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The energy levels and the wave eigenfunctions of the cyanogen groups are found using a cubic 
potential with eight minima. These eigenfunctions are employed to obtain a finite-dimensional 
representation of the Hubbard operators which describe the interaction of cyanogen groups with 
one another and also the interaction of these groups with elastic strains. The latter interaction is 
shown to be responsible for two high-temperature first-order phase transitions: from the cubic 
0 :, (Z = 1 ) phase to the trigonal D :7, (z = 1 ) phase, and then to the orthorhombic D ::, (z = 1 ) 
phase with the appropriate quadrupole ordering of the cyanogen group. These phase transitions 
are accompanied by distortions of the cyanogen-group potentials. In particular, in the rhombic 
phase the potential can have two or four minima in the equilibrium orientation of the cyanogen 
groups along the [ 1 101 axis. It is shown that further cooling results in antiferromagnetic ordering 
of the dipole interactions of the cyanide groups. A specific example of KCN is considered. 

1. INTRODUCTION 

It is well known that ferroelectrics with a one-particle 
two-minimum (two-well) potential, such as KH,PO,, 
NaNO,, etc., are described satisfactorily by the pseudospin 
f~rmalism."~ In fact, if the wells are sufficiently deep, we can 
ignore vibrations of particles inside each well and consider 
the two lowest states split by the tunneling. These two states 
make it possible to represent the interactions between the 
particles as of the spin-spin type. However, there is an enor- 
mous number of crystals in which phase transitions involve 
ordering of rigid molecular groups that rotate in multimin- 
ima potentials. In this case the description requires a large 
number of quantum states la) of a molecule. Therefore, in- 
stead of the Pauli matrices it is necessary to use other opera- 
tors. The Hubbard operators3 are most convenient for this 
purpose and nowadays they are being used successfully in 
describing quantum magnetic materials with an arbitrary 
spin and an arbitrary ani~otropy.~~' 

The principal feature of such a description of the rotat- 
able molecules is that the symmetry of the system is used 
during the initial stage because the eigenstates of a molecule 
considered allowing for the crystal potential can be classified 
in accordance with the irreducible representations of the 
symmetry group G of a ~ r y s t a l . ~  The interactions between 
the molecules can also be described using the same symme- 
try classification of the eigenstates, so that there is no diffi- 
culty in identifying the interactions responsible for sponta- 
neous symmetry breaking, because it is accompanied by 
mixing of the states of the irreducible representation G. 

We shall apply this approach to alkali-metal cyanides. 
These compounds were selected for two reasons. Firstly, the 
mobile molecular cyanogen groups CN are the simplest, 
which helps in solving the quantum-mechanical problem, 
but on the other hand their phase diagrams are quite com- 
plex. Secondly, a microscopic theory of alkali metal cyanides 
is available7-'' and this theory describes the CN groups by 
spherical harmonics. We shall use this theory in the present 
treatment. 

2. SELECTION OF THE HAMlLTONlAN 

We shall describe a sequence of phase transitions by 
defining the Hamiltonian of a crystal and its initial high- 

temperature cubic phase 02 in which an MCN crystal 
(where M = K, Na, or Rb) has a structure similar to NaCl. 
It is shown in Fig. 1 that each cyanogen group is in a poten- 
tial formed by the short-range interactions of atoms in this 
group, with the octahedral environment consisting of six 
M+ ions in the first coordination sphere. This interaction 
will be approximated by the repulsive Born-Mayer potential 

where x,, = xi + x,; x, are the instantaneous positions of 
the center of mass of the ith cyanogen group; x, is the posi- 
tion of thepth M+ ion; z = (sin 8 cos p, sin 8 sin p, cos 8) 
is a unit vector defining the cyanogen group orientation. 

The lattice degrees of freedom and the lattice instability 
of the phase transition can be allowed for by expanding the 
distances in terms of elastic strains (see Ref. 1 1 ) : 

where R, are the equilibrium states between the cyanogen 
groups and the M+ ions. Substituting Eq. (2)  into Eq. ( 1 ) 
and expanding in terms of uaD,  we find that the cyanogen 
group potential has two components. The first is governed 

FIG. 1. Cubic phase of KCN with the NaCl structure. The continuous 
lines define the octahedron formed by the nearest-neighbor K + ions. The 
coordinate axes x, y, and z coincide with the crystallographic axes. 
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by the equilibrium distances between the cyanogen groups 
and the M +  ions and depends only on z, so that it governs 
the orientational potential of the cyanogen group 

where 
6 

The second component of the potential describes the interac- 
tion of the orientational degrees of freedom with elastic 
strains: 

6 

Now, using Eq. (3 ), we can write down the Hamilto- 
nian of the cyanogen group in the form 

N 

where I is the moment of inertia of khe cyanogen group 
amounting to 1.48 x 10 - 39 g.cm2 and L is the angular mo- 
mentum of the cyanogen group. The eigenfunctions of (6)  
are Ip,) and belong to the same energy level E: and are 
characterized by an irreducible repre~entation.~ Therefore, 

N 

where r labels the irreducible representations G. Among the 
irreducible representations of the 0, group there are the 
one-dimensional A ,, A,, , A;, , and A;, , the two-dimensional 
E, and E; ,  and the three-dimensional F lu ,  F,,, F;, , and F;,, 
representations.' 

We must now write down the specific potential of Eq. 
(3) for the cyanogen group in order to obtain the wave func- 
tions and then to find the matrix elements of the interactions. 
We shall begin with KCN. The constants C, and C2 can be 
obtained from the expressions given in Ref. 12: 

where, according to Refs. 13 and 14, we have 

A,,~=1.07.10-Qrg, Ao=4.42. 1 0-9 erg, 

a,',=2.8 A-I, acc=3,6 A-I. 

Consequently, we obtain C, = 2.17 x 10-'erg and C2 = 3.2 
h;- '. Moreover, in the case of KCN we know that the dumb- 
bell length is 2h = 1.17 h; and that the distancea between the 
center of mass of the cyanogen group and the M+ ion is 3.25 

(Ref. 15). Substituting all these values into Eq. (4),  we 

obtain 

u ( 0 ,  cp)=Vo[K,(@, cp)+0.03K8(0, c p ) ] ,  ( 8 )  

V,=1.62.  erg, 

where 

K,=('/tz)'" [ Y , o + ( ~ / ~ & ) ' ~  ( Y L C + Y I - O ]  , (9)  

The potential of Eq. (3)  has eight minima directed along the 
four principal diagonals of a cube (Fig. I ) ,  i.e., along the 
( 1 1 1) axes: 

The height of the potential barrier is 

5 21 'I' ( - 1  V0=4.4.  lo-" erg. 
48 n 

The energy levels of the wave eigenfunctions of the 
cyanogen group were found by the variational Rayleigh- 
Ritz method.I6 The result! obtained for the potential of Eq. 
(8)  are presented in Table I. 

Using the wave functions from this table and applying 
the selection rules to the matrix elements of the polar vector 
and to the tensor of rank 2 for the point symmetry 0, (Ref. 
6), we can express the interaction ( 5 ) in terms of the Hub- 
bard operators 

i s 1  

where 

where a represents the distance to all six nearest neighbors of 
the cyanogen group and the integral with respect to 0 is 
taken over the directions of the cyanogen group specified by 
the vector z. 

It therefore follows that the initial Hamiltonian which 
can be used to consider high-temperature phase transitions 
becomes 

3. HIGH-TEMPERATURE PHASE TRANSITIONS 

We shall now estimate the various interactions. First of 
all, we shall utilize the experimental observation that high- 
temperature phase transitions do not result in dipole order- 
ing of the cyanogen groups. Consequently, at this stage the 
dipole-dipole interactions can be ignored. An estimate of the 
quadrupole interaction is of the following form9: 

VQQ-Ge'Q2/23a5, Q=zh2q,, 

where in the case of KCN the value of q, varies from - 0.2 
to - 0.95. Consequently, the maximum quadrupole interac- 
tion does not exceed 10 K. An estimate of the interaction of 
the cyanogen groups via the strain field obtained using A,/ 
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TABLE I. 

C y, , where in the case of KCN we have c, =: 3.1 X 10 - l 2  

erg, gives a value of the order of 200 K. Therefore, the mech- 
anism of high-temperature phase interactions that results in 
the quadrupole ordering is the coupling of the cyanogen 
groups with the metal environment which in our treatment is 
regarded as the interaction of the Hubbard operators with 
elastic strains. This is in full agreement with the results re- 
ported in Refs. 7-10. 

On this basis we shall simplify the Hamiltonian ofFq. 
( 13) by ignoring the interactions between the variables X at 
different kttice sites. We can then take a trace of all the 
variables X and write down the free energy directly in terms 
of the variables uaD : 

IIprucran- 
:~ciree 

A I R  

Fi u 

Aiu 

F a  

Fi ,, 

where p is the density of the cyanogen groups (number of 
these groups per unit volume). The calculation of the trace 
in Eq. ( 14) requires diagonalization of the multidimensional 
matrix HR + V. Clearly, we can ignore the states which are 
weakly populated at temperatures close to the phase transi- 
tion point ( =: 170 K).  For this reason (see below) the energy 
levels e, ... and the corresponding states can be ignored. 
Consequently, the operator HR + V can be written in the 
representation of states from Table I, which has the follow- 
ing form: 

Energy levels, 
10-14 erg Eigenvalues 

-4.57 $1 :-: U.58Y,~o-0 .59K4+U.51  K 6 + 0 . 1 5  Kg--0 .17K10 

-4.33 $(:) = O.ti3Y 0 .27Y F~.~~Y~~:,..-O.LTY 
31Ces) 51(:1 

~ 0 , 3 4 Y - ,  - U . 2 1 Y j j , ,  j - 0 . 0 1 Y -  kU.11Y- 13 15 ) 1 1 ; ; ;  13:es) 

-1- 0 .  L j  Y i g l c ,  f 0 .b8 Y p -  . 
1s) 1 I { : ) '  

$4=U.f j?Yl l , -o .47  Y s ~ - 0 . 1 5 Y 5 0 - U . 5 : ! ~ ' j l c  + 0.21 Y70 
- U .  2" Y;, ,  

--4.31 q 5  = 0.!)3 YSAs - U. 27 Y72s -- 0.25 Y76S 

--3.97 $ = O i l  Y2 , ( : )  - 0 . t 8 Y  1,(:) ~ 0 . 4 9  Y - 0 . 2 1 Y  
( 1 1  43 1;) 61 (c) 

F U.10 Y -0 .281'  . 
63 65(:)' 

$ 8  -=u.77Yz~s+0.52Y12s:-0.32 Y B Z s - 0 . 1 7  YBBS 

-l.6" $ 9  = -U.3:!Yl0-0 .25  Y a 0 +  0.( j7Y50-U.51 Y54C-0 ,21Y70 
i- 0.291'7dC 

. . .  

where 

The coupling constants can be found numerically from Eq. 
( 12) and for KCN they are (in units of 10- l 2  erg) 

We can find the trace in Eq. ( 14) if we obtain the eigenvalues 
of the matrix ( 15). This procedure and also the calculation 
of the free energy are given in the Appendix A. Moreover, in 
the same Appendix A it is shown that the critical variable for 
KCN is not C , ,  -C,, , but the elastic modulus C,, in agree- 
ment with the observations reported in Refs. 15 and 17. Es- 
sentially this is a simple consequence of the circumstance 
that the "bare" elastic modulus c, of alkali metal cyanides 
is considerably less than <, -<, . 

I t  follows therefore that the high-temperature phase 
transitions can be described using a reduced thermodynamic 
potential which includes only the off-diagonal components 
of the strain tensor. Moreover, for simplicity, we shall con- 
sider only the reduced four-dimensional representation A ,, 
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+ F,, , which does not result in any qualitative changes. In 
the case of quantitative estimates of, for example, the transi- 
tion temperatures, we can use the Appendix A. Consequent- 
ly, instead of Eq. (A3), we have 

where 

where C%, , C k, and CL,, are the nonlinear elastic mod- 
uli'' of the cubic phase. 

It is clear from the notation used in Eq. ( 18) that cool- 
ing reverses the signs of all the constants in Eq. ( 17). How- 
ever, since the elastic moduli of order n are usually always 
larger than the elastic moduli of order n - 1, we need to 
consider only the change in the sign of C,. Another feature 
of the thermodynamic potential of Eq. ( 17) is the presence 
of the cubic term yxyz, which gives rise to first-order phase 
transitions. A similar form of the thermodynamic potential 
is obtained also in Ref. 10, where the components of the 
quadrup'ole ordering of the cyanogen groups serve as the 
order parameter. 

An analysis of the phase diagram generated by Eq. ( 17) 
can be found in the Appendix B. Here we shall simply give 
the temperatures of the first-order phase transitions from the 
cubic to the rhombohedral phase 

and from the rhombohedral to the orthorhombic phase 

where 

Bearing in mind that y(a,S, we can see that the temperature 
range of existence of the orthorhombic phase is quite nar- 
row. 

The calorimetric and structural data on cyanides and 
hydrogen sulfides of alkali metalsI9 show that KCN and 
NaCN exhibit a sequence of first-order phase transitions 
(000) - (xxx) - ( d o ) ,  whereas in the case of CsCN, 
NaSH, KSH, and RbSH, there is only one transition from 
the cubic to the rhombohedral phase. It therefore follows 
that the proposed theory is in agreement with the experimen- 
tal results. The difference in the sequence of the phase transi- 
tions in the case of the above crystals is simply due to the 
inequality (B9) which can be checked experimentally. 

In the case of KCN the usual cooling and heating of 

samples reveals just one phase transition from the cubic to 
the orthorhombic phase at T = 168.3 K accompanied by a 
change in the entropy amounting to about R In 4 (Refs. 20 
and 2 1 ). An intermediate phase has been detected in KCN 
as a result of complex cooling and heating cycles near the 168 
K transition temperature.20322 According to Refs. 20-22, this 
intermediate phase is monoclinic [and can designated by 
(xxy) in our notation], whereas it follows from the present 
study that the cubic and orthorhombic phases are separated 
by a stable rhombohedral phase. In our opinion, this conflict 
can be resolved bearing in mind that all the high-tempera- 
ture transitions are of the first order. Therefore, for heating 
to cause the orthorhombic (xOO) phase to change to the sta- 
ble rhombohedral phase (xxx) by the formation of seeds, the 
crystal must pass through metastable states of the mono- 
clinic (xxy) phase, where y < x. Bearing in mind that the 
temperature range of stability of the rhombohedral phase in 
KCN is narrow ( z 5 K) ,  it follows that this phase can be 
observed after a very long time or a large number of heating- 
-cooling cycles. The intermediate rhombohedral phase has 
been observed e~perimentally*~ for KCN. In the case of 
NaCN the rhombohedral phase can be formed by quenching 
the cubic modification from 300 "C (Ref. 19). 

An analysis of the phase diagram is made here in the 
mean-field approximation, because the equation of state 
(B1 ) corresponds to an estimate of the statistical integral by 
the steepest-descent method 

Allowance for the mean-square fluctuations about the equi- 
librium positions makes it necessary to add the phonon con- 
tribution to the thermodynamic potential of Eq. ( 17): 

which alters the phase diagram. In Eq. (22), w ,  stands for 
the frequencies governed by u$, of the lattice vibrations 
about the equilibrium positions. However, since we are deal- 
ing with first-order phase transitions, we shall ignore a weak 
logarithmic dependence of w ,  on temperature and assume 
that the critical fluctuations cannot develop in the available 
time. This situation is typical of first-order structural phase 
transitions. 

4. QUADRUPOLE ORDERING OF CYANOGEN GROUPS 

In order to understand what happens to the crystal 
structure and to the orientation of the cyanogen groups in 
phase transitions, we consider a fragment of the crystal lat- 
tice of MCN. Figure 1 shows the crystal structure of the 
high-temperature cubic phase characterized by uaO = 0. 
The Mt  ions form an fcc unit cell with the cyanogen groups 
located at the midpoints of the edges. Moreover, one cyano- 
gen group is located at the center of the cube, i.e., the imme- 
diate environment of a cyanogen group is an octahedron of 
the M+ ions. The preferred orientation of the cyanogen 
groups is along four main diagonals of the cubic cell (at least 
this is true of NaCN and KCN-see Refs. 10, 19, 24, and 
25). The cyanogen groups have eight degenerate directions 
in the cubic phase. These directions are defined by the 
centers of the triangles of which the octahedron is composed 
and this is naturally due to the repulsive nature of the inter- 
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FIG. 2. Positions of the K + ions in the immediate environment of the 
cyanogen groups in the cubic and orthorhombic phases. 

action of Eq. ( 1) between the M + ions and the cyanogen 
group atoms. The base of the cubic unit cell is deformed from 
a square into a rhomb with the angle p = 7~/2 - 2u,, but 
the side walls of the cell are not affected (Fig. 2). Since in the 
uxy $0 phase the M + ions (or the cyanogen groups) can be 
used to construct a parallelepiped with its sides directed 
along the [ 1101, [ l i ~ ] ,  and [001] axes, the (xOO) phase is 
orthorhombic and its space symmetry group is D :; (Ref. 
26). 

It therefore follows that the spontaneous strain uxy can 
be used to identify a structural transition in an alkali metal 
cyanide crystal, whereas the ordegng of the cyanogen 
groups is governed by the averages (Xpv )  which are related 
to the spontaneous strains in the crystal: 

This relationship is obtained from Eqs. ( 14) and ( 15) by 
differentiation with respect to uXy using the reduced repre- 
sentation A,, + F,,  . The averages are given by 

where 12) are the eigenstates of H ,  + V, which for the or- 
thorhombic phase are 

1Z)=(l2>+13>)/~'~,  E,=E,"f hu,,. 

Substituting Eq. (25) into Eq. (24) and then into Eq. (23), 
we readily obtain the self-consistency equation for the order 
parameter uxy of the orthorhombic phase: 

We can easily demonstrate that if uxy + 0, we formally obtain 
the temperature To of a second-order phase transition given 
by Eq. (21). 

Using Table I and Eq. (25) we readily obtain the aver- 
age of any function of the angles: 

Hence, in particular, we find that the dipole moment of the 
cyanogen group in the orthorhombic phase is zero and the 
components of the quadrupole moment 

where z, = sin 8 cos p, z, = sin 8 sin p, z, = cos 8, assume 
the following values 

where q, is the effective charge. The values of the compo- 
nents of the quadrupole order parameter of Eq. (29) corre- 
spond to ordering of the cyanogen groups along the [ 1101 
axis. 

We shall now consider the equilibrium orientations of 
the cyanogen groups in the orthorhombic phase. A sponta- 
neous breaking of the cubic symmetry could occur because 
of the cooperative freezing of the cyanogen groups in one of 
the four equivalent directions.,' However, numerous experi- 
mental r e s u l t ~ ' ~ ~ ' ~ ~ ~ ~ ~ ~ ~  demonstrate that the equilibrium ori- 
entations of the cyanogen groups change from the (1 11) 
directions in the cubic phase to (1 10) in the orthorhombic 
phase. One of the possible explanations of this change was 
put forward in Refs. 28 and 29. It is based on the assumption 
that the orientational potential of the cyanogen groups has 
local minima along the (1 10) directions, but the energy is 
higher than along (1 11). After transition to the orthorhom- 
bic phase the ( 110) directions become preferable from the 
energy point of view. We shall propose a different explana- 
tion based on the distortion of the metal octahedron (Fig. 1 ) 
at the phase transition because of the appearance of the 
terms with u, #O. In general, both mechanisms of sponta- 
neous reorientation of the equilibrium directions of the 
cyanogen groups are possible: those because of distortion of 
the immediate environment and those because of the exis- 
tence of metastable minima in the potential described by Eq. 
(3), which in turn alters the orientational potential in the 
rhombic phase 

where according to Eq. ( 15 ) we have 

In the leading order in respect of the angular functions, we 
have 

=1.62V,[cos4 0+sin4 8-'/,(sin2 8 sin 2rp-2~u,,)~], (32) 

whereaccording to Eq. ( 16) we find thatx = 0.08 andA /Vo 
= 1.36. Minimization of Eq. (32) yields the equilibrium 

orientations of the cyanogen groups in the orthorhombic 
phase: 
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It therefore follows that the spontaneous strain uxy lifts the 
degeneracy in respect of the azimuthal angle p, which can 
easily be understood from the figure and increases the polar 
angle 0. Within the framework of the reduced representation 
A,, + Flu the value ofx  is small, so that a fourfold degener- 
acy remains in the orthorhombic phase. Within the frame- 
work of the full eight-dimensional representation A ,, + A,, 
+ Flu + F2, and subject to the appearance of the diagonal 

components uaa we can expect the rhombic phase to have 
the equilibrium direction sin2 8 = 1, i.e., [ 1 101 (Ref. 30). It 
should be noted that the first solution of Eq. (33) again does 
not contradict the quadrupole ordering of the cyanogen 
groups of Eq. (29) along the [ 1101 axis since degeneracy of 
the polar angle 0 = + sin - ' [ (2/3) ( 1 + xu, ) ] "' gives 
( 8  ) = 0 after thermodynamic averaging. The experimental 
data for KCN support the hypothesis of fourfold degener- 
acy, since the change in the entropy at the phase transition is 
less than R In 4 (Ref. 19) and mean-square librations of the 
cyanogen groups in the orthorhombic phase are quite large 
( = : 2 ~ ) . ~ ~  

We shall note one further disagreement between the ex- 
perimentally observed pattern of the ordering of the cyano- 
gen groups and our results. In our analysis these groups be- 
come ordered along the short side of the base (Fig. 3a), i.e., 
along the a axis, whereas in fact the ordering of the cyanogen 
groups in the orthorhombic phase of KCN occurs along the 
b axis,32 i.e., parallel to the long side of the face in Fig. 3b. At 
first sight this is in conflict with the repulsive nature of the 
Born-Mayer interaction of Eq. ( 1) between the cyanogen 
groups and the M + ions. However, if we allow for the same 
interactions between the CN molecule at the center of the 
cube and the twelve CN molecules in the next coordination 
sphere, we find that the direction of the cyanogen groups in 
the orthorhombic phase changes by 90". As shown in Fig. 3a, 
if the cyanogen groups had been ordered along the a axis, a 
strong repulsion would have been established between them. 

FIG. 3. a )  Interaction of the cyanogen groups with the metallic environ- 
ment determines the direction of the groups along the a axis. b)  Interac- 
tion between the cyanogen groups described by the Born-Mayer potential 
results in ordering of these groups along the b axis. 

In the rhombohedra1 phase (xxx) the distortion of the crys- 
tallographic structure caused by the fact that luxy I = luyx I 
= Iu,, I represents compression of the lattice along one of 

the (1 11) directions. Since the symmetry element (threefold 
axis) is conserved, the phase is clearly trigonal or rhombohe- 
dral. 

On the basis of relationships of the (23) type, we can 
expect structural trigonal distortions to give rise to a qua- 
drupole order parameter (Qxy ) = (Q,, ) = (Qyz ), which 
corresponds to ordering of the cyanogen groups along 
(1 11). The selection of the ordering axis of the cyanogen 
groups is governed by the sign of uaB. 

If we substitute the approximate values of c, 
= 3 . 9 ~  101° erg/cm3 and p = 1.38X loZ2 cm-3 into Eq. 
(21 ) allowing for Eq. ( 16), we find that to the phase transi- 
tion temperature is T z  50 K. The discrepancy between this 
value and the experimental temperature 168 K is primarily 
due to reduction of the matrix of Eq. (15). In general, the 
temperatures of the high-temperature phase transitions are 
close to To, which can be found from the self-consistency 
equation for the orthorhombic phase, by analogy with Eq. 
(26). In the matrix ( 15) for-this phase splits into four two- 
dimensional blocks 

the eigenstates and eigenvalues of which are (if u, > 0)  

where 

The pattern of the energy level splitting in the orthorhombic 
phase is shown in Fig. 4. 

Substituting Eq. (34) into Eqs. (24) and (23), we ob- 
tain the following self-consistency equation: 
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E, 10-l4 erg 

I I I 

FIG. 4. Schematic representation ofthe splitting of the energy levels of the 
cyanogen groups in the rhombohedra1 and orthorhombic phases of KCN. 

Hence we obtain the phase transition temperature given by 
Eq. (A5) in the Appendix A. Moreover, Eq. (35) allows us 
to estimate readily the maximum strain uxy if we assume that 
7 = 0, which gives 

This estimate is in order-of-magnitude agreement with the 
results of x-ray structure investigations of the orthorhombic 
phase, which give uxy ~ 0 . 1 5  and uxx ~ 0 . 0 5  (Ref. 33). 

5. DIPOLE ORDERING 

The orthorhombic phase retains the head-tail symme- 
try of the cyanogen groups along the [110] axis. In the 
ground state this symmetry means that 
gl (8,p) = $, (0,p + T). The dipole-dipole interaction is 
characterized by 

where z = (sin 8 cos p, sin 8 p, cos 8) and the summation 
carried out over the orthorhombic lattice sites occupied by 
the cyanogen groups mixes the states 1 i )  and 12), l j) ,  de- 
scribed by Eq. (34) and thus gives rise to a spontaneous 
polarization (z) #O. We shall now consider the hierarchy of 
the energy levels of Eq. (25) before the temperature of the 
transition to the dipole phase, which in the case of KCN 
amounts to 83 K (Ref. 34). If we use the estimate of Eq. (36) 
and the values of the constants of Eq. (16), we obtain (in 
units of 10-l4 erg) that if T( To then 

Bearing in mind that the energy of the state 14) is consider- 
ably higher than E, and E,, we can limit our treatment to 
just two states: 11) and 12). The state 15) is also close in 
energy to the ground state, but it does not become mixed 
with 11) by the dipole interactions. Then, the Hamiltonian of 
Eq. 37 assumes the following form in the representation of 
the ( i )  and 12) states: 

where a" are the Pauli matrices, 

(ilz,li)= dQ$i$ sin 0 cos rp. 

The phase transition temperature and the spatial period 
of the dipole ordering can be found, as usual, from the equa- 
tion 

x-'(q) =xo-l-V(q) =o, 

or, according to Refs. 2 and 35, from 

where V(x) is the dipole-dipole interaction of Eq. (38) and 
x represents all the vectors joining the CN groups. However, 
Eq. ( 39) can be used to find the nature of the ordering. We 
therefore have to turn to the equation of state considered in 
the mean-field appr~ximat ion~~ 

where li = (e). The vicinity of the phase transition, where 
li are small, Eq. (40) simplifies to: 

Equation (41 ) is a special case of 

The matrix Â  is diagonal in the q representation, so that the 
eigenvalues and the eigenstates are in each case character- 
ized by the wave vector q. A comparison of Eqs. (41) and 
(39) shows that the transition to the diagonal phase occurs 
when the smallest eigenvalue A (q,) becomes equal to 1 as a 
result of cooling. The structure of the dipole phase is there- 
fore covered by the eigenvector I q,) . 

In general, it is not possible to solve Eq. (41 ). However, 
experiments showed that only doubling of the period occurs 
in the dipole phase. Then, the eigenvectors can be sought in 
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the eight-dimensional representation where the variables 6, , 
...., l8 are located at eighth vertices of a primitive unit cell37 
shown in Fig. 5. According to N i e m e ~ e r , ~ ~  the matrix ele- 
ments A V  are given by 

where n, m, and I are natural numbers. 
If we consider a crystal KCN at T = 90 K with the 

parameters33 (a(  = 4.21 A, (b( = 5.20 A, and (c (  = 6.1 1 A, 
we obtain the following numerical values of the matrix ele- 
ments of Eq. (42) : 

Here, the unit length is Ic, 1. 
The solution of Eq. (41) is equivalent to finding the 

minimum value of the quadratic form SiJAUCiCj, which in 
turn-as shown in Ref. 37-is equivalent to finding the min- 
imum of the expression 

where EK:, are the eigenvalues of the operator representing 
the i t t j  transpositions of the cyanogen groups, as shown in 
Fig. 5. The eigenvectors and the eigenvalues of the transposi- 
tion operator are given by Niemeyer in Ref. 37. Substituting 
the above data and the eigenvalues from Ref. 37 into Eq. 
(43), we can readily find a minimum for a = 1, ..., 8. The 
ground state is doubly degenerate for a = 3 and 6. The cor- 
responding eigenvectors form an ordered distribution of the 
dipoles shown in Fig. 6. The double degeneracy character- 
ized by a = 3 and 6 is due to two orientations of the central 
dipole, which is quite evident from physical concentrations. 
Naturally, after the phase transition the dipoles are frozen in 
the configuration (3) or (6). 

It is interesting to compare these results with those ob- 
tained by an analysis of the ground state of KCN at T = 0 
reported in Refs. 34 and 3842. In Ref. 34 the ground state of 
the dipole system of KCN is derived by the approximate 

FIG. 5. Primitive unit cell in the Bravais lattice of the cyanogen groups in 
the_orthorhombic phase. The a, b, and c axes are directed along the [ 1101, 
[ 1101, and [001] axes of the cubic phase. 
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FIG. 6 .  Antiferroelectric ordering of the cyanogen groups in KCN below 
T,, = 83 K. 

Lorentz method and it is again doubly degenerate; more- 
over, one of the states corresponds to our 13) state and the 
other is ferroelectric. Antiferroelectric ordering of the di- 
poles is predicted in Refs. 3 8 4 2  and it is attributed to elastic 
dipole interactions. The ordering reported in Ref. 38 is iden- 
tical with that postulated above. In recent papers3942 the 
dipoles at the sites in the bcc orthorhombic cell are directed 
opposite to the central dipole. 

6. CONCLUSIONS 

The diagram technique for the Hubbard operators4 can 
be used to consider also the orientational dynamics of the 
CN groups at phase transitions. If the treatment includes 
also the Hamiltonian of the interaction of the CN groups 
with phonons, it is also possible to consider lattice dynamics. 

The above analysis applies specifically to KCN crystals, 
because the selection of the eigenfunctions of the energy lev- 
els (Table I )  and of the coupling constants of Eq. ( 16) de- 
pends on the lattice parameter. The nature of the effective 
Hamiltonian of Eq. (14) or of the reduced variant of Eq. 
( 17) of the representation of the wave functions of the CN 
group depends only on the symmetry of the problem which 
in this case is 0,. However, in the present analysis thset of 
the wave functions, and, consequently, of the thermodynam- 
ic potential is influenced also by the fact that the critical 
elastic modulus is C,,. Therefore, the off-diagonal, compo- 
nents of the strain tensor are used as the order parameter. 
However, there is also the possibility of a variant in which 
the critical elastic modulus is the difference C,, -el,. In this 
case the diagonal components of the strain tensor act as the 
order diameter of the phase transition. This in turn affects 
significantly the selection of the wave functions and of the 
thermodynamic potential, as well as the phase diagram. 
However, this is outside the scope of the present paper. 

We are deeply grateful to K. S. Aleksandrov and R. 0. 
Zaidev for valuable critical comments and also to V. I. Zin- 
enko for numerous valuable discussions. 

APPENDIX A 

The matrix of Eq. (15) splits into two independent 
blocks 
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which apply to the representations A ,, + F,, an( 
A ,, + F ,, , respectively. The eigenvalues for each of the ma- 
trices T,  and T, are found from the equation 

where 
a,= - Tr T, 

The relationships between the four roots of Eq. ( A l )  
and its coefficients 

obtained from the Vieta theorem allow us to deduce the fol- 
lowing expressions: 

Expanding the expression 

in powers of ppjr', using the relationships given by (A2), 
and going back to the old variables u , ~ ,  we find from Eq. 
( 14) that 

+C1456  U x ~ U u z U z ~ ,  (A31 

where to within E )  = p ( e  - E :  ) 1, i = 2 ,..., 8, 

is the thermal expansion coefficient and 
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where 

A , = E , ~ , - E , O .  

Here, CaB, Cap,, and Cap,, are the elastic moduli of the 
second, third, and fourth orders, respectively designated in 
accordance with the Voigt notation.'* In the investigated 
range of temperatures we have Cora, > 0 and CaSvS > 0. 

Using Eq. (A4), we can find the temperatures To and 
T; at which the elastic moduli C, and C,, -C,, vanish, re- 
spectively: 

+I. (Ai+Ac+3 (Az+ As) I 

APPENDIX B 

The equations for an extremum of the thermodynamic 
potential of Eq. ( 17) are 

rx+yyz+ax3+6x(y2+z2 )  = 0 ,  

t y + y x z + a y 3 + 6 y  ( x Z + z 2 ) = 0 ,  (B1) 

t z+yxy+az3+6z  ( x 2 + y 2 )  =0, 

where T = 4C44 (P). The solutions of these equations can be 
classified in the following way4': (OOO), (xOO), (xxO), 
(xxx), (xyO), (xxy), (xyz), where zeros denote uap = 0, 
(xxO) means that x = y, z = 0, etc. [see Eq. ( 18) 1. An anal- 
ysis of these equations shows that, with the exception of iso- 
lated points in the space of the parameters of the thermody- 
namic potential of Eq. ( 17), we can expect the cubic (OOO), 
orthorhombic (xOO), and rhombohedral (xxx) phases. 

Substituting the solutions for the (xxx) and (xOO) 
phases into Eq. (B1 ), we obtain the equations of state for the 
rhombohedral and orthorhombic phases, respectively: 

The transition temperatures can be found by comparing the 
thermodynamic potentials of the phases. The first-order 
transition from the cubic phase with F= 0 to the rhombohe- 
dral phase with F = F(x, ), where in accordance with Eq. 
(B2), we have 

occurs when 

In the range T < 0 the orthorhombic phase may be preferred 
if 

where x is given by Eq. (B4). Consequently, Eq. (B7) can 
be reduced to the form 

Since the right-hand side of Eq. (B8) is positive, the neces- 
sary condition for the existence of the orthorhombic phase is 
the inequality 

The inequality of Eq. (B8) can be rewritten in the form 

which readily yields the equation for the temperature of the 
transition from the rhombohedral to the orthorhombic 
phase: 

where 

whereFaD = a *F/dxa axp and the quantitiesx, are defined, 
as mentioned above, by the relationship (18). Substituting 
in Eq. (B11) the valuesx, = (IrJ/a)"* andy=z=Ofor  
the orthorhombic phase, we readily obtain from the first in- 
equality of Eq. (B11) the additional condition for the exis- 
tence of the orthorhombic phase: 

Moreover, there is also an additional condition of sta- 
bility of the thermodynamic phases at the minima: 
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