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A unitary-transformation method that permits a Lax representation of double-resonance 
equations to be obtained from a given pair of Lax operators is described, with the Lax 
representation of the double-resonance evolution equations as the example. The integrability of 
the polarization models of Raman resonance is proved by the method of the inverse scattering 
matrix problem. 

Many processes involving passage of high-power ultra- 
short pulses (USP) of light" through a resonance medium, 
including those of practical importance (in spectroscopy, 
information transmission and processing, and others) can be 
successfully described by using models based on nonlinear 
evolution equations' that are integrable by the method of the 
inverse scattering matrix problems (ISP). Since these mod- 
els correspond to unlike resonance conditions, they are stud- 
ied as a rule independently of one another. This is perfectly 
natural from the mathematical viewpoint, since both the 
evolution equations and their Lax representations, which 
are needed to apply the ISP method, differ substantially for 
different models (see below). Yet various optical-resonance 
theories can be developed in a single manner by using a uni- 
tary transformation of the total Hamiltonian of the system.2 
This raises the question of the relation between exactly inte- 
grable models of optical resonance. It should be noted that 
the gauge equivalence of certain exactly integrable theories 
had been discussed earlier. The equivalence of the nonlinear 
Schrodinger equation to the Heisenberg-ferromagnet equa- 
tion was established in this manner.3 As to optical-resonance 
theories, it must be emphasized that they cannot be mutually 
gauge equivalent, since each of them is equivalent to a princi- 
pal chiral field on different groups, for example SL(3) and 
SU(2) for models of propagation of two-frequency USP in 
double (Fig. l a )  and Raman (Fig. lb)  resonance, respec- 
t i~e ly .~ '  

It is shown in the present paper that a unitary transfor- 
m a t i ~ n , ~  just as it relates the Hamiltonians of different opti- 
cal-resonance models, makes it possible to obtain from the 
Lax representation of one exactly integrable theory a Lax 
representation of another theory. It becomes possible by the 
same token to construct new exactly integrable models of 
nonlinear optics simultaneously with their Lax representa- 
tion. As an example, we consider exactly integrable models 
of double resonance with resonance energy levels that are 
n~ndegenerate~,~ and degenerate6 in different orientations 
of the total angular momentum. This choice is not acciden- 
tal. On the one hand, one can see here particularly clearly the 
role of the unitary transformation that excludes adiabatic- 
ally, when applied to the Hamiltonian of a three-level sys- 
tem, a common level of adjacent optically allowed transi- 
tions (level E,, Fig. la) ,  transforming the system to a 
Raman resonance with an optically forbidden transition. On 
the other hand, new results are obtained: The integrability of 
polarization models of Raman resonance by the ISP is 
proved for the first time ever, and the type of polarized USP 
of stationary shape is established, with the character of the 

USP polarization dependent on the degeneracy of the energy 
levels. 

Section 1 describes in detail the use of the proposed 
method for double resonance with nondegenerate levels, and 
repeats the results previously obtained for Raman resonance 
by differential-geometry  method^.'.^ In the next section are 
obtained the Lax representations of polarization models of 
Raman resonance with nondegenerate and threefold degen- 
erate energy level. The profile of polarized Raman-reso- 
nance USP of stationary type is also discussed. The Conclu- 
sion lists a number of problems whose investigation by the 
proposed method seems promising. 

1. UNITARY-TRANSFORMATION METHOD 

We obtain first the equations that describe the propaga- 
tion of two-frequency USP having an electric field of the 
form 

in a half-spacez > 0 filled with three-level particles. We start 
with the classical Maxwell equations 

and the quantum-mechanical equation for the density ma- 
trix p: 

d 
ih- p= [H,-Ed, p] ,  

d t  
where H, and d are the Hamiltonian and dipole-moment 
operator of the three-level particle, and P is the polarization 
of the medium 

P-Sp pd. (4)  

FIG. 1. Energy-level structure for double ( a )  and Raman (b)  resonances. 
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The density matrix is normalized to the density N of the 
three-level particles, Sp p = N. 

We have left out of ( 3 )  the relaxation terms by virtue of 
the short duration ofthe USP. We have furthermore neglect- 
ed the inhomogeneous broadening of the spectral lines. We 
assume also that the energy levels Ea , E,, and E, form a A 
configuration: the transitions E, + E, and E, -+ E, are op- 
tically allowed, Ec-E, is optically forbidden, and 
Ea < Ec < E,. We neglect in the present section the energy- 
level degeneracy and the USP polarization. 

We transform the density matrix using the unitary op- 
erator eiS: 

The equation for the transformed density matrix f i ,  
d 

i h - p = [ R , p ] ,  
at 

( 3 ' )  

is determined by the Hamiltonian 

which we expand in usual fashion: 

H=Ho-i[S, Hol- ' / ,[S,  [ S ,  H , ] ]  

The polarization ( 4 )  of the medium also takes a similar form 

P=Sp {p(d- i[S ,  d] -'/ ,[S, [ S ,  dl ] -. . .)I. (4') 

We represent Sand i;l by series in powers of the electric field 
intensity: 

Here 
fl'"'=H 

0 1 

d H(i)=-Ed-i[S"', Ho]+A -S"', 
at ( 6 )  

The succeeding simplifications differ here and depend on the 
USP propagation conditions. 

For the double resonance 

we stipulate that the only nonzero matrix element of the 
operator @') be the following: 

("' fJ:i) =-82dbee-i%=fil~~)* R;:' = -8,db.e-'@~=8,, , I 

and that the operator E'2' be diagonal and contain no oscil- 
lating exponentials exp ( + iQj ). We obtain then from ( 6 )  

We do not present here expressions for S'2' , which will not 
be needed. It is important that the S"' and S'2' contain no 
resonant denominators and confirm that the assumptions 
made concerning B a r e  not contradictory. 

The effective double-resonance operator defined in this 
manner 

has the matrix elements 

( ) -  l a 2 (  1 
a - ------ --- + A), 

a. 
A o,,,+o a,,,-o 

a,al = a,b,c; the quantities E are the Stark shifts of the 
levels, and their terms that do not contain the factor FI, are 
the so-called Bloch-Siegert shifts9 

The main contribution to the polarization ( 4 ' )  of the 
medium is made by the first term, namely P = Sppd. Trans- 
forming in (2 )  and ( 3 ' )  to slowly changing variables3' and 
reducing them to dimensionless form, we obtain evolution 
equations that can be written here for convenience in the 
form 

This equation contains new independent variables [ = z/ct, 
and T = ( t  - Z/C) /to and also 

With an aim at further analysis of the exactly integrable case, 
we neglect in (7 )  the Stark level shifts and assume that 

In the case of Raman resonance 
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we must put H ") = 0 and 2 2' = 2 2' = 0, retain in the ex- 
pressions for 2:: only the terms that do not contain rapidly 
varying exponentials, and retain in Bri' only the term pro- 
portional to exp [ - i (@,  - @,) ]. The unitary transforma- 
tion is then determined by the matrix 

, I ,  i d ,  ( &e- 'h  s a a ,  =- - 
A o a a p - 0 ,  oaa,+o,  

and the matrix elements of the effective Raman-resonance 
Hamiltonian 

take the form 

where 

with nca (w, 1 = nca ( - w,), and II, (w) the same as in the 
case of double resonance. 

The polarization of the medium in Raman resonance is 
determined by the second term of (4'): 

where D = i[d,S"' ] denotes the effective dipole moment, 

The sought evolution equationsI0 are obtained from (2 )  
and (3') by going to slowly varying amplitudes and neglect- 
ing the reaction of the waves generated at the combined 
2w, - 0, and 12w2 - w,l frequencies. It is important to em- 
phasize that in contrast to Ref. 10 the matrix elements H 
have turned out to be interrelated by virtue of the restriction 
of the initial particle model to three levels. 

The Hamiltonian H can also be obtained by a unitary 
transformation and from H D: 

As a rule,4p5 however, Stark levels are not taken into account 
when double resonance is considered. This leads to an effec- 
tive Hamiltonian gR and an effective dipole moment a with 
somewhat different parameters: 

R ~ ~ ~ = - 8 , 8 , ' d , b d b ~ [ 2 f i  ( a , , - 0 2 )  ] esp [ -i(@,-@,) ] =RaCR*, 

It is recognized here that by virtue of the Raman-resonance 
condition we have w, - w, zw, - o,. 

We do not need the evolution equations for Raman res- 
onance, since we obtain their Lax representation from the 
Lax representation of the double-resonance equations (7 ) . 
The ensuing restrictions are determined entirely by the rela- 
tion between the parameters of the Hamiltonian a and by 
condition ( 8 ) . 

We proceed now to analyze the Lax representation of 
the double-resonance equations. According to Refs. 4 and 5, 
Eqs. 7 are the condition for the compatibility of the solutions 
of a system of third-order linear equations 

a a - q= t q ,  - q = A q .  
az  a t 

Bere, i2contrast to Refs. 4 and 5, we write the Lax operators 
L and A in the form 

Recall that the evolution equations (7) are obtained from 
the zero-curvature representation 

[the conditions for the compatibility of the solutions of 
( 10) ] after substituting in them ( 1 1 ) and equating the ex- 
pressions for equal powers of the spectral parameter A. 

We transform the auxiliary equations ( 10) in a manner 
similar to the one used above for Eq. (3 ) : 

We represent the new Lax zperators and the matrix Q by 
series in powers of the field E [just as in Eq. (5)  ] : 

A .-. --. - .- z = z(0) + ~ ( l )  + 2 '2 )  + . . ., ;i = + 7i(l)+ . . ., 

Z(O) = i ((h - 6/2) J ,  

Assume that the common level Eb of the adjacent opti- 
cally allowed transitions Eb -+ E, and Eb + E, is not at res- 
onance with the two-frequency USP, or more accurately, 
that the detuning 6 from the resonance is much larger than 
the spectral width of the USP. This allows us to require fur- 
thermore that the effective operator 

3 . -  
~ e = ~ ( o ) + ~ ( 1 ) + 2 ( 2 )  
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have the block form 

/ .  0 o \  
h "'=G : :I. 

To this end we must have 

and the principal role is played here, by virtue of the assump- 

( 14) tion made, by terms resulting from integration by parts: 

Defining Q ' ~ '  as the solution of the equation 

Q'"= j c l e i ( ~ - ~ ( r r - ~ l  d .., Q ( ' j -  5 E l . e - i ( n - . ) ( ~ , - r l  
S l  - dt', we obtain 

- rn -m 

As to the operatorz we find that, accurate to first order 
in the field inclusive and with allowance for the evolution 
equations (7) ,  the effective terms 

also take the block f o ~ m  ( 14), 

h 
We n2w reduce LC and A" to 2 x 2 matrices consisting 

gf Le and A' elements with indices 2 and 3. We leave out of 
L " the inessential identicai diagonal elements i ( A  - S / 2 ) ,  
and confine ourselves in A ' to terms of zeroth and first 
(which equals zero) orders in the field. This results in the 
following Lax operators: 

which realize the Lax representations of the Raman-reso- 
nance equations with Hamiltonian & R,  with account taken 
of the condition (8) .  This can be easily verified directly. In 
addition, the Lax representation ( 17) coincides with Steu- 
del's result7 in which we put f = 0 and redesignate the spec- 
tral parameter. It must also be noted that after determining 
( 17) it is easy to dispense with the restrictions of the model 
and obtain the results of Ref. 7 with f #O. 

The above derivation of the Lax representation of the 
Raman-resonance equations2eems quite natural if it is noted 
that the role of the operator L in the double-resonance prob- 
lem is played by H (after discarding the Stark shifts of the 
levels and separating the slowly changing variables), while 
the first equation of (10) is an abbreviated Schrodinger 
eq~at ion .~)  The requirement ( 14) has therefore turned out 
to be perfectly analogous to the assumptions that reduce H 
t o g  under the transformation (9).  What remains surpris- 
ing is only the corresponding transformation of the operator 
A.  It must also be emphasized that direct substitution of the 
abbreviated combination-resonance Hamiltonian % R  for 

A 

the operator L does not make it possible, according to Ma- 
Ymistov's  calculation^,^' to find a Lax representation in anal- 
ogy with Refs. 11 and 12. 

2. LAX REPRESENTATION OF POLARIZATION MODELS OF 
RAMAN RESONANCE 

Following the proposed method, we discuss now the 
theory of propagation of arbitrarily polarized USP [Eq. 
( 1 ) ] under Raman-resonance conditions on the basis of the 
exactly integrable double-resonance polarization models. It 
is shown in Ref. 6 that in double resonance of two-frequency 
USP with energy levels E, ,Eb, and E, characterized by an- 

. . .  gular momenta la = j C  = J ~  - 1 = 0  and 
j, = jc = jb + 1 = 1, the evolution equations can be inte- 
grated by the ISP method and are the conditions for the 
compatibility of the solutions of systems of auxiliary linear 
equations (10) of fourth and fifth order, resp~c%vely, ~ i t h  
Lax operators of form ( 1 1 ) but with matrices J, E, and R of 
their own. 

In the case ja = j, = jb - 1 = 0 we have 

.l=diag(-1, -1, I, I), 
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In the case j, = jc = j, - 1 = 0 we have 

Here+&,' ' are dimensionless spherical components of the vec- 
tor g j ,  the superscripts in the density matrix p label the 
matrix elements for transitions between energy levels whose 
lower indices indicate Zeeman sublevels with different q, 
q' = 0, f 1 components along the quantization axis of the 
corresponding total angular momentum. For a unified de- 
scription of various cases j, = j, = j, - 1 = Oand 
ja = j, = jb + 1 = 1, the notation differs somewhat from 
that in Ref. 6. 

We transform Eqs. ( lo ) ,  (11) and (18), and (19) in 
accordance with ( 12) and ( 13) assuming, just as in the pre- 
ceding section, that the detuning from the resonance is large 
enough. y e  stipulate here that the block form of the effective 
operator Le be the following: 

Such a transformation is effected by the matrices at 
j = j  = j b  - 1 = 0  

a c 

and for ja = j, = j, + 1 = 1 we have 

the remaining matrix elements are zero. 
As a result ofAthe cakulations ( 15) and ( 16) of the 

effective operators L ' and A 'and their reduction we obtain 
the following Lax operators that realize a zero-curvature 
representation of the polarization models of Raman reso- 
nance: for ja = j, = 0 

i ( 1 ~ ~ 1 ~  E ~ ' E ~ )  
LR=- 

- i m r '  I 
A R = - (  ) 

2h-6 E ~ E ~ '  1 e212 ' 2h r v '  ' (20) 

for ja = jc = 1 

The Lax representations (20) and (2  1 ) serve as the ba- 
sis for the investigation, by the ISP method, of the polariza- 
tion singularities of the propagation of USP in Raman reso- 
nance (the corresponding evolution equations are given in 
general form in Ref. 13). Following Refs. 14 and 15, it is easy 
to find the Darbou transformation and the N-soliton equa- 
tions, but these results are quite unwieldy and call for a sepa- 
rate investigation. We indicate here a simple generalization 
of the expressions for USP of Lorentzian form C ( T , ~ )  
(Refs. 16, 17) to allow for the field polarization and for the 
level degeneracy within the context the models considered 
above. It is easily found that E, = ljF, (r,C), where the unit 
polarization vectors lj are equal, 1, = 1, = 1 for j, = j, = 0, 
and can be arbitrary in media with j, = j, = 1. Thus, despite 
the difference in profile, the polarization states of Raman- 
resonant USP of stationary form depend on the degree of 
degeneracy of the energy levels just as in the case of double 
resonance. 

3. CONCLUSION 

The examples considered do not cover all the problems 
in which the method proposed can be used to  obtain new 
exactly solvable models for resonance optics. Obvious cases 
that can be similarly analyzed are double resonance in a 
three-level system with j, = j, = j, = 1/2, and also the 
schemes considered in Ref. 18. It appears that new results 
should be expected by adiabatically eliminating from the 
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aforementioned problem not the level E, but another level 
(e.g., E, ), and/or by taking into account the second term in 
the expansion Q ' I )  = 0 "' + ... . It would be of great inter- 
est to track the analogous connection between exactly inte- 
grable quantum models, for example of Refs. 19 and 20. 

The author takes pleasure in thanking A. I. Maimistov 
for numerous fruitful discussions. 

" The UPS duration is much shorter than the relaxation time of the medi- 
um. 
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(2);  in (3') all the simplifications are already taken into account in H D. 

4' This circumstance was pointed out in Refs. 11 and 12 for the traditional 
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