77/2)k.  

178 Sov. Phys. JETP 70 ( I ) ,  January 1990 



FIG. 2. Ranges of stability of kinematic domain walls in a weak ferromag- 
net of the 4:-' type when fl, > 0 and ad > 0. Region I: q, = ~ / 2 ,  3 ~ / 2 ;  
region 11: q, = 0, R. 

Domain walls with loss of the center 

In the case of domain walls exhibiting a loss of their 
center the dependence f12(u) is different. As pointed out 
above (see also Table I ) ,  they are characterized by 
D(60(l),g,o) = - D o  - g ,  i.e., F22(l) 
= - F2,( - c). Therefore, the dynamic term in F,, con- 

tributes to f12 only in the second order of perturbation theo- 
ry. This contribution is automatically negative. The value of 
f12 for domain walls with loss of their center is obtained quite 
readily: 

where 

JkJ,' Jk = d i  
L'"D (00, q~o) $o$k 

DZ- I a n x .  
- - - 2 (p6) "> sin 0, ' 

A 

and go and $, are the eigenfunctions ofHo [see Eq. ( 16) 1. It 
follows from Eq. (21) that the stability conditions of a do- 
main wall are not dependent on the sign of the velocity or on 
the value of ud: if (0 ) > 0, it is found that a domain wall is 
stable if v = 0, but when the velocity is increased the value of 
f12 decreases and such a wall becomes unstable at velocities 

I u /  >u,, where 

However, if (B ) < 0, then a domain wall with loss of the 
center is unstable for any value of the velocity. We shall show 
below that in this case domain walls with an antisymmetric 
emergence of1 from a plane are stable. The values ofD ', ( p  ), 
and v, can easily be found for any weak ferromagnets in 
which domain walls with loss of the center can exist. For 
example, in the case of a weak ferromagnet of the 2; - '2; + ' 
type (orthoferrites), we have 

It should be noted that domain walls with loss of the center 
are of special interest because they have been observed ex- 
perimentally (for example, in dysprosium orthoferrite at 
temperatures T < 150 K-see Ref. 13) and they separate do- 
mains with different values of the magnetization M, so that it 
is easy to set such domain walls in forced motion by applica- 
tion of an external magnetic field. 

Having considered the dynamics and stability of all do- 
main walls characterized by g, = const and by the Lorentz- 
invariant dependence ofx - vt, we shall turn back to Table I. 

We can easily see from this table that in the case of some 
easy-axis weak ferromagnetic phases we can expect only 
kinematic domain walls. They exhibit the behavior shown in 
Fig. 1: at any velocity one of the domain walls with the rota- 
tion of 1 in one of two crystallographically inequivalent 
planes, for example ( YZ) [or (XY) for orthoferrites], is 
stable. When the velocity is altered, one domain wall may 
lose its stability and then the second becomes stable. A full 
description of such kinematic domain walls is given above. 

In the case of other magnetic phases of weak ferromag- 
nets (of the 41 - ' type, llle,; cubic) we can expect both kine- 
matic domain walls as well as domain walls with symmetric 
emergence (SE) of 1 from a plane. In this case we shall show 
that there are values of u when none of the kinematic domain 
walls is stable [see Eq. (24) at p4 < 01. 

It follows from Eq. (26) that a domain wall with loss of 
the center becomes unstable on increase in v.  In accordance 
with Table I, such domain walls exist only in those weak 
ferromagnetic phases for which domain walls with an anti- 
symmetric emergence (AE) from a plane are possible. From 
these two observations we can easily deduce that in the case 
of such weak ferromagnets a change in the velocity should 
modify a domain wall with R.p. 315 E into a domain wall 
with emergence of 1 from a plane: a kinematic domain wall 
changes to one with SE and a domain wall with loss of the 
center changes to one with AE. We shall now analyze the 
dynamics and stability of these walls. 

3. MOTION OF A DOMAIN WALL WITH ANTISYMMETRIC 
EMERGENCE 

It is clear from Table I that domain walls with AE are 
typical of many weak ferromagnets. The majority of the ex- 
periments on dynamics of high-velocity walls have been car- 
ried out in orthorhombic weak ferromagnets such as yttrium 
and thulium orthoferrites' in which these walls are of the AE 
type. We shall therefore consider the example of an orthofer- 
rite in a weak ferromagnetic phase llla,mllc,a,c are the ortho- 
ferrite axes). ',I4 The directions of x ,  y, and z will be selected 
along the c, b, and a axes. If we allow for the specific form of 
5 and of D(B,g,), we can write down the equation for g, of an 
orthoferrite in the form 

xoZ(cp'sinz 0 ) ' + ~  sinZ 0 sin cp cos cp 

+xoD(u)O'sinZ 0 cos 0 cos rp=O, 

where 

Equation (30) has a solution g, = + r / 2  correspond- 
ing to a domain wall with loss of the center and rotation of 1 
in the ab plane (domain wall ofthe ab type. ) If u = 0, there is 
also a solution g, = 0 describing a static domain wall of the ac 
type (such domain walls occur in practically all orthofer- 
rites at room temperature-see Ref. 1 ) .  However, if v#O,  
there is clearly no solution of Eq. (30) of the g, = 0 type. 

As pointed out already, a rigorous analysis of the sys- 
tem of equations (8)-(9) is not possible in the general case, 
but because of the inequality D(v) < 1, we can find an ap- 
proximate solution of Eq. (30). This solution corresponds to 
g, a [D(v)/max ( 1 , ~ )  ] < 1. We recall that we always have 
D(v) < 1 with the exception of a narrow range of values of v 
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close to c where the condition Ic - vl 6. c (d  '/@) < C  is satis- 
fied. Therefore, we can find g, using the linearized variant of 
Eq. (30): 

~ , ~ ( c p '  sinZ0)'+&cp sin2 0=-x,D(u)€If sinZ 0 cos 8. (30') 

The differential operator on the left-hand side of Eq. 
(30) can be modified b ~ t h e  substitutionp ~p sin 0, which 
reduces it to the form H, + E U ( X ) ,  where H, is the Schro- 
dinger operator of Eq. ( 16) derived above. Therefore, the 
explicit solution of this equation can easily be found ̂ by ex- 
panding p(5) in terms of known eigenfunctions of H,. In 
view of the antisymmetry of the right-hand side of Eq. (30), 
the term with $o is missing from the expansion and we have 

7 -  

dk ($,'8' sin 8, cos 0,) 
cp sin 0.=-D (u )  ZQ 

l+k2+& 
. (31) 

-> 

Hence, we obtain the above inequality p a D(u) ( 1 
(the exception to this rule is represented by the case E= - 1, 
i.e., by a region near the temperature of lability of the phase 
with weak ferromagnetism) . Next, assuming that 
0 = 8, + A0, where 8, is the solution of Eq. (8)  when g, = 0 
and linearizing Eq. (8) with respect to A8, we can easily find 
the structure of a domain wall of the ac type with precision 
sufficient for investigating its stability [p a D(u), 
A0aD2(u) ] .  

For the sake of brevity, we shall consider only the limit- 
ing cases. If e < 1, and E) 1, Eq. (3  1 ) simplifies greatly and 
the value of g, can be written explicitly. For example, if E ) 1, 
we then have 

The solution of Eq. (31 ) is obtained for the case of a 
domain wall with AE easy plane wea antiferromagnet and an 
orthoferrite in the limit P-0 (near a transition of the Morin 
type). At low values of E the integral in Eq. (31) has no 
singularities so that we can assume that E = 0. We then have 

In both cases the solution exists right up to v = v,. The 
value of v, can be estimated from the condition D = 1 and it is 
close to the value of c (Ref. 15). According to the expres- 
sions obtained earlier [Eqs. (26)-(29) ] it is the E( 1 case 
which is most interesting from the point of view of an insta- 
bility ofa domain wall with loss of the center, because then u, - 0 when E+O. We shall confine our analysis to this case. It 
follows from Eqs. (31') and (8) that if E-0, we can readily 
obtain the equation for 0(5) : 

~ ~ ' 0 " - s i n  0  cos 0+t/3D' sill3 0 cos 0=Q. 

Its first integral is 

which makes it possible to find the solution of 0({) explicit- 
ly, i.e., to determine the structure of a domain wall with AE. 

We shall now study the stability of this wall. It should 
be pointed out that because of Eq. (3 1 ) and structural equa- 
tions for 0(5),  we have F,,, F2, a D, F,,, F,, a B, D 2  in the 
eigenvalue problem represented by Eqs. ( 13) and ( 14). We 

shall seek 9(5) and p(5) i n  the form of an expansion in 
terms of eigenfunctions of H ,  : 

The coefficients A, B, a,, and 6, are described by an infinite 
series of algebraic equations. We can easily show that in the 
first approximation with respect to D(v) , we have 

i.e., a, a Db, 6, a DA. This makes it possible to reduce the 
problem to two algebraic equations for A and B. These equa- 
ttions can be solved giving two values of R2, one of which 
vanishes and represents translation of a domain wall as a 
whole, whereas in the case of the other we obtain an expres- 
sion 

which contains cumbersome integrals. Direct calculation of 
these integrals yields an expression similar in structure to 
Eq. ( 2 6 ) ,  but with the opposite signs of the coefficients in 
front of D2(u) (i.e., in front of u2): 

It follows from Eq. ( 33 ) that R2 rises on increase in u. 
This means that if a static domain wall with AE is stable in 
orthoferrite (E < 0), it remains stable at all velocities right 
up to u = v, --,c. Therefore, although the symmetry of a do- 
main wall with AE increases under dynamic conditions and 
its structure becomes more complex, its limiting velocity is 
practically the same as in the Lorentz-invariant theory. 

Even if a static domain wall with AE is unstable 
[R2(0)  < 0, i.e., when E > 01, it becomes stable for v > u., 
where 

This means that an interesting dynamic stabilization effect 
appears in the case of a domain wall which is unstable in the 
static case. 

These effects-the onset of instability of a domain wall 
with loss of the center which occurs at velocities v > u, and 
stabilization of a domain wall with AE when v >  u,-may 
result in a dynamic modification of the structure of a domain 
wall. This modification can be regarded as a characteristic 
phase transition. A comparison of the values of u, and u. 
defined respectively by Eqs. (28) and (33 ), leads to the 
conclusion that u, > u., i.e., that the regions of stability of 
domain walls with loss of the center and those with AE over- 
lap. 

We shall now calculate the energy of both domain walls 
and express it as a function of the momentum P of a domain 
wall, which is defined as the total momentum of the field of a 
vector 1 based on the Lagrangian of Eq. (2 )  (for details see 
Ref. 16). The values of the energy, velocity, and momentum 
are related by 
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Characteristic values of the velocity v, and v, corre- 
spond to the values of the momentum PC = P,, (v,), 
P. = PA, (v, ), and P. <PC, where LC denotes the loss of the 
center and AE denotes asymmetric emergence from a plane. 
The dependences EAE (P) and EL, (P) can be represented in 
the form 

ELCY(P=E,~+C~P~,  EAE2 (P)  =E2Z+~ZP2 (1-4d2/~6), (35) 

where 

are the known energies of static domain walls. In the case of 
interest to us the occurrence of a phase transition ( E  < 0)  at 
v = 0 is more likely from the energy point of view in the case 
of a domain wall with loss the center than one with AE. An 
increase in the momentum causes the energy of a domain 
wall with AE to rise more slowly than that with the loss of 
the center and they become equal when 
P = P, z (PC + P ,  )/2 (see Fig. 3). Consequently, the (do- 
main wall with the loss of the center) s (domain wall with 
AE modification) is typically first-order phase transition (E 
is the "thermodynamic potential" dependent on the external 
parameter P) .  The conclusion that they are first-order phase 
transition agrees with the circumstance that the symmetry 
groups of domain walls with the loss of the center and with 
AE are not related by a ~ubgroup.~ '  

The "growth" phase transition (domain wall with AE) 
F? (domain wall with loss of the center) may be manifested 
experimentally as an anomaly (kink) in the dependence of 
the velocity of forced motion of a domain wall on the applied 
field Hor it may give rise to a hysteresis of this dependence in 
the range of velocities u. < v < vc . The values of v. and v ,  can 
be small in the limit 6-0, i.e., near the point of a phase 
transition one static domain to another. Such a transition 
has been observed experimentally in dysprosium orthofer- 
rite DyFeO, at T = 155 K (Ref. 13). A crystal ofDyFe0, is 
a good candidate for an object in which forced motion of a 

FIG. 3. E ( P )  dependences for a domain wall with asymmetric emergence 
(curve 1 )  and for a domain wall with loss of the center (curve 2 )  in the 
case when the energies of these domain walls obey E,, (0)  > EL, ( 0 )  
(schematic representation). In the region where the domain wall is unsta- 
ble the dependence is shown by a dashed line. 

domain wall may give rise to a (domain wall with loss of the 
center) s (domain wall with AE) phase transition. 

The above results of an analysis of the structure of a 
domain wall with AE in orthoferrites and the concept of a 
(domain wall with loss of the center-domain wall with 
AE) phase transition as a result of a change in the velocity 
may be applied also to other weak ferromagnets in which 
domain walls with AE and those with loss of the center can 
exist (Table I ) .  The main relationships are still conserved: 
destabilization of a domain wall with loss of the center and 
stabilization of a domain wall with AE on increase in the 
velocity, the order of the phase transition, etc. Only the val- 
ues of v, and v, may be different, for example, in the case of 
easy-plane weak ferromagnets v, and vc are close to c. We 
can effectively speak of a certain unified class of behavior of 
domain walls in all weak ferromagnets in which domain 
walls with loss of the center and those with AE can exist. 

4. MOTION OF A DOMAIN WALL WITH SYMMETRIC 
EMERGENCE 

An analysis of the behavior of a domain wall with sym- 
metric emergence (SE) of 1 from a plane will be made by 
considering a tetragonal weak ferromagnet with an odd easy 
axis (easy axis of the 41 - ' type). Such a structure is encoun- 
tered, for example, in MnF, which is a thoroughly investi- 
gated magnetic material. 

Equation (9) for the angle q, derived allowing for the 
explicit form of iir(6,q) and D(6,p) for a weak ferromagnet 
of the MnF, type becomes 

a[cpf sinZ 01'-p4 sin4 0 sin 4q 

u dxoO' + sin3 0 sin 2141=0. 
gSM, [I-u2/c" 

It follows from Eq. ( 1 1 ) that 

roe' sin 0-0 sin2 0 [ I +  (P,/2/3) sinZ 01. 

If we drop the small term with P4 /P we find that Eq. (36) 
has the exact solution q, ' = 0, q, = q,,(v), where 

21, cos avo= [vI(cZ-u2) I h ]  [od/ (PG)"!]. 

or 
cos 2cpo=-sign (ad) (ulu,)  (~~-v ,~ ) ' " ( c~-z . ' ) - "~  

' (37) 
v,=c [1+9pdZ/6fiL] - I .  

IfD4 /Pis small but finite, there is no q, = const solution but 
we can show that the angle q, varies over distances of the 
order of (a/P4) 'I2> (a/P) 'I2 and in the region of a domain 
wall ( 5  5 x,) the approximate solution q, = q,,(v) describes 
the situation satisfactorily. It follows from Eq. (37) that in 
the limit u-0 we have q,, = ( r / 4 )  (2k + 1) which corre- 
sponds to a static domain wall with SE. An increase in the 
velocity causes q,, ( v )  to change and in the limit v-+ + vc we 
have cos 2p,- + sign (ad) ,  i.e., q,, = (r /2)k.  Therefore, 
if I vl = v, a domain wall with SE reduces to one of the kine- 
matic domain walls discussed in Sec. 2. If, for example, we 
have a d  > 0 and q,, = n-/4 when v = 0, then for v - + v, or 
u - - vc we have q,,- n-/2 or p0 - 0, respectively. Hence it is 
clear that the value of u, represents the limiting velocity of 
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motion of a domain wall with SE. I t  should be noted that v, is 
identical with the characteristic value of the velocity of a 
kinematic domain wall introduced above [see Eq. (25) ] for 
a magnetic material of the 4: - ' type. 

We shall estimate v, for MnF, which is characterized 
by c = c,, = 2.3 x lo3 m/s and c = c, = 1.7X lo3 m/s in the 
case of an inhomogeneity directed along and at right-angles 
to the z axis, respectively. If we assume in our estimates that 
c -- 2 X lo3 m/s, H,  = SMo /2 = 560 kOe, H,, (D6) ' I 2  Mo/ 
2 -9 93 kOe, as well as dMo -9 2 kOe and bMo -- 30 Oe (Ref. 
18), we find that u, =: 60 m/s and this value is much less than 
C. 

In an analysis of the stability of a domain wall SE of the 
type described by Eq. (37) we note that, in contrast to a 
domain wall with AE, in this case the value of 4, for the 
former all contains a term which is linear in Dv and propor- 
tional to the symmetric function (: 

The remaining Fik are either small ( cc D 2 ,  or contain anti- 
symmetric functions c. Therefore, the instability effects ap- 
pear even in the first order of perturbation theory and the 
following expression is readily found for R2: 

Q2=1/3p4 cos 4qO-4vod[P6 (c2-uZ) 1-"'cos 29,. (39) 

It should be noted that the above expression applies to 
any domain wall characterized by q, = q,, = const in a weak 
ferromagnet of the MnF, type. In particular, if q,, = n-k /2, it 
reduces to Eq. (24) given above and describing R2 for a 
kinematic domain wall in similar weak ferromagnets. Em- 
ploying the explicit form of q,,(u) given by Eq. (37) for a 
domain wall with SE and using the value of v, , we can re- 
write the above expression in the form 

I Pc+fil  ( u l v c )  [ ( C L U ; )  / (c2-u2) ] "', KDW, qO=O, 

QZ = - b c + ~ c  (uVuC2)  [ (c"v:) / (cZ-u2) 1, DWSE, O<q=qo (v) <n/2 ,  

where KDW denotes a kinematic domain wall and DWSE 
denotes a domain wall with symmetric emergence, a form 
that can be used to analyze a domain wall of any type and 
transitions between domain walls [it is assumed specifically 
in Eq. (40) that a d  > 01. It readily follows from the summa- 
rizing expression that the form of the stability diagram of a 
domain wall depends strongly on the sign of p4. If p, < 0, 
then a domain wall with SE characterized by 
q, = po(u) = const is never unstable and there are only solu- 
tions of the kinematic domain wall type with q,, = ~ k / 2 ,  
discussed in Sec. 2 (see Fig. 2). However, ifp, < 0, then for 
v = 0 we find that a domain wall with SE and with q,, = n-/4 
is stable. An increase in its velocity changes the value of q,, 
(in the case when a d  > 0 it rises for v < 0 and falls for v > 0 
and becomes equal to n-/2 or 0 respectively for v = - u, and 
v = + u, ). It follows from Eq. (40) that a domain wall with 
SE is stable throughout the range of its existence. The stabil- 
ity regions of domain walls with SE do not overlap the stabil- 
ity regions of kinematic domain walls, but they are in contact 
at points v = v, (domain walls with SE and those with 
q, = n-/2) and v = - u, (domain walls with SE and those 
with q, = 0).  This resembles a pattern of two second-order 
(kinematic domain walls  domain wall with SE) phase tran- 
sitions accompanied by lowering of the symmetry of a do- 
main wall when the angles p0(u) in the range n-/2 - q,,(v) 
represent the order parameters. 

This interpretation is confirmed if we consider energies 
of domain walls (kinematic E for q, = 0, n/2 and domain 
walls with AE) as a function of the momentum of a domain 
wall. In the case of all these domain walls if we use the condi- 
tion p0-9 const, we obtain 

The relationship (41 ) for kinematic domain walls gives 
rise to the usual Lorentz-invariant relationship between E 
and P: 

where Eo = 2MO2(ap) 'I2 is the energy of a kinematic do- 
main wall at rest. In the case of a domain wall with SE the 
relationship between E and Pis more complex because of the 
dependence q, = q,,(u) or q, = po(P). The results of an anal- 
ysis are plotted in Fig. 4. We can see that the function E(P) 
demonstrates a behavior typical of the dependence of the 
thermodynamic potential E on an external parameter P in 
the case of a second-order phase transition. At the transition 
point, where 

E'= E(rF0) uE ( 9 0 )  
v z , c z )  I = (C".vz) '12 ' 

FIG. 4. E( P) dependence for a domain wall in a weak ferromagnet of the 
(4  1 ) 41 - ' type when P4 < 0; the specific case when od > 0 is plotted. The 

dashed line is the dependence for a kinematic domain wall in the region of 
E (qo)  =2M,2 ( a b ) ' " { I f  (p,/6P)sinZ 2 q o )  its instability. 
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the derivative dE /dPis continuous, whereas d *E /dP has a 
discontinuity. It should be pointed out that the E(u) depen- 
dence at v = v, exhibits a discontinuity of the derivative dE / 
dv, indicating that it is the momentum which is the natural 
parameter for the description of motion-induced phase tran- 
sitions in domain walls. 

5. DISCUSSION OF RESULTS 

The above phenomenological analysis makes it possi- 
ble, firstly, to consider quantitatively the predicted2s3 lower- 
ing of the symmetry of a moving domain wall, compared 
with a static wall, which appear at a velocity no matter how 
low and, secondly, to predict the loss of stability by domain 
walls and phase transitions between different walls at a finite 
value of the velocity. We shall now consider the general rela- 
tionships governing the manifestation of these effects. 

Our analysis shows that at a low velocity the distortions 
of the structure of a domain wall are usually small. An indi- 
cation of the occurrence or otherwise of symmetry lowering 
in the spirit of Refs. 2 and 15 is insufficient to judge the 
limiting velocity of a domain wall. The experimentally deter- 
mined limiting velocity is governed in the case of all walls by 
the dynamic loss of the wall stability. The only exception is a 
domain wall with a symmetric emergence on a plane in a 
tetragonal weak ferromagnet with the 4: - ' axis; such a do- 
main wall is stable throughout the existence of the relevant 
solution. 

Our analysis has revealed a number of general relation- 
ships on dynamic destabilization of domain walls. These re- 
lationships can be formulated by identifying three types of 
behavior. 

1. Kinematic domain walls become unstable in all weak 
ferromagnets only for one sign of the velocity, more accu- 
rately the sign of the quantity dvl( + w ). If the symmetry 
admits only the existence of kinematic domain walls, we 
then have the behavior illustrated in Fig. 1. 

2. Domain walls with loss of the center can exist only in 
those phases of weak ferromagnets which contain domain 
walls with asymmetric emergence from a plane. An increase 
in the velocity always destabilizes the former and-stabilizes 
the latter. If at v = 0 a domain wall with loss of the center is 
stable, then at a finite value of the velocity a first-order phase 
transition takes place from such a domain wall to one with 
asymmetric emergence. The value of the velocity at this 
transition may be low for orthoferrites and easy-axis weak 
ferromagnets, but it may be close to c for easy-plane weak 
ferromagnets. 

3. A domain wall with symmetric emergence from a 
plane becomes stabilized on increase of velocity in the case of 
weak ferromagnetic phases listed in Table I, becomes unsta- 
ble at Iul = u, and transforms at v = + v, and v = - u, 
into two different but equivalent kinematic domain walls 
(Figs. 2 and 4), where the value of v, is low. In all other 
weak ferromagnets, both those listed in Table I and also or- 
thorhombic and low-symmetry phases not listed, the behav- 
ior of a domain wall can be described by assigning it to one of 
the above classes. 

The dynamic-phase-transition effects have been ob- 
served experimentally in forced motion of domain walls in- 
volving translation and vibrations of these walls.' They are 

manifested, for example, by a dependence of the domain- 
wall velocity on the applied field. The typical velocities u, 
and v, can be low in the case of many weak ferromagnets. 
One other possible manifestation follows from an analysis of 
quasi-one-dimensional weak ferromagnets in which domain 
walls have a finite energy, play the role of elementary pertur- 
bations, and determine-for example-dynamic neutron 
scattering.I9 The thermodynamic and response functions of 
such weak ferromagnets should have singularities in the case 
when the thermal velocity of a domain wall reaches the value 
u*.  

We are grateful to V. G. Bar'yakhtar and V. I. Ozhogin 
for discussing the results. 

"In writing down Eq. ( 10) we must generally speaking include invariants 
of the type I:, I:, etc. and the contribution of these to O(<) may be 
comparable with the contribution of E. However, their inclusion does 
not affect the symmetry of a domain wall or, which is most important, 
the stability criterion of a domain wall, so that for the sake ofbrevity they 
are omitted. 

''If we allow for the fourth-order anisotropy, we find that a (domain wall 
with loss of the centersdomain wall with asymmetric emergence) phase 
transition may occur in the form of two second-order phase transitions 
via the least symmetric domain wall, in accordance with the scheme 
(domain wall with loss ofthe center =domain wall with least symmetry 
*domain wall with asymmetric emergence). A discussion of details of 
this transition is outside the scope of the present paper, but it is consid- 
ered in Ref. 17 in the case of static domain walls. 
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