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Spontaneous nonlinear wave-field singularities do not vanish in many cases immediately after 
absorbing the waves that produce them, but exist a longer time and "suck-in" new waves. The 
energy absorbed in this manner can exceed significantly the energy consumed in formation of the 
singularities. In particular, it can be finite under conditions when an infinitesimally low energy is 
required to form the singularities, i.e., the collapse is weak. These recently advanced premises are 
verified more thoroughly by investigating the dynamics of a wave field in the spaciotemporal 
vicinity of the point of formation of the singularity. This is done in the context of the nonlinear 
Schrodinger equation encountered in many physical problems. It is shown that the dynamics of 
the wave field in this region is self-similar in a wide range of the parameters of the model 
employed. The existence of singular self-similar solutions for arbitrary values of the parameters is 
demonstrated. An alternate variant of wave-field dynamics is proposed for conditions when such 
solutions are unstable. 

1. INTRODUCTION 

The possibility of an explosive increase of the amplitude 
of a nonlinear wave field at individual points of space was 
recognized approximately a quarter-century ago in the de- 
velopment of the theory of self-focusing of electromagnetic 
radiation in a medium.'.' The various phenomena of this 
kind were later unified into a concept called wave collapse 
(first applied in Ref. 3 to a predicted explosive self-compres- 
sion of a cluster of Langmuir waves in a plasma). Preference 
was given for a long time to the so-called strong collapse, in 
which the production of a field singularity requires the ex- 
penditure of a finite wave energy. The notion of a "weak" 
collapse, i.e., a situation in which the energy of the waves 
localized in the region of the developing singularity tends to 
zero, has encountered a number of difficulties, which were 
most clearly manifested in Ref. 4. That reference dealt with a 
three-dimensional Schrodinger equation with cubic nonlin- 
earity, which is encountered in many branches of physics, 
particularly in the scalar model of subsonic collapse of Lang- 
muir waves. Only weak collapse regimes were known hereto- 
fore within the framework of this model, but the authors of 
Ref. 4 (see also Ref. 5)  have found "semiclassical" strong 
regimes. These, however, turned out to be unstable to small- 
scale perturbations, so that the problem of wave absorption 
could not be eliminated. The absorption mechanism was un- 
derstood later, not as a result of searching for stable strong- 
collapse regime but by foregoing the usual identification of 
the process of singularity formation with the process of wave 
absorption. A tendency towards a more adequate approach 
can be seen in an article6 preceding Refs. 4 and 5, in Sec. 3 of 
which the "funnel effect" is considered. The gist of this effect 
is the following. 

In the scalar model of the supersonic Langmuir collapse 
(which is known to be strong), the wave field is described by 
the Schrodinger equation 

(id/dt+A-V) $=O.  

The role of the potential V is played by the perturbation of 
the plasma density. After the collapse, the potential has for 
some time the form 

i.e., the "density funnel" is preserved. It extends from the 
initial size of the caviton r-a ,  to the size r-af  of the absorp- 
tion region, which is physically infinitesimally small com- 
pared with a,. According to Ref. 6, the funnel "sucks-in," 
from the surrounding space, waves that later "fall to the 
center" and are absorbed; the "wave function" in the region 
af ( r g a ,  takes the form 

The wave-damping strength at the center of the funnel, need- 
ed to realize the above picture, was not discussed in Ref. 6. 
Yet it is clear that to absorb a free quasiparticle with wave- 
length of order a,  the damping decrement v must be at least 
ao/af times larger than the reciprocal of the time of flight of 
the particle over the caviton (since only a small fraction of 
the energy is concentrated at each instant of time in the re- 
gion r S a f  ). On the other hand, the stationary-funnel ap- 
proximation used in Ref. 6 is valid only during the character- 
istic time of the caviton deepening in the concluding stage of 
the collapse. The time is estimated to be equal to v- ', since it 
is just the damping of the trapped wave which limits the 
explosive growth of its amplitude. In a time v- ' the distance 
covered by a free wave of length a,  does not exceed a f ,  so that 
no noticeable energy, compared with that absorbed in the 
collapse, can enter the funnel from the outside. 

A more effective Langmuir-wave absorption mecha- 
nism connected with the nonstationary character of the cavi- 
ton remaining after collapse was observed in Ref. 7. Accord- 
ing to that reference, the caviton continues, after absorbing 
the waves that have formed it, to deepen on account of the 
inertial motion of the ions, and acquires a large number of 
new bound states relative to the parameter ao /a f .  Some ener- 
gy is captured in each of these states. Absorption of the 
trapped waves no longer requires so strong a damping v. By 
the same token, the upper bounds on the caviton deepening 
time and on the energy flowing into the caviton during this 
time are lifted. Under rather lax conditions the energy 
"sucked-in" by the caviton exceeds the energy of the waves 
forming the singularity by many times relative to the param- 
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eter ads,-. In this sense, the energy consumed in the produc- 
tion of the singularity is physically infinitesimally small, just 
as in a weak collapse, but this does not preclude in any way a 
finite absorbed energy. 

A similar effect takes place in all likelihood in the sub- 
sonic collapse of Langmuir waves, and the scalar model of* 
this collapse, already mentioned above in connection with 
Ref. 4, is certainly realized. This was demonstrated by nu- 
merical computation in Ref. 8, where the "sucking-in" of 
waves by a spontaneously produced singularity was named 
"distributed collapse." 

The hypothesis of wave "sucking-in" by long-lived sin- 
gularities as a general mechanism of absorption of energy 
from fields having stable weak-collapse regimes was ad- 
vanced in Ref. 9, where the existence of singular self-similar 
solutions and the need for their study were pointed out. 

Singular stationary solution of a two-parameter family 
of nonlinear equations of the Schrodinger type were ob- 
tained shortly thereafter. 'O In the opinion of the authors of 
that paper, weak collapse in a wide range of the parameters 
of this model was indeed accompanied by formation of a 
long-lived singularity of the wave field. 

The main purpose of the present paper is an investiga- 
tion of the (obviously nonstationary) dynamics of a nonlin- 
ear wave field in the spatiotemporal vicinity of the point 
where the singularity is produced. Such an investigation is 
needed for a more profound elucidation of the very possqil- 
ity of existence of a somehow prolonged spontaneously pro- 
duced singularity. 

2. QUALITATIVE DISCUSSION OF THE BASIC EQUATIONS 

The nonlinear Schrodinger equation 

(ia/at+h+l$I")$=o (2.1) 

has been the subject of many studies (see, e.g., the review"). 
We consider below centrosymmetric solutions of (2. l ) ,  for 
which this equation takes the form 

(d  is the dimensionality of space). The most variegated ap- 
plications are those of the cubic Schrodinger equation 
(S = 2). It describes, in particular, at d = 1, excitations in 
quasi-one-dimensional molecular structures (see, e.g., the 
reviewI2), at d = 2 stationary self-focusing of radiation in a 
rnedi~rn"~ and waves on the surface of a deep l i q ~ i d , ' ~ - ' ~  and 
at d = 3 the envelope of a quasimonochromatic wave packet 
(see, e.g., Ref. 16) and a subsonic Langmuir collapse." 

To clarify the general properties of the nonlinear equa- 
tion (2.2) it is useful to understand the dependence of its 
solutions on the parameters s> 1 and d> 1. The character of 
this dependence is determined for the most part by the inte- 
grals of motion 

m 

which Eq. (2.2) has on regular wave fields $. Usually the 
"number of quanta" N is proportional to the true energy of 
the wave field, and the Hamiltonian H is proportional to the 
dispersive-nonlinear increment to this energy. On a single- 
scale wave field $ localized in the region r 5 a, the following 
estimate is valid for the Hamiltonian: 

H - N / a 2 - N " 1 2 + ' / a ^ d / z .  (2.5) 

It can be easily understood from it that collapse is impossible 
if sd < 4, since the condition a - 0 is incompatible with con- 
servation of the Hamiltonian. If sd = 4, the terms in the 
right-hand side of (2.5) cancel out at a certain number N -  1 
of quanta, and strong collapse is allowed. For mutual cancel- 
lation of the dispersive and nonlinear contributions to H in 
the case sd > 4, it suffices to localize in the region r 5 a - 0 an 
infinitesimally small number of quanta, N-0 ,  correspond- 
ing to weak collapse. 

It is appropriate to note here that at sd > 4 it is possible 
to "organize" also a strong collapse, but this calls for a two- 
scale wave field $. If the field $ varies over length a 

k -  li3 In $/drI-' (2.6) 

that is small compared with its localization scale, it is neces- 
sary to replace a by il in the first term of the right-hand side 
of (2.5). The condition for mutual cancellation of the contri- 
bution of the dispersion and of the nonlinearity H deter- 
mines the connection between il and a: 

k - i v - s / 4  a d / &  a .  (2.7) 

It is clear therefore that the assumption il <a is indeed justi- 
fied for a+O and sd > 4. The character of the temporal de- 
crease of a and il is simplest to elucidate with the aid of the 
continuity equation 

If the scales of the spatial variation of the functions n and j 
are estimated to be equal to a, it follows from (2.8) that 

La-t*-t, (2.9) 

where t, is the instant of singularity formation. The "quasi- 
classical" collapse regimes described by the estimates (2.7) 
and (2.9) are, as already noted, unstable to small-scale per- 
turbations. The most unstable perturbations have a wave- 
length of order ;I and evolve within a time T-il which is 
short compared with t ,  - t. 

Another type of strong collapse of two-scale wave fields 
$ comprise spherical soliton layers converging to a center. 
Ford = 3 and s = 2 such solutions date back to Refs. 17-19, 
and are stable within the framework of Eq. (2.2). In the 
context of the initial equation (2.1 ), spherical layers are 
most likely destroyed by tangential modulation, as is also a 
planar ~ o l i t o n . ~ ~ . ~ '  

Judging from the results of a numerical solution the 
Cauchy problem for Eq. (2.2) with d = 3 and s = 2 (see 
Refs. 17,22,23, and 10) and with d = 1 ands = 6 (see Refs. 
24 and 23), a weak collapse is stable, but the observed explo- 
sion picture is quite crude and hardly lends itself to a signifi- 
cant examination in the more general (for d + 1) model 
(2.1). 
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3. FORMATION OF SINGULARITY 

In all the heretofore known cases a weak collapse obeys, 
as t - t, , the self-similar law 

.$ (r, t) = a - 2 ( ~ - L + ~ ~ )  f (ria) , a= (t.-t) '". (3.1) 

In the region r>a the field cannot change noticeably within 
a time t, - t and so to speak "freezes." In the self-similarity 
region r(a, [where Eq. (3.1 ) is valid] the "frozen" field 
takes the form 

$ (r, t) X$ (r, t,) =Cr-z(3-'+1X). (3.2) 

The function f( p) in (3.1 ) satisfies the ordinary differ- 
ential equation 

Its solution asp- w has the asymptote 
f m ~ p - 2 ( 8 - ~ + i ~ ) + ~ i p ~ ( ~ - l + i ~ ) - d  exp (-ip2/4). (3.4) 

The first term of this equation corresponds to the frozen field 
(3.2). The second term (which decreases as p -  w faster 
than the first by virtue of the weak-collapse condition sd > 4) 
describes a spherical wave that converges to a center. Such a 
wave, which produces a singularity even in the linear prob- 
lem, can occur only under very special initial conditions. In 
the general case there is no convergent wave, i.e., C, = 0. 
Recognizing that wave fields obtained from one another by 
adding an arbitrary real number to the phase are identical, 
we can choose a positive coefficient C in the asyniptote 
(3.4). A subfamily that depends on two real parameters C 
and x (s and d are fixed), which decrease as p- a, is thus 
selected from the family of the solutions of (3.3). 

Any solution of (3.3) is automatically regular for all 
finite valuesp > 0. [The singularity discussed in Ref. 4 actu- 
ally does not satisfy Eq. (3.3), as can be easily verified by 
using the continuity equation (2.8).] The constraints on the 
parameters Cand x are imposed exclusively by the condition 
that the function f( p )  be regular a tp  = 0. The general solu- 
tion, infinitely close to the regular one, has for p -. 0 the as- 
ymptote 

f rA+A,  {P'-: d*2.. 
lnp, d=2. 

To reach the regular asymptote asp decreases it is necessary 
to make the complex quantity A ,  equal to zero, i.e., to satisfy 
two real relations. This condition selects an enumerable set 
of values of the parameters C and x. Analysis shows that 
only the first of the corresponding set of self-similar solu- 
tions (arranged in increasing order of x )  is stable. On the set 
of regular stable weak-collapsing regimes, the parameters C 
and x are uniquely connected with d and s in the entire ds > 4 
region. In a number of limiting cases this connection can be 
described analytically. The most interesting is the limit ds 
- 4-0, since the dynamics of the pre-critical weak collapse 

has the characteristic features not only of the case ds > 4, but 
also of the critical case'' ds = 4. As ds - 4 -+ 0, the following 
relation turns out to be very useful: 

It is obtained by multiplying (3.3) by pd- ' f * and integrat- 
ing the imaginary part of the result from zero top. Accord- 
ing to (3.6), as d - 4s-'-0 we have in the region p(p, 
[where the amplitude I f( p )  1 is not too small] the relation 

arg f (p) --pz/8+consl. (3.7) 

With the aid of the substitution 

f (P) =f (P) exp (-ip2/8), (3.8) 
which eliminates the oscillations of f (  p )  in the region 
p (p, , Eq. (3.3) is reduced to the form 

It becomes clear next that x-  co as d - 4s-' -0. Taking 
this into account, we can define p, by the equation 

p,=4x'". (3.10) 

In the regionp<x-"2 the solution of (3.9) is 

7 (p) =xl'"R (x5p), (3.11) 

where R ( r )  is the stationary state of Eq. (2.2) with ds = 4, a 
state having a single "binding energy" 

The function R ( r )  for s = d = 2 was calculated in the 
known Ref. 3 1. The number of quanta in the soliton (3.1 1 ) is 
independent of x and is equal to 

rn 

(according to Ref. 31, N, = 1.86 at s = d = 2). 
In the region p)x-112 one can neglect the nonlinear 

term in Eq. (3.9). The linear equation can already be solved 
analytically. The solution decreases exponentially in the be- 
low-barrier region x-'12(p <p,, is "drawn" in standard 
fashion through the vicinity of the stopping point p = p, 
(see, e.g., Ref. 32), and reaches at p)p, the semiclassical 
asymptote 

corresponding to the frozen field (3.2). In the regionpsp, , 
C 2  In ( p/p, ) ( 1, where the asymptote (3.14) is valid, the 
integral in the right-hand side of (3.6) is practically inde- 
pendent of p and is equal to N,, while from (3.6) it follows 
that 

C2= (d-4s-I) N,.  (3.15) 

The known equation for the below-barrier coefficient for the 
passage of a particle from the region p 5 x - ' ' ~  into the re- 
gion p>p,  makes it possible to establish a connection 
between x and C: 

If the difference d - 4s-' is increased, Eq. (3.15) re- 
mains valid somewhat longer than (3.16). For example, in 
the case d = 3, s = 2, when the true values of C and x are 
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FIG. 1 .  Plots of self-similar solution I f( p )  ( (curve I ) and of the soliton 
(3.11 (curve 2 )  with x chosen such that the soliton amplitude coin- 
cided with its true value at p  = 0. 

the asymptotic equations (3.15) and (3.16) yield 

In Fig. 1 are compared the true self-similar solution ( f 1 and 
the soliton (3.11 ) (with a true value I f (0)  1 ) at d = 3 and 
s = 2. With so noticeable a departure from the region where 
the asymptotic relations are valid, the correspondence can 
be regarded as good. 

4. EARLY STAGE OF SINGULARITY 

At the instant t = t ,  when the singularity is formed, the 
wave field is frozen in the entire self-similarity region r&a,: 

The field (4.1 ) corresponds to a negative "quantum flux," 
i.e., directed towards the singularity, 

Equation (4.5) differs from (3.3) in the sign of the first 
term. As a result, the field (4.4) is automatically singular at 
the pointp = 0, and the corresponding quantum flux 

j (r ,  t )  =2bd-'-'"-'J(p), 
(4.7) 

d 
J(p)=pd-lIglZ-argg 

3~ 

does not vanish a s p  + 0: 

J ( 0 )  ( 0 .  (4.8) 

The actual form of the asymptote g(p)  asp-0 depends on 
the parameters d and s. In the region d>2 + 2s- ' the princi- 
pal terms of this asymptote can be calculated using the equa- 
tions obtained in Ref. 10 for stationary singular solutions, 
since the first term of (4.5), which is due to nonstationarity, 
is small asp  + 0, viz., 

ford = 2 + 4s-', 

Within the time t - t ,  of the onset of the singularity the field 
manages to change in the region 

remaining frozen on the level (4.1 ) at r&  b. In the region 
r & b, where the field is capable of changing in a time St  - rz 
short compared with t - t ,  , it is natural to expect a quasista- 
tionary state to set in, the quantum flux to the singularity 
being independent of r. The dynamics of the wave field 
should have then a self-similar character: 

The function g(p)  satisfies the ordinary differential equation 

and has the same asymptote as f for p -0: 

for d = 2 + 2s-'. This last equation was obtained earlier8 
for the particular cases = 2 and d = 3. In the context of the 
present article, the semiclassical character of the asymptote 
(4.9) can be qualitatively attributed to the increase of the 
quantum flux into the singularity with time at d > 2 + 4s-' 
[see (4.7) 1. 

Singular self-similar solutions exist also in the region 
d < 2 + 2s-'. In this case, in the calculations of the principal 
terms of the asymptotes asp -0, we can neglect not only the 
first but also the nonlinear term of (4.5): 

Alp"z+iJ(0)l (d-2) A', d>2, 
A ln ( l l p )  +iJ(O) /A' d=2, (4.13) 
A+iJ(O) pZ-V (2-d) A', d t 2 .  

Plots of the functionsIg(p) / and d arg g(p) /d  In p for differ- 
ent values of the parameters d and s are shown in Fig. 2. 
Figure 3 demonstrates the realization of a singular self-simi- 
lar solution g(p)  for the time-dependent problem at 
d>2 + 2 s ~ ' .  Similar calculations for4s-' < d < 2 + 2s-' at- 
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FIG. 2. Plots of the functions / g( p )  I p2' ' and d arg g/d In p at d = 3 
and s = 2 (curves I )  and s = 2.5 (curves 2 ) .  

test to the instability of the corresponding solutions g ( p ) .  
This instability is due to the weakness of the nonlinear effects 
on the asymptotes (4.13) and to the obvious vanishing of the 
sigularity following the smallest stirring of a linear wave 
field focused into a point. Once the focus vanishes, the linear 
wave is reflected as usual from the center and becomes diver- 
gent. Its subsequent evolution can be tracked analytically for 

d - 4s-' 4 1, when the constant Cin the frozen asymptote of 
the field $(r,t) is small [see ( 3.15 ) ] and the linear approxi- 
mation is applicable in the entire self-similarity region [and 
not only if r 4 b ( t )  1. The character of the evolution remains 
qualitatively the same (i.e., the field singularity at the point 
r = 0, t = t, turns out to be isolated) and for other values of 
the parameters d and s from the region 4s-' < d < 2 + 2s-I. 
Since a single collapse hardly changes the number N of the 
quanta but leads to the appearance of small-scale field fluc- 
tuations, it is natural to expect a gradual displacement of the 
spectral density of the waves into the small-scale region. 
Such a displacement should continue in all likelihood until 
the field drops below the modulation-instability threshold, 
i.e., until the nonlinearity is suppressed by dispersion 
(which in fact determines the subsequent evolution). It 
should be noted that this does not contradict the theorem 
stating that collapse is inevitable at H < 0 (see Ref. 33 as well 
as the review1'), since the Hamiltonian H, in contrast to the 
number N of the quanta, changes noticeably at each singu- 
larity and is positive in the final (weakly nonlinear) state of 
the field. 

5. PRINCIPAL RESULTS 

We have investigated the dynamics of a wave field de- 
scribed by the nonlinear Schrodinger equation (2.2) with 
two parameters d > 1 and s> 1, in the spatiotemporal vicinity 
of the point r = 0, t = t, where a singularity sets in. We have 
shown that in the case d>2 + 2s-' there exist and are ob- 

FIG. 3. Temporal evolution of the wave field after 
the onset of the singularity (t, = 0 )  at d = 3: a )  
s = 2, t ,  = 6.7.10WX, t, = 2.6.10W5, t, = 1.05.10-'; 
b ) s = 2 . 5 ,  t ,  =6.7 .10-4 , t2=4 .8 .10-3 .  

-12 -10 -8 -6 -4 -2 D -8 -8 -6 -4 -2 0 Lnr 
b 
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tained singular self-similar solutions with nonzero quantum 
flux proportional to ( t  - t, ) d / 2  - '/" into the singularity. 
In the case 4s-I < d < 2 + 2sP', when the singularity is iso- 
lated in space-time, a hypothesis has been advanced that the 
wave field relaxes gradually (in view of the scale fragmenta- 
tion due to the collapse) to a state in which the nonlinearity 
is suppressed by dispersion and collapse is impossible. 

APPENDIX 1 

The numerical solution of the Cauchy problem for Eq. 
(2.2) was carried out in terms of the independent variables 
x = In r and t. This made it possible to approach, to any 
required degree, the singularity ( r  = 0)  without changing 
the mesh of the spatial net. The functions ?/"I$\ and 
a arg $/ax were calculated. In the initial state (having a 
field maximum at the point r = 0 and a negative Hamilto- 
nian) these functions decreased exponentially as x + - co . 
When t was increased, plateaus with heights of the order of 
unity began to be "pull out" from them to the left along x.  
For t- t, the plateaus extended to - CO, meaning forma- 
tion of a singularity (which was investigated earlier by an- 
other method and was therefore not shown in the figures of 
the present article). At any instant t < t, a numerical calcu- 
lation was required only for distances, not very large com- 
pared with unity, from the point x = ( 1/2)ln(t, - t) .  To 
the right of this region [i.e., for r )  (t, - t )  "*I the field $ 
froze, and to the left [i.e., for r <  (t, - t) ' '2] it was practi- 
cally independent of x .  

After the onset of the singularity the plateaus of the 
functions ?'"I$l and a arg $/ax began to "sag" to the left. 
The "sagging" in the vicinity of the point x began at 
t - t, -e2". A quasistationary state with a quantum flux, 
independent of x ,  to the left was established next in this vi- 
cinity (at d>2 + 2s-I). The numerical calculations were 
performed in a finite vicinity of the point x = 4 In ( t  - t ,  ). 
This vicinity could be shifted, when convenient, to the right 
so that the field on its right-hand boundary remained frozen. 
On the left boundary of the computation region the time 
derivative of the field was calculated by using a smooth ex- 
trapolation. The extrapolation order and the computation- 
region width were chosen such that their increase did not 
alter the results. 
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