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We consider the effects of the spatial transport and the change of energy of charged particles 
interacting with MHD-type large-scale electromagnetic fluctuations. By averaging the transport 
equation we evaluate the coefficients for the particle diffusion in coordinate and in momentum 
space. We pay special attention to the strong turbulence case when it is necessary to renormalize 
the kinetic coefficients obtained from perturbation theory. We propose a method for calculating 
the renormalized kinetic coefficients which is similar to the self-consistent field method. We 
calculate the kinetic coefficients by solving transcendental equations. The calculations were 
carried out for various kinds of turbulent spectra. The method does not require a Gaussian 
distribution for the probabilities of the random quantities, but assumes that only spectral 
harmonics with neighboring wave vectors are correlated. We show that the Fourier transforms of 
the kernels of the integral operators satisfy transcendental equations and can be calculated when 
the turbulent spectra are given. 

1. INTRODUCTION 

The problems of turbulent transport of a passive impu- 
rity, either of a scalar type (particles) or of a vector type 
(electromagnetic fields) often crop up under laboratory or 
natural conditions. As an example we mention just two 
cases: the anomalous particle transport in tokamaks and 
other laboratory plasma  installation^,'^^ and also the prob- 
lems of the generation and transport of magnetic fields in 
ga la~ies .~  Various theoretical approaches to the problem 
have been de~eloped.'~ A method was proposed in Ref. 4 
for calculating the diffusion coefficient of a passive impurity 
in a turbulent flow with a Gaussian ensemble of realizations. 
The method is based on a diagram technique with expansion 
in the amplitude of the turbulent velocity pulsations of the 
medium. Particle transport was recently simulated by a sin- 
gle-scale velocity experiment in computer experiments.' 
Their results agree quite well with a calculation method4 for 
isotropic turbulence. Interaction of charged particles with 
MHD turbulence leads, in addition to particle transport in 
space, also to a change of the particle energy. In a number of 
cases this effect reduces to particle diffusion in momentum 
space; this raises the question of calculating the correspond- 
ing diffusion coefficient. This problem was solved by pertur- 

"ation theory in Refs. 8-1 1. We have previously9 considered 
particle acceleration by MHD fluctuations having scales L 
exceeding the particle mean free path A with respect to scat- 
tering by small-scale fluctuations of a magnetic field (or of 
Coulomb collisions). The acceleration effectiveness depends 
substantially, in particular, on the parameter /3 = uLo/x, 
where u is the amplitude of the velocity-fluctuation spec- 
trum, Lo is the main scale of the turbulence, and x = vA/3 is 
the particle diffusion coefficient governed by the small-scale 
field fluctuations. If P(< 1, it is convenient to solve the prob- 
lem by perturbation theory (details in Sec. 2). In the case 
P% 1 it is possible to obtain expressions in closed form for the 
kinetic coefficients9 if the random velocity field is delta-cor- 
related in time. Actually, however MHD turbulence is fre- 
quently not delta-correlated, and the condition 0% 1 is met, 
for example, for charged particles of moderate energy 

( E  5 10 GeV) . For diffusion of passive particles in the atmo- 
sphere and in the ocean,the condition P, 1 is as a rule met 
with sufficient margin (in which case x must be taken to 
mean the diffusion coefficient governed by particle colli- 
sions. Bearing these circumstances in mind, we pay principal 
attention in this paper to the case P > 1. 

We consider here the evolution of a system of charged 
particles (passive impurities) in a turbulent plasma with 
large-scale (L > A )  velocity fluctuations. The particle distri- 
bution function N ( r ,  p, t )  averaged over the small-scale 
weak fluctuations of the magnetic field, satisfies the trans- 
port equation '' 

d N  d dN  d N  p d N  du, 
-=- xup-- u,----+--- 

O t  dr,  dr, dr, 3 d p  dr, ' 
( 1  

Here u, (r, t)  is the random large-scale velocity field, which 
we assume to be statistically homogeneous and isotropic, 
and which we describe by the tensor correlation function 

where 

Equation ( 1 ) describes the transport of charged parti- 
cles in space and the adiabatic changes introduced into their 
energy by the compressibility of the medium (div u # 0).  As 
to the change of the particle energy in an incompressible 
medium with div u = 0, the contribution of such motion to 
the acceleration is smaller by a factor (A/L)2(< 1 than the 
contribution of the compressibility, l3  and is disregarded in 
Eq. (1).  

We average next Eq. ( 1 ) over a random field of long- 
wave velocity fluctuations. As already mentioned, the aver- 
aging result depends substantially on the parameter P. In 
Sec. 2 we analyze the dependence of the rate of charge-parti- 
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cle acceleration on the diffusion coefficient x and on the cor- 
relation time rc (k)  of the spectral harmonics of the velocity 
field. We show, in particular, that at a finite correlation time 
rc particle acceleration occurs also in the case of an arbitrar- 
ily small diffusion coefficient x .  If the time rc - w , particles 
are accelerated only in systems with a nonzero coefficient x, 
in agreement with the result of Ref. 10. 

Perturbation theory cannot be used for systems with 
strong turbulence if p> 1. We calculate in this case the re- 
normalized diffusion coefficients in real ( x )  and momentum 
(D) spaces, by a method similar to the self-consistent field 
method. We note here that renormalization of particle diffu- 
sion coefficients in a plasma is used quite e x t e n ~ i v e l ~ . ' ~ ~ ' ~  
The idea of the method developed in Sec. 3 for renormalizing 
the kinetic coefficients reduces to the following: We select 
arbitrarily a small section, of width Ak, of the random-veloc- 
ities spectrum and calculate the contributions A, and AD 
from the harmonics contained in this spectrum section. 
Since Ak is a macroscopically small quantity, the contribu- 
tions A, and AD can be calculated exactly. The entire ran- 
dom-velocity spectrum is accounted for in the correspond- 
ing Green's function by the complete diffusion coefficients 
that are assumed at this stage to be unknown parameters. 
The integration over the entire spectrum of AX and AD 
yields closed algebraic transcendental equations for the coef- 
ficients~ and D. We present the results of numerical compu- 
tations of the transcendental equations for various turbu- 
lence spectra. 

2. TRANSPORT AND ACCELERATION OF CHARGED 
PARTICLES BY WEAK LONG-WAVELENGTH TURBULENCE 

The problem of describing the interaction of fast parti- 
cles with weak MHD turbulence can be solved by perturba- 
tion theory methods. In particular, it is also convenient to 
use in this case the quasilinear approximation which is wide- 
ly applied in plasma theory.16 We write the fast-particle dis- 
tribution function in the form 

where F = (N ); using (4) to average Eq. ( 1) over the en- 
semble of random velocities in the medium we get in the first 
non-vanishing approximation an equation for F (Refs. 9 and 
10) 

The coefficients for the diffusion in coordinate and momen- 
tum space have, respectively, the form 

and 
m 

The correlation functions Ka8 in Eqs. (6)  and (7)  are 
defined by Eqs. (2) and ( 3 ) ,  and G(p,r,p) is the Green func- 
tion of the diffusion equation with the small-scale diffusion 
coefficient x (p) which is given and is not averaged here. The 
condition for the applicability of the approximate relations 
(5)-(7) for hydrodynamical kind of turbulence (phase ve- 

locities of the order of the hydrodynamic velocity of the var- 
ious Fourier components) is given by the inequality p( 
However, according to Ptuskin's results,1° Eqs. (6),  (7)  are 
also applicable for turbulence which is a superposition of 
modes with phase velocities v, satisfying the condition 

(weak acoustic or magnetosonic turbulence). The latter in- 
equality does not contain x and hence, when (8)  is satisfied, 
one can use (7)  to study the acceleration effect also in sys- 
tems with an arbitrarily small diffusion coefficient x - 0. To 
analyze this case we rewrite the coefficients (6)  and (7)  in 
terms of the Fourier transforms of the correlators and as a 
result we get 

where 

It follows from Eq. (9)  that the correction to the spatial 
diffusion coefficient is caused by comparable contributions 
from the rotational and the potential components of the ve- 
locity field. At the same time, in the conditions considered 
the acceleration is, according to ( lo) ,  caused exclusively by 
the potential component of the field. We specify the form of 
the spectral function S(k,w), introducing the correlation 
time of the harmonics T, ( k )  = r; ' in explicit form: 

We have chosen here the Lorentz or dispersion form for the 
frequency dependence of the spectral function in view of its 
universality and simplicity. Using the spectrum ( 1 1 ) and 
integrating by parts in ( 10) we find 

Expression (12) shows that D depends significantly both on 
the correlation time (or the resonance broadening Tk ) and 
on the coefficient x. When rk -0 and w, = kv, we get from 
( 12) the result of Ref. 10: 

In the case of weak turbulence, which is a superposition of 
monochromatic waves with random phases,the acceleration 
effect vanishes in the limit as x -0. For ( 13) to be applicable 
in the limit as x -+ 0, the condition 

m 

(u:,)=4n J k 2 s  ( k )  dk<v,2 (14) 
0 

must be satisfied. 
If the resonance broadening Tk is finite, particle accel- 

eration occurs also in a system with very strong particle scat- 
tering (x-0): 
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p2 
D ( p )  = - dk k2S ( k )  

rJ2 
9 oOZ+ rh2/4 ' 

Qualitative conclusions about the role of diffusion and of the 
finite correlation time of the turbulence are general in char- 
acter and are not connected with a specific form of the func- 
tion S( k,w ) . For instance, we choose instead of ( 1 1 ) a Gaus- 
sian form for the frequency dependence of the spectrum: 

In the case of weak turbulence war, ) 1 we can use for all k 
which are important in the integration the approximation 

(..In'") exp [-~,'(o*o.)~] + 6 ( o f  oo).  

This leads to the result ( 13) with two different acceleration 
regimes: 

Here 2r/k0 = Lo is the main turbulence scale and 
27~/k,,, the internal scale at which the spectrum is cut off. 

If, however, the correlation time T, is finite and the scat- 
tering strong we can use in (10) the approximation 

In that limit we get the result 

which is similar to Eq. ( 15 ) . 
The presence of the acceleration effect in the strong- 

scattering limit (%-0) with a finite correlation time T, is 
caused by the presence in that case of a stochastic velocity 
field which is necessary for Fermi acceleration. As 7, - w 

the velocity field consists of standard modes in which there 
are no "frozen-in" particles (x-0), and thus no accelera- 
tion. 

The value of the product war, may be determined by the 
nonlinear interaction of the harmonics as is usually assumed 
in turbulence theory. This quantity then depends on the 
strength of the turbulence and in the case of weak turbulence 
W ~ T ,  > 1. Strong turbulence corresponds to w,(k)r, (k )  - 1. 
In that case the function r , (k)  has usually a power-law 
form, T, = k ( v -  3)/2 , where Y is the exponent of the turbu- 
lence spectrum (in Kolomogorov turbulence Y = +), in the 
inertial range of scales. Outside the inertial range, or in sys- 
tems where it does not exist at all, the quantity w,~, may not 
be connected with the amplitude of the spectrum but is de- 
termined by the properties of the source and the dissipative 
characteristics of the medium. 

One should note that when we have strong turbulence 
the criteria of the applicability of perturbation theory which 
we have indicated in this section may be violated, since the 

effective phase velocity vOzu.  In the next section we there- 
fore evaluate the kinetic coefficients without using the con- 
ditions P( 1 or u <vo. 

3. RENORMALIZATION OF THE KINETIC COEFFICIENTS FOR 
A SYSTEM WITH STRONG TURBULENCE 

We obtained in Sec. 2 in the perturbation theory frame- 
work an equation for the transport of particles ( 5 ) ,  averaged 
over an ensemble of turbulent pulsations. One sees easily 
that under well defined conditions it retains its form (even 
though the expression for the kinetic coefficients changes) 
also in the case of strong long-wavelength fluctuations with 
uLo>x where the quasilinear perturbation theory is inappli- 
cable. Indeed, in order that the required equation for the 
average distribution function have the form of a Fokker- 
Planck equation we must assume F to be sufficiently smooth. 
This condition will be satisfied if the averaging is carried out 
over spatial regions with dimensions which are larger than 
the main turbulence scale Lo. In order to guarantee the dif- 
ferential form of the acceleration term in the averaged trans- 
port equation it is necessary that the change in the particle 
momentum Ap over the correlation length L be small, Ap g p  
(see, e.g., Ref. 17). 

When these conditions are satisfied the averaged trans- 
port equation retains also in the case of strong turbulence the 
form (5) and the problem reduces merely to finding the dif- 
fusion coefficients x and D, which now are no longer de- 
scribed by Eqs. ( 10). The calculation of the coefficients x 
and D can be carried out as follows. 

We consider, together with the completely averaged 
Eq. (5)  (with the correct coefficients), another equation for 
the distribution function, in which the averaging is over all 
harmonics of the velocity field except those which refer to a 
narrow angle of wave numbers, with width Ak: 

OF d , a F  l a  - = -- 
a P  

X ~ P  - + 7 - p2D' ( p )  - 
d t  Or, dr, p- ap dp 

Here 

is the unaveraged part of the velocity; integration over d k is 
performed within the confines of a spherical layer of thick- 
ness Ak, F is  the distribution function which is not averaged 
over the random velocity Su, and X' and D ' are diffusion 
coefficients due to the turbulent velocity field after subtract- 
ing Su. The averaging of ( 18) over the ensemble of the veloc- 
ities Su must lead to Eq. (5)  with the complete diffusion 
coefficients x and D. 

The averaging of Eq. ( 18) can be carried out using per- 
turbation theory, taking into account that Su is small. As the 
choice of Akg k is arbitrary, such an approach does not re- 
strict the accuracy of the results obtained. However, we as- 
sume here that the Fourier harmonics of the velocity field 
from the interval Ak are not correlated with those outside 
that range. Such an assumption agrees with the model of a 
Kolmogorov-like turbulence and with the possibility of de- 
scribing it by specifying the energy spectral density. 

110 Sov. Phys. JETP 70 (I), January 1990 A. M. Bykov and I. N. Toptygin 110 



Writing 

where the angle brackets indicate averaging over the ensem- 
ble of the Su and averaging Eq. ( 18) we find 

The correction SF  to the distribution function must here be 
calculated from the equation 

a p a~ a 
=-6ua- F +---SU,, 

dr, 3 a p  ar, 

in which terms quadratic in Ak have been dropped. We ex- 
press the solution of this equation in terms of the Green func- 
tion of the operator on the left-hand side. As this solution 
must be constructed for distances which do not exceed the 
correlation length Lo over which the particle acceleration is 
small by assumption, we can drop in the equation for the 
Green function the acceleration operator 

aG a aG 
Xaa -- = 6 (r-r')  6 ( t - t ' )  . 

at  ar, dr, 

As to the diffusion coefficient x', it differs little from the 
complete diffusion coefficient X, and with the same accuracy 
with which we wrote down Eq. (22) we can replace in G the 
quantity X' by X. 

Writing down the solution of Eq. (22) and substituting 
it into (21) we get after some simple transformations Eq. 
(5)  in whichx =x' + AX, D = D '  + AD with 

AD =fJ d p l l r ( d i v  6 u ( r ,  1)div Lr (r', if) )6(p, r, p ) .  
9 

These expressions differ from (6)  and (7 )  in two important 
respects: they contain the small part Su of the velocity field 
and a Green function G(r,t,p) in which the complete (x) 
and not the small-scale ( x )  diffusion coefficient occurs. 

Changing in (24) to the Fourier representation, using 
Eqs. (3) ,  (4), and ( 19), and taking the Green function in 
the form 

we get 

Integrating these expressions over the wave numbers and 

using the fact that the spectral functions T and S are even 
functions of the argument w,  we can rewrite (25 ) in the fol- 
lowing form: 

p' dk 6 o  k4S ( k ,  o )  
D ( P ) =  j- x J 

02+X2kk  . 

Equation (26) determines the spatial diffusion coeffi- 
cient x,as a solution of a transcendental equation. We recall 
that when evaluating the contribution from the velocity field 
through the form of the Green function we took into account 
the particle transport by flows of all scales, i.e., we carried 
out a renormalization ofx. The diffusion coefficient D(p)  in 
momentum space is evaluated by using Eq. (27) once we 
know X. In the case when the acceleration is insignificant 
and we have only turbulent diffusion, the turbulent diffusion 
coefficient is found from Eq. (26). If, however, the accelera- 
tion over a length Lo is strong (Ap>p), Eqs. (26) and (27) 
lose their meaning and the acceleration term in Eq. (5)  takes 
on an integral form. It is remarkable that if then the condi- 
tion that the spatial gradients ofFover the correlation length 
Lo of the random field be small remains true, one can signifi- 
cantly generalize the renormalization scheme considered 
above. 

4. STRONG ACCELERATION OVER A CORRELATION 
LENGTH 

When the acceleration is strong we write the equation 
which is averaged over the ensemble of fluctuations in inte- 
gral form 

where we introduced instead of the momentum the variable 
r] = ln (P  /Po), in which case 

d d I d  d ---- + 3 - = - - 
oq2 a q  p v p  d p '  

Averaging over all field harmonics except those from a nar- 
row range Ak we get from the transport Eq. ( 1 ) 

dP 
-= Jdrl/Xo 
at _ _  dr, drs 

(I 1 d d6ua x j ~ ' ( q - ~ ' ) P d ~ ' - s ~ , - - p + - p -  
-- dr, 3 d q  dr, (29) 

It is convenient to Fourier transform with respect to the 
momentum variable r]. Denoting the Fourier variable by s 
and the Fourier transforms of xA0, and D ' by , x ; ~  (s), 
and b ' (s), respectively, we get 
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The problem is now reduced to averaging an equation such 
as ( 18) and it can be solved by the same method as in Sec. 3. 
The fluctuating correction to the distribution function SF, is 
given by the equation 

6F8 (r, t) = - j drr j d t ' ~  (r-r', t-t'i S) 

is a + - F ( r ,  ) u r ,  t } (3 1) 3 ra 

where the Green function is 

G (p, 7, S) = ( 4 n ~  (s) r)-"' exp {-pZ/4z7- (sZ+3is) DT). (32 

Using (3 1 ) to average Eq. ( 30) we get 

aP. azF, - = [naB' (s) +6jjaB(s) 1- - (s2+3is) [Df+GD] F,, 
at dra dr, 

i.e., the Fourier transform of Eq. (28) in which 

The equations obtained are the analogs of Eqs. (24). 
They enable us to write down transcendental equations de- 
termining the Fourier transforms of the kernels of the inte- 
gral operators X(s) and b ( s )  : 

2T(k,o)+S(k,o) 
2 (s) k2+io+hb (s) 

1 dk do k2S (k, o )  
a ( s ) = -  J- h=s2+3is. 

9 (2n) (s) k2+im+1LJ (s) ' 

In these equations, in contrast to (26) and (27), the variable 
s is an independent parameter. Their solutions will be func- 
tions of that parameter. Moreover, both functions we are 
looking for, k(s) and @(s), occur in the integrand. 

5. EVALUATION OF THE RENORMALIZED COEFFICIENTS 
AND DISCUSSION OF THE RESULTS 

In what follows we calculate the diffusion coefficients 
using Eqs. (26) and (27) which correspond to the case of 
weak acceleration. We consider two actual realizations of an 

isotropic and stationary turbulent velocity field. 
1. A velocity field with exponentially decreasing corre- 

lations, described by a binary correlation function of the 
form 

Kaa(p, 7)  =1/3Sa8(~2) exp (-p2/Lo2- 1 7 1/70). (38) 

We can assume that the amplitude (u2 ) ,  the correlation 
length Lo, and the correlation time ro are either independent, 
or connected through well defined relations. We find the 
renormalized diffusion coefficients in the coordinate and 
momentum spaces from Eqs. (26), (27) ,which we can write 
in the present case in the form 

1 1+i/3D,a2xz 
D,=. + -5 e-X2/4x2 dx, 

bn'" , (1+Dla2x2)2 

Here a = u.r,/Lo, u = (u2 )  and we have introduced the 
dimensionless quantities Dl = x/uL0, D2 = DLJp2u, and 
E = x/uLo. One easily checks by an analysis of Eqs. (39) and 
(40) that for fixed a in the limit E ,  1 we have the quasilinear 
asymptotic behavior Dl a E, and D2 a E -  ' . In the limit a-0 
we have finite limits Dl -, 4 + E and D2 -. +. When a % 1 we 
have D2 z 3.6 X 10 - ' /D1a2. The asymptotic behavior in that 
limit is as follows: 

A decrease in D2 (i.e., in the rate of particle acceleration) 
with increasing r0 for fixed u and Lo is found in agreement 
with the results of the quasilinear theory indicating the im- 
portance of the stochasticity of the field for the acceleration 
effect (see the end of Sec. 2). The behavior of the coefficients 
D, and D, for finite values of a and E, found by computer 
calculations, is illustrated in Fig. 1. 

2. A velocity field with a power-law spectrum and a 
Lorentz shape for the frequency dependence. We specify this 
field in terms of a spectral function S(k,w) = T(k,o) with 
the frequency dependence ( 1 1 ), where the parameters are 
described by the equations 

r ( ~ / 2 + 1 )  
S (k) = - k r i  

3 n'1aI'(~/2-1/z) (k2+k02)'/2+' ' 
(41 

FIG. 1 .  Renormalized kinetic coefficients D ,  and D, as functions of  the 
correlation time a = r,,u/LO for E = 0.3. 

112 Sov. Phys. JETP 70 (I), January 1990 A. M. Bykov and I. N. Toptygin 112 



FIG. 2. Renormalized kinetic coefficients Dl and D, as functions of Ig& for 
the case of a power-law fluctuation spectrum for various values of the 
spectral index v(a-v = 3, b-v = 3,  C-Y = 2). 

The results of calculating Dl and D, as functions of E for 
spectra with exponents Y = 2, +, and 3 are shown in Fig. 2. 
The kinetic coefficients D, and D, have finite limits as E + O  
which give the values of the turbulent transport coefficients. 
The way the kinetic coefficients depend on the spectral expo- 
nent reduces to an increase of D,  and D, with increasing Y .  

This increase indicates for the chosen way of normalizing the 
spectrum (41 ) the predominant contribution of the large- 
scale fluctuations. We must bear in mind that the spectral 
index Y determines in (41 ) not only the energy distribution 
over various scales,but also the way the resonance width T, 
depends on the scale. 

We note that the results of the calculations give in the 
case of both spectra considered D, > D, which justifies the 
use of the differential form of the operators with respect to 
the momentum variable. If a calculation of the renormalized 
kinetic coefficients through Eqs. (26) and (27) leads to 
D,  -D,, we must for such fluctuation spectra use the renor- 
malization scheme expounded in Sec. 4, which is based upon 
Eqs. (36) and (37), for in that case we have strong particle 
acceleration over a length Lo. 

In conclusion we discuss a comparison of the results of 
the calculation of the renormalized kinetic coefficients with 
the results of a computer experiment. Such a comparison is 
particularly important since the method for calculating the 
renormalized coefficients proposed above is approximate. 
The main inaccuracy of the method lies, apparently, in the 
fact that we consider diffusive propagation of the particles at 
scales of order Lo whereas such a consideration is valid only 
for distances R $ Lo. 

In a paper by Drummond et al.' the results were given 
of a computer simulation of the spatial particle transport by 
incompressible single-scale hydrodynamic flow with a 
Gaussian distribution of the realizations of the velocity am- 
plitudes. The spectrum corresponding to the velocity field 
realized in the computer experiment of Ref. 7 has the form 

T(k,o)  - -- uoZ 6 (k-k,) exp (-o2/2oO2). 
(an) 4 (2n)"ko200 

The spectrum (42) has a single scale so that formally the 
approach developed in Sec. 3 as a basis for a method to calcu- 
late kinetic coefficients cannot be used. Nonetheless, one can 
verify that by reasoning as in Sec. 3 we find for a small sec- 
tion Aw of the frequency spectrum the same Eqs. (26) and 
(27). We can thus use Eq. (26) to calculate the diffusion 
coefficients for the spectrum (42). For a wide range of the 
parameters w, and ko the results of the calculation agree well 
with the data of the computer experiment of Ref. 7, the maxi- 
mum difference being of the order of lo%, while for most 
points it does not exceed 3-6%. This confirms the reasona- 
ble nature of the approximations and the possibility to use 
the proposed method to describe the transport and accelera- 
tion of particles by large-scale turbulence. Perturbation-the- 
ory calculations proposed in Ref. 4 gave somewhat better 
agreement with the computer experiment, their accuracy be- 
ing a few percent. However, these calculations are apprecia- 
bly more complicated and, what is especially important, be- 
come even more complicated when one tries to include into 
the discussion the effects of particle energy changes, which 
was the main problem of our paper. 

P. C. Liever, Nucl. Fusion 25, 543 ( 1985). 
'1. A. Krommes, C. Oberman, and R. G. Kleva, J. Plasma Phys. 30, 11 

(1983). 
A. A. Ruzmaikin, D. D. Sokolov, and M. M. Shukurov, Galactic Mag- 
netic Fields [in Russian], Nauka, Moscow, 1988, Ch. 6. 

4R. Phythian and W. D. Curtis, J. Fluid Mech. 89, 241 ( 1987). 
A. P. Kazantsev, A. A. Ruzmaikin, and D. D. Sokolov, Zh. Eksp. Teor. 
Fiz. 88,487 (1985) [Sov. Phys. JETP 61,285 (1985)l. 

6A. Z. Dolginov and N. A. Silant'ev, Zh. Eksp. Teor. Fiz. 93, 159 ( 1987) 
[Sov. Phys. JETP 66,90 (1987)l. 
' 1. T. Drummond, S. Duane, and R. R. Horgan, J. Fluid Mech. 138, 75 

(1984). 
'B. A. Tverskoi, Zh. Eksp. Teor. Fiz. 53, 1417 (1967) [Sov. Phys. JETP 
26,821 (1968)l. 

9A. M. Bykov and I. N. Toptygin, J. Geophys. 50,221 (1982). 
1°V. S. Ptuskin, Pis'ma Astron. Zh. 14,599 (1988) [Sov. Astron. Lett. 14, 

255 (1988)l. 
l 1  V. A. Dogiel, A. V. Gurevich, Ya. N. Istomin, and K. P. Zybin, Month- 

ly Not. RAS, 228, 843 (1987). 
''A. Z. Dolginov and I. N. Toptygin, Zh. Eksp. Teor. Fiz. 51, 1771 

(1966) [Sov. Phys. JETP 24, 1195 (1967)l. 
I3A. M. Bykov and I. N. Toptygin, Izv. Akad. Nauk SSSR Ser. Fiz. 46, 

1659 (1982). 
14A. A. Galeev and L. M. Zelenyi, Pis'ma Zh. Eksp. Teor. Fiz. 29, 669 

(1979) [JETP Let. 29,614 (1979)l. 
l 5  B. B. Kadomtsev and 0 .  P. Pogutse, Nucl. Fusion Suppl. 1,100 ( 1979). 
16A. A. Galeev and R. Z. Sagdeev, English translation in Basic Plasma 

Physics, North-Holland, Amsterdam, Vol. 1, p. 677. 
l 7  R. D. Blandford and D. Eichler, Phys. Repts. 154, 3 ( 1987). 

Translated by D. ter Haar 

113 Sov. Phys. JETP 70 (I), January 1990 A. M. Bykov and I. N. Toptygin 113 


