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It is shown that in strongly doped materials with a nonparabolic dispersion law the quasielastic- 
scattering spectra have the shape of Lorentzian contours. Expressions are found for the half- 
widths of these contours for different scattering mechanisms. It is shown that from the shape of 
the scattering spectrum one can determine a number of kinetic characteristics of the materials: the 
electron-diffusion coefficient, the thermal diffusivity, and the relaxation time of the anisotropy of 
the momentum distribution of the electrons. Microscopic expressions for a number of kinetic 
coefficients appearing in the scattering cross section are found by the Chapman-Enskog method. 
A general analysis, which does not use the relaxation-time approximation, makes it possible to 
conclude that there is collisional narrowing of the spectra of the scattering of light by fluctuations 
of the energy and spin of the electrons. 

1. INTRODUCTION als, three nonscreenable light-scattering mechanisms are re- 
Besides the well studied scattering of light by collective alized: scattering by fluctuations of the energy density and 

plasma oscillations in a semicon~uctor, 1 quasielastic scatter- momentum density of the current carriers,' and also scatter- 

ing of light by single-particle plasma excitations is also ob- ing by spin-density  fluctuation^.^ It is shown that under the 

served.2-6 ~h~ laws of energy and conservation condition (3) the quasielastic-scattering spectra have the 

in the elementary act of quasielastic scattering have the form shape of Lorenfzian contours extending 1oo-200 cm - 
the left and right of the frequency of the exciting laser. The 

~ ~ + t k - ~ ~ = h m ,  ( 1 ) widths of these Lorentzian contours turn out to be different 

where E, is the energy of an electron with quasimomentum p 
and +ik is the momentum transferred in the scattering. It can 
be seen from ( 1 ) that in quasielastic scattering spatial dis- 
persion (k  #O)  is important, and this makes both the analy- 
sis of the screening and the choice of the selection rules non- 
trivial.' ~uasielastic scattering has been observed 
principally in strongly doped samples, for which the strong- 
screening condition 

is fulfilled. A number of papers8-lo have been devoted to 
exhibiting nonscreenable mechanisms of quasielastic scat- 
tering in many-valley semiconductors. The shape of the scat- 
tering spectra was practically not investigated in these pa- 
pers, although it is the shape that carries important 
information about the kinetics of light-scattering fluctu- 
ations of electron parameters of the semiconductor. 

A detailed experimental study of the shape of quasielas- 
tic-scattering spectra has been carried out by Cardona et 
a1.,3,~~-~3 who showed that for strongly doped samples of 

n-Si and n-Ge the spectra have the form of Lorentzian con- 
tours extending 100-200 cm- '  to the left and right of the 
laser excitation line. These experiments were explained in 
Refs. 14-16, in which it was established that the Lorentzian 
contours reflect diffusive motion of the carriers in a strongly 
doped semiconductor, when the frequent-collision condi- 
tion 

is fulfilled, where 1 is the mean free path of the carriers. 
In the present paper we investigate the shape of the 

quasielastic-scattering spectra in strongly doped semicon- 
ductors with a nonparabolic dispersion law. In these materi- 

for different scattering mechanisms. In scattering by energy 
fluctuations the dissipation of the fluctuations is determined 
by the electron thermal conductivity x ,  while the half-width 
r of the corresponding Lorentzian contour is determined by 
the electron thermal diffusivity ~ ( w )  : 

In scattering by fluctuations of the momentum of the current 
carriers the dissipation of the fluctuations has a different, 
relaxational character. The shape of the scattering spectrum 
is, as before, Lorentzian, but the half-width of the contour is 
determined by that component of the electron distribution 
function that has the symmetry of the second spherical har- 
monic: 

In scattering by spin-density fluctuations, a diffusive mecha- 
nism of dissipation of the fluctuations is realized. The half- 
width of the corresponding Lorentzian contour is equal to 

where D is the diffusion coefficient of the free carriers. 
By the Chapman-Enskog method," for the high-fre- 

quency diffusion coefficient and electron thermal conductiv- 
ity x we have found microscopic expressions that make it 
possible to analyze the shape of the quasielastic-scattering 
spectra in a broad range of frequencies wr, >< 1, where T, is 
the usual momentum-relaxation time. The microscopic 
expression found for the electron thermal conductivity 
makes it possible to relate the collisional narrowing of the 
spectral lines (the Dicke effect1') to the growing role of ther- 
mal diffusion upon increase of the concentration of doping 
impurities. 
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2. SHAPE OF THE SPECTRUM FOR SCATTERING 
BY ENERGY-DENSITY FLUCTUATIONS 

The differential cross section for electron scattering of 
light can be expressed in terms of the correlator of the fluctu- 
ations of the electron dielectric susceptibility (Ref. 19) .  
The cross section per unit scattering volume is equal to 

where e' and es are the polarization vectors of the incident 
and scattered light, the angular brackets denote the correla- 
tor of the electron susceptibilities, w, is the frequency of the 
incident light, and w  is the change offrequency in the scatter- 
ing. The fluctuation of the electron susceptibility for a crys- 
tal with a nonparabolic electron spectrum can be expressed 
phenomenologically in terms of the electron-density fluctu- 
ation Sn and the energy-density fluctuation SE of the system 
of electrons: 

Here m is the free-electron mass, and SE is equal to 

where Sf is the spherically symmetric fluctuation of the 
electron distribution function, and the values of the coeffi- 
cients A and B for the particular case of resonance scattering 
are given in, e.g., Ref. 1 [formula (4 .94)  1. When the strong- 
screening condition ( 2 )  is fulfilled, the first term in ( 8 )  leads 
to scattering of light by plasmon-phonon modes, which is 
realized in the region of higher frequencies 

(0, is the plasma frequency ), and so is not considered here. 
We shall be interested in the second term in ( 8 ) ,  which gives 
the light scattering by fluctuations of the energy density of 
the current carriers. The fluctuations of the energy and par- 
ticle number have the same symmetry, and are not statisti- 
cally independent. The screening of such fluctuations re- 
quires special analysis, since according to ( 1 )  quasielastic 
scattering necessarily involves momentum transfer, i.e., the 
scattering cross section possesses spatial dispersion. 

The shape of the scattering spectrum is determined by 
the law of dissipation of the light-scattering fluctuations, 
which, in the framework of hydrodynamics [which is valid 
when condition ( 3  ) is fulfilled], can be described by the dif- 
fusion and thermal-conduction equations, with thermal dif- 
fusion also taken into account. The role of the second, heavy 
plasma component that gives rise to the thermal diffusion is 
played by ionized impurities. 

We write the fluctuational dissipative fluxes of the elec- 
tron concentration and energy as 

where f is the chemical potential and ll is the Peltier coeffi- 

cient. The hydrodynamic condition of neutrality has the 
form l9 

div 6j=0. ( 1 2 )  

Equations ( 9 ) - ( 1 2 )  must be supplemented by the energy- 
conservation law in the form of the continuity equation 

d 
- 6E + div 6q=0. 
d t 

( 1 3 )  

When condition ( 2 )  is fulfilled we have 

where c, is the electron specific heat at constant volume. 
Substituting ( 14)  into ( 13 ) ,  eliminating Sq from ( 10)  and 
( 1 I ) ,  and taking ( 12 )  into account, we obtain an equation 
describing the dissipation of the temperature fluctuations 
that accompany the energy fluctuations: 

wherex(w) = x / c ,  is the electron thermal diffusivity. After 
substitution of ( 1 4 )  into ( 8 )  and then into ( 7 ) ,  we express 
the scattering cross section in terms of the spectral correlator 
of the temperatures 

( 6 T ( r , t ) 6 T ( O  O)),,, 

which, as shown in Ref. 20, satisfies Eq. ( 1 5 ) .  As the initial 
condition for the determination of the temperature correla- 
tor from ( 15 )  we take the value of the single-time correlator 
(ST2),, of the classical fluctuations of the temperature, 
which can be found, e.g., in Ref. 21 [formula ( 1  12.6) ] : 

Substituting the correlator value thus found into (7), we 
obtain for the cross section for light scattering by energy 
fluctuations the expression 

d2-p' 
- = ( e) ' (ele')  2B2c.T ~ e {  

1 

d o d Q  mc2 -io+k2x ( o )  
1. ( 1 7 )  

For w r l  1 we can neglect the frequency dispersion o f x ( 0 ) .  
Then the scattering spectrum ( 17 )  acquires the shape of a 
Lorentzian contour with half-width ( 4 ) .  At higher frequen- 
cies w  > l / r l  the shape of the contour deviates from Lorent- 
zian on account of the frequency dependence of x (w ) . If 
~ ( w )  decreases with increase of the concentration of doping 
impurities, the Lorentzian contour obtained becomes nar- 
rower with increase of the concentration. This narrowing 
has been observed at 300 K in the quasielastic-electron-scat- 
tering spectra of n-InP crystals in the region of electron con- 
centrations from 3  x 1016 to 5  x 10" cmP3 (Ref. 6 ) .  From 
the half-width of the Lorentzian contour one can establish 
the electron thermal diffusivity ~ ( w ) ,  i.e., the parameter 
that determines the thermal quasiequilibrium of the current 
carriers obtained by the light pumping.22 

We have considered the case of those temperatures at 
which scattering of electrons by phonons is unimportant. At 
room temperature, for semiconductors of the InP type the 
condition T ( h ,  is fulfilled, where w, is the optical-phonon 
frequency. Therefore, .re,, )re-, , where re.,, and re-, are the 
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electron-phonon and electron-electron relaxation times, re- 
spectively. The influence of the acoustic phonons on the 
scattering spectrum can be estimated from the continuity 
equation ( 13), if in it the transfer of energy to the phonon 
subsystem is taken into account by the introduction of the 
corresponding relaxation time r:.:,!. The expression for the 
half-width of the Lorentzian contour then takes the form 

Finally, we note that the scattering cross section ( 17) is of 
the scalar type and is observed for parallel polarization e' Ile" 

3. SHAPE OF THE SPECTRUM FOR SCATTERING BY 
FLUCTUATIONS OF THE ANISOTROPY OF THE ELECTRON- 
MOMENTUM DISTRIBUTION 

Nonparabolicity of the electronic band spectrum in di- 
rect-band semiconductors (GaAs, InP, etc.) leads to one 
more mechanism of unscreenable scattering in semiconduc- 
tors-namely, to scattering by fluctuations of the average 
electron momentum.* The corresponding contribution to 
the fluctuation of the electron susceptibility in the case of 
weak nonparabolicity has the form 

Here Sf 2' is the anisotropic fluctuation of the electron dis- 
tribution function, and B, is a phenomenological coefficient 
that depends on the frequency w,.  Under the condition 
IEg - &aI I )&a the coefficient B, is equal to 

wherep,, and Eg are parameters of the Kane model.' 
It can be seen from (19) that a contribution to the 

expression for will be made by the part Sf 2) with the 
symmetry of the second spherical harmonic. The relaxation 
of a nonequilibrium distribution function of this symmetry 
has been considered in a description of hot-photolumines- 
cence spectra.23 However, the authors of Ref. 23 considered 
a strongly nonequilibrium situation for photo-excited carri- 
ers, when the approach to equilibrium is determined by an 
energy-relaxation time due to, e.g., interaction with optical 
phonons. In the present paper, Sf 2' describes small devia- 
tions from the Fermi distribution. In this case energy relaxa- 
tion is unimportant, and the approach to equilibrium is de- 
termined by elastic collisions describable by the momentum 
relaxation time of the second spherical harmonic. 

The dissipation of the light-scattering fluctuations for 
this scattering mechanism occurs in a relaxational manner, 
and not diffusively as it did in the case of light scattering by 
energy fluctuations. Therefore, to determine Sf r' it is neces- 
sary to solve the kinetic equation with allowance for the neu- 
trality condition, which, when (3)  is fulfilled, implies the 
absence in the equation of a term with a self-consistent elec- 
tric field.24 The result of the calculation is 

Here f, is the equilibrium (Fermi) distribution function. 

FIG. 1. Concentration dependence of the half-width of the Lorentzian 
contour of the quasielastic electron scattering of light for different scatter- 
ing mechanisms: 1 ) scattering by energy-density fluctuations, with scat- 
tering cross section (17); 2)  scattering by momentum-density fluctu- 
ations, with scattering cross section (2  1 ). 

The scattering cross section (21) has a shape close to Lor- 
entzian, with the half-width (5) .  It is nonzero both in paral- 
lel and in perpendicular polarization of the incident and 
scattered light. It is useful to compare the relative magni- 
tudes of the contribution (17) from scattering by energy 
fluctuations and the contribution from (21 ) for parallel po- 
larizations e' and ef In order of magnitude, the ratio of the 
cross sections is equal to 

It follows from (22) that with increase of the concentration 
of current carriers, i.e., with increase of &, the role of scatter- 
ing by energy fluctuations decreases. Lowering of the tem- 
perature also leads to this effect. For example, at T = 300 K, 
exchange of the scattering mechanisms occurs at n - 1018 
cm-3 for semiconductors of the n-InP or n-GaAs type. In 
the figure the theoretical curve 1 describes the narrowing of 
the Lorentzian contour (17) with increase of the carrier 
concentration n, while curve 2 gives the growth (due to the 
decrease of T,,, upon increase of n)  of the half-width of the 
Lorentzian contour (2 1 ). 

4. THE SHAPE OFTHE SPECTRUM OF QUASIELASTIC LIGHT 
SCATTERING BY SPIN-DENSITY FLUCTUATIONS 

One more contribution to the quasielastic scattering in- 
volves fluctuations of the spin density of the  electron^.^ This 
scattering occurs via the medium of the spin-orbit interac- 
tion and is determined by the antisymmetric part of the elec- 
tron-susceptibility tensor: 

This scattering was observed in Ref. 2, but the shape of the 
spectrum was not investigated. Fulfillment of the condition 
(3)  for applicability of hydrodynamics makes it possible to 
describe the kinetics of the spin-density fluctuations by the 
continuity and diffusion equations: 

Here, Sn, - Sn, is the difference of the populations of the 
spin sub-bands, defined by the spin-density operator eZ ( t ) .  

127 Sov. Phys. JETP 70 (1). January 1990 V. A. Vortenko and I. P. lpatova 127 



In (24) there is no thermal-diffusion term, since the latter is 
the same for all the spin sub-bands, and purely spin relaxa- 
tion has not been taken into account, since for nonmagnetic 
impurities the condition wrs ) 1 is fulfilled, where rs is the 
corresponding relaxation time. The frequency dependence 
of the scattering cross section is determined by Eqs. (24) 
with the following initial condition, written with allowance 
for the degeneracy of the electron gas [see Ref. 2 1, formula 
(115.2)]: 

where n = n, + n, . The scattering cross section in this case 
has the form 
dZZ'"' 
-= d o  dQ (3)' [ e 1 e s ] 2 ~ : ~ ( z )  ~ e {  - io+k2D ( o )  

The value of B, for the case of resonance scattering can be 
found in Ref. 1 [formula (4.80b) 1. For wr, 4 1 we can ne- 
glect the frequency dependence of D(o ) .  Then (26) ac- 
quires the shape of a Lorentzian contour with the half-width 
(6). The cross section (26) describes the antisymmetric res- 
onance scattering that has been observed in n-InP (Ref. 5 ) in 
crossed polarizations of the incident and scattered light. 
From the half-width of the Lorentzian contour it is possible 
to find the diffusion coefficient of the carriers and their mo- 
bility. 

The cross section (26) must be compared with the con- 
tribution (2 1 ) to the cross section in perpendicular polariza- 
tions. In order of magnitude, the ratio of the cross sections is 
equal to 

Here A is the energy of the spin-orbit splitting of the bands. 
For materials with E,)A (e.g., n-GaAs), in accordance 
with Refs. 8 and 9, for any reasonable concentrations n the 
condition A)< is fulfilled, and the scattering by spin-density 
fluctuations dominates. In semiconductors with A > E, 
(e.g., InSb and Cd,, Hg,, Te), the ratio of the cross sections 
reduces to (+k~ , /c )~ .  Enhancement of the scattering by mo- 
mentum fluctuations in narrow-band materials is due to the 
large degree of nonparabolicity of the bands. In addition, the 
Lorentzian contour (26) becomes narrower with increase of 
the concentration of impurities, since D decreases with in- 
crease of the concentration. On the other hand, the Lorent- 
zian contour (2 1 ) is broadened with increase of the concen- 
tration. This broadening has been observed for n-InP in Ref. 
6. 

5. DERIVATION OF MICROSCOPIC EXPRESSIONS 
FOR THE KINETIC COEFFICIENTS 

In our analysis, the kinetic coefficients are functions of 
w. Picosecond studies of the scattering and energy relaxation 
of photo-excited carriers in semiconductors has shown that 
heat transfer in the electron system is realized by purely elec- 
tronic thermal conduction, without the participation of 
p h o n o n ~ . ~ ~  Therefore, it is of interest to obtain from the ki- 
netic equation microscopic expressions for the kinetic coeffi- 
cients. At T = 300 K the electron gas in strongly doped 

semiconductors, and, in particular, in films, is partially de- 
generate; the closeness of hetero-boundaries makes the elec- 
tron collisions substantially inelastic, and so the relaxation- 
time approximation is inapplicable. However, it is possible 
to make use of the Chapman-Enskog method," which, for 
an arbitrary degree of inelasticity, makes it possible to obtain 
kinetic coefficients in the form of a general expansion in a 
series in the eigenvalues of the collision integral. 

The kinetic equation, including the term (important in 
the given problem) with spatial dispersion, has the form 

The collision integral I,,,, Cf}, with inelastic collisions taken 
into account, describes the approach of the nonequilibrium 
electron distribution function f(r,t) to local equilibrium, 
which is defined by the Fermi function 

where the parameters 5 and Tvary in space and in time. The 
concept of local equilibrium assumes that the dissipative 
processes that bring the system to complete equilibrium are 
slow. If these processes are neglected, the electron system 
can be regarded as an ideal liquid, the distribution function 
of which has the form (29). Substitution of? from (29) into 
(28) shows that the collision integral vanishes, so that? for 
all values of l a n d  Fsatisfies the kinetic equation without the 
collision integral. If we take into account small fluctuations 
of the chemical potential (SC) and of the temperature (ST) 
in such an ideal liquid, the corresponding deviation STof the 
distribution function f from the quasiequilibrium distribu- 
tion functionycan be written in the form of a series in S< and 
6T: 

The function 67 also satisfies the kinetic equation without 
the collision integral. Substituting into (30) the equilibrium 
Fermi distribution function, we obtain for 67 

To describe the relaxation of the fluctuations to com- 
plete equilibrium, it is necessary to take into account the 
dissipative processes that occur as a result of collisions. We 
introduce the distribution function Sf describing the devi- 
ation from complete equilibrium, in the form 

The problem reduces to the determination of the func- 
tion 8, the zeroth approximation for which is provided by 8 
from (31). To perform the iterations correctly, we shall 
make use of a variant of the Chapman-Enskog method." 
Since 8 and 8 describe small deviations from equilibrium, 
corresponding to small fluctuations 6< and ST, we can lin- 
earize the kinetic equation (28) in 8 and take Fourier trans- 
forms with respect to r and t. To solve the linearized equa- 
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Substituting ah:', ah:', and a:' from (39)-(41) into this, 
we obtain the macroscopic equations ( 10) and ( 1 I ) ,  in 
which the kinetic coefficients have the following forms: The 
tensor of the diffusion coefficients is 

tion, we shall make use of the representation in the 
eigenfunctions Y of the linearized collision integral, which 
are determined by the equation 

Here, the vp are eigenvalues of the operator i We expand 
8(p) in a series in Y,: the tensor of the thermal-diffusion coefficients is 

and substitute (33 ) and (34) into the kinetic equation (28). 
We then obtain the kinetic equation in the form 

and the thermoelectric coefficient is 

In a one-component plasma the thermal-diffusion coeffi- 
cient appearing in the equation Equation (35) can be solved by iterations in the parameter 

Amongst the eigenvalues are zero eigenvalues that ap- 
pear as a consequence of the conservation laws satisfied in 
the collisions. In the absence of collisions the energy and 
particle-number conservation laws are fulfilled. Therefore, 
the zeroth eigenvalue turns out to be doubly degenerate, i.e., 
to it there correspond two orthonormalized eigenfunctions 

should vanish. Equation (46) differs from ( 10) in the choice 
of  variable^^^: In it, uik is the conductivity and Ek is the 
fluctuating electric field. Transforming ( 10) to the form 
(46), we find 

This quantity vanishes in the limiting case or1 ) 1. The elec- 
tronic thermal conductivity x ( o )  can be expressed in terms 
of D > (o ) ,  and, in the case of an isotropic medium, has the 
form 

where the normalization factor is expressed in terms of the 
electronic specific heat c,: 

In the zeroth approximation in the parameter (36) the func- 
tion 8(p)  reduces to the function 8(p)  from (3 1 ), which 
makes the collision integral vanish. The expansion of 8(p)  in 
a series in the Yp is constructed in the form of an expansion 
in only those Yp \?jhich correspond to zero eigenvalues of the 
collision integral I, i.e., in the functions (37). There are only 
two nonzero expansion coefficients: 

where the wave function (02'1 is equal to 

Here w is the enthalpy per electron, and the normalization 
factor in (02'1 is expressed in terms of the constant-pressure 
electronic specific heat c, : 

In the first approximation in the parameter (36) Eq. (35) 
gives 

The expression obtained for x (a) contains a negative contri- 
bution that is associated with the existence of thermal diffu- 
sion and is absent in a purely electron system without impur- 
ities. With increase of the concentration of impurities, which 
in a semiconducting plasma play the role of the second, 
heavy component, the negative term in (48) grows, and 
x ( o )  decreases. The narrowing (noted at the end of Sec. 2) 
of the Lorentzian light-scattering contour with increase of 
the concentration of impurities (the Dicke effect1') has the 
macroscopic interpretation described below. 

In the case of elastic electron collisions the electron- 
velocity vector v appearing in the matrix elements of the 
microscopic expressions for D(o) ,DT ( o ) ,  and x ( o )  is yet 
another eigenfunction of the collision integral, correspond- 

Substituting (41) into (34) and (32), we obtain the non- 
equilibrium distribution function Sf, which we can use to 
calculate the particle flux Sj and the dissipative heat flux 
(6s - 56j): 
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ing to the eigenvalue equal to the inverse transport relaxa- 
tion time r; ' = r ;  '. Therefore, in the sums overP in (43), 
(44), and (48), there remains only one term containing T,,. 

The expressions for D(w ), D ,  (w ), a (w ), and x (w ) then go 
over into the known  expression^^^ obtained in the relaxa- 
tion-time approximation. 
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