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Interaction of nonrelativistic electrons with a standing electromagnetic wave is considered. The 
modulation amplitude of an electron current in the field of a standing or traveling 
electromagnetic wave is calculated in the quantum approach. An expression is obtained for the 
intensity of the spontaneous coherent radiation. 

INTRODUCTION 

Elastic scattering of nonrelativistic electrons in the field 
of a standing electromagnetic field was first considered by 
Kapitza and Dirac.' Their effect in the field of a strong 
standing electromagnetic wave was investigated by Fe- 
dorov2 and Aveti~syan.~ Gaponov and Miller4,' studied the 
modulation and acceleration of nonrelativistic electrons in 
the field of counterpropagating waves that are shifted in fre- 
quency, and it was noted in Ref. 4 that the electron interac- 
tion with the standing wave is described by an effective po- 
tential that is quadratic in the electromagnetic-field 
strength. 

The emission and absorption in an effective potential, 
however, were not considered in the cited studies. They were 
first investigated in Ref. 6, where the probability of this emis- 
sion was estimated in first-order perturbation theory. It was 
shown that in this case the emission probability is propor- 
tional to (V0/E)', where Vo is the effective potential pro- 
duced by the standing wave, and E is the electron kinetic 
energy ( E  > Vo). 

Varshalovich and D'yakonov7 first noted the possibility 
of obtaining quantum modulation of a current of nonrelativ- 
istic electrons as they pass through a thin dielectric plate in 
the field of an electromagnetic wave. They calculated the 
emission intensity at the modulation frequency of such a 
current near the surface of a metal. This intensity was shown 
to be proportional to the square of the current density. We 
shall refer to it as transient coherent emission (TCE). 

In Refs. 8 and 9 was considered quantum modulation of 
a current of slow electrons reflected from a vacuum-dielec- 
tric interface, and also by elastic reflection of electrons from 
the surface of a transparent single crystal (Bragg reflection). 
The TCE spectra and intensity were calculated. 

One can expect the current-density modulation depth 
and the emission intensity to increase if the electrons are 
simultaneously acted upon by a spatially periodic field of a 
diffraction grating and by a traveling electromagnetic wave. 
The energy and momentum conservation laws are then si- 
multaneously satisfied on account of the grating quasimo- 
mentum. The role of this grating can be assumed, for exam- 
ple, by a standing electromagnetic wave. 

We consider in the present paper the modulation (clas- 
sical and quantum) of an electron current in the field of a 
standing electromagnetic wave. We call this emission by the 
modulated current diffractive coherent emission (DCE). 
We shall calculate the DCE intensity. 

by a vector potential 

A,=Ao,"in o i t  cos k,y ,  (1)  

where A :, is the amplitude of the vector potential, the super- 
script z indicates the polarization direction, while w, and k, 
are respectively the frequency and field vector of waves 
counterpropagating along they axis, and their superposition 
produces the standing wave. 

Let the electron momentum be directed along they axis. 
In this geometry, the interaction of the electron with the 
wave is due to the term (eA,)', and the Schrodinger equa- 
tion for the particle in the field of the wave ( l ) is 

Here Vo(eA )'/2mc2 is the effective potential and 
A :, = - %'XI, where 8 ,  is the electromagnetic field and A ,  
is the wavelength. 

Note that the high-frequency (2w, ) term in the interac- 
tion is determined by a phase transformation of a Psi func- 
tion and is disregarded hereafter. 

We represent Eq. (2) ,  accurate to an inessential phase 
shift, in the form 

where q = 2k1. We add to the standing electromagnetic 
wave a traveling wave with a vector potential 

whereA Y,, is the amplitude of the vector potential, the super- 
script y indicates the polarization direction, while w2 and k, 
are respectively the frequency and the wave vector of the 
traveling wave A Y,, = - % ' O ~ / ~ 2 .  

The Schrodinger equation takes now the form 

dY li2 d 2 Y  e h  ifi-=--- 
dY + i - sin (w2t-k2z)  AOZY - 

at 2m dy2  mc 3  Y 

[We have neglected in (5)  the high-frequency (2w2) term 
determined by a phase transformation of a Psi function and 
disregarded hereafter, since it contains the small parameter 
eA Y,, /mc2 compared with the retained terms]. 

We seek the solution of (5)  in the form 

BASIC RELATIONS V ( y ,  t )  = a. ( y )  'Y. (y )exp[ ink , z - iE . t /h ] ,  (6)  

Consider a nonrelativistic electron in the field of a 71 

standing linearly polarized wave. We define the wave field where E, = Eo + nh3,. 
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We seek the wave function V, ( y )  in the semiclassical 
approximation 

II 

urn (!I)  =exp [i (pn2-2meV. cos q y ' ) ' h d y f ] .  ( 7 )  

Here p, = (P; + 2 m n G )  and p, (2mE0)  We assume 
hereafter w, = w, k , ~  k.  

The function a,  ( y )  must be determined. We find it for 
E )  V, by using an approximation from Refs. 7-9. In this 
approximation, first, ( p ,  ,p) )pH - p f q, a condition met in 
the case of resonance p - p, + q=.O, and second, p, z p ,  
which introduces in a,  ( y )  an error order n+im/E. Taking 
this into account, we get 

Expanding p, in terms of the small parameter V,/E, 
(p ,  =p,Eo = E )  and using expression ( 7 )  for $, , we get 

i Vo 
-an-i exp [ i ; ( ~ n - l - ~ n )  y-i- 4E sin qy ] }  . ( 9 )  

For V,/E & 1, Eq. (9)  takes the simpler form 

i 
-an-, ( y )  erp  ( - j ; (p . - l -pn+%~)  y I }  . ( 10) 

We have thus obtained for a,  (y) the finite-difference differ- 
ential equation ( 10).  

MODULATION OF THE ELECTRON-CURRENT DENSITY 

We shall solve ( 1 0 )  for the case n = + 1. Assuming 
that l a ,  , 1 & 1 and a,,=. 1,we obtain, if the interaction is 
turned-on instantaneously ( L q  1 ) 

It follows from ( 1 1 ) that a ,  increases with y  ifp, - p = q or 
if G & E,  W / V  = q + n / L ,  where v  = p / m  is the electron ve- 
locity and L = ( 8 d / p )  ( E / f i w ) ,  is the modulation length.' 
The analogous condition for the increase of the amplitude 
a - , is W / U  = q - n / L .  The conditions for a ,  and a , to 
increase are thus incompatible. That is to say, if'the electron 
beam were ideally monochromatic it would be possible to 
"tune" it only to absorption ( a ,  # O ,  a  , = 0 )  or only to 
stimulated emission ( a ,  = 0,  a  - , # O ) ,  depending on the 
relations between the parameters w, v, and q. This asymme- 
try of the coefficients is a quantum effect manifested only 
when the length I of the intersection of the standing wave 
with the electron beam is much larger than L, since L con- 

tains the Planck constant ti. Let us calculate the electron- 
current density, using expressions ( 6 )  and (7)  with n = * 1 
and taking ( 1 1 ) into account: 

e 8 ,  V ,  sin D+, y/2 
j=jo 1 ( 2ho E (  Dii 

cos (cp-D+1~/2) 

- sin D- 

D-, 
1Y'2c~s ( c p - ~ - ~ y j 2 )  )), 

where j, is the incident-beam current density, defined by 

Here I, is the total beam current, and a and b are the effective 
beam widths in the x and z directions, 

o X D --- r- - 
vo 

q , rp=ot-qy-kz ---sin qy. 
v  2E 

A real electron beam, however, is not monochromatic, so 
that expression ( 1 2 )  for the current density must be aver- 
aged over the initial-electron-beam distribution function 
F ( v )  in the velocities. We put 

where Av is the electron-velocity scatter and v, is the average 
electron veldcity in the beam (Au&v,). The averaged cur- 
rent can be written in the form 

where 

sin D,1x /2  
f,,=2 JFW-  - cxp(-iD,,x/2) du 

D*l 

Let us analyze expression ( 13 ) for various limiting cases. 
1. Let the energy width of the distribution function be 

AE = rnv,Au)ih and let y >  ( n / q )  ( 4 E / h w )  = L /2.  The 
second condition can be written in a different form by recog- 
nizing that yq/2n = N is the number of the standing-wave 
periods spanned by the lengthy. We have then N >  2E/+im, 
i.e., the standing wave must have a large enough number of 
periods. 

Calculation of the current leads in this case to the 
expression 

n V ,  e B o  d F  iEj0[ 1 I ( i  sin q+cos 9 )  I. ( 14) 
2E mq o'v i - w , , ,  

This result is obviously purely classical. In the case y < L /2 
and under the condition (w /v ,  - q)y& 1 we have 

Thus, the electron-current-density modulation ampli- 
tude first increases like y2, and then assumes the constant 
value ( 1 4 ) .  

2. The most interesting case is AE < +im. Note that for 
y  < L / 2  and ( d u o  - q)y < 1 the averaging leads to relation 
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( 15 ) and does not differ at all from the case AE > h. For a 
standing wave satisfying the condition y >  L /2, i.e. 
N >  2E /&, as already mentioned, the conditions for stimu- 
lated emission and absorption are not compatible. One of 
these effects will therefore predominate, depending on 
which velocity, w/(q - ?r/L) or w/(q + r /L) ,  turns out to 
be closer to v,. We assume hereafter that the "exact reso- 
nance" condition w / ~ ,  = q - ?r/L or w / ~ ,  = q + ?r/L is met 
and that averaging leaves only the function f + , or f - , , re- 
spectively. 

The calculations lead to the expression 

where 
a 

2 
erf ( a )  = -- J exp (--/)') d/) 

0 

is the error integral. The plus and minus signs correspond to 
emission and absorption, respectively. The modulation is in 
this case a quantum effect, since the amplitude contains the 
Planck constant fi. For y < v,/qAv or N < E,/AE (more ac- 
curately, 2E0/tiw < N <  2Eo/nAE), expression ( 16) simpli- 
fies to 

e 8 0 y  Vo 
j=jo IT-- ( ,,, E 

cos .) . 

The modulation amplitude, as follows from ( 17 ) , increases 
linearly with the length of the standing wave (or with the 
number of periods). For y > 2uo/qAu or N >  2Eo/?rAE the 
modulation amplitude assumes an asymptotic value and is 
independent of the coordinate y. In this case we have 

cos .) . 

When the beam is modulated by the periodic structure of the 
standing wave the dependence of the modulation amplitude 
on the coordinate y is in principle different from that in all 
other cases of modulation, for example Bragg reflection 
&om a crystal surface.' The reason is that the expression of 
Ref. 9 for the modulation amplitude contains the factor 

exp{ - Y' (AvIZq2 } 
4vZ ' 

which leads to damping of the modulation with increasing 
distance from the crystal boundary. In our case, however, 
the modulation amplitude is independent of y and is large 
enough even if Au/u - 1. The physical cause of this difference 
is the resonant character of the interaction of the electron 
beam with the standing wave. A standing electromagnetic 
wave selects a narrow part of the electron beam from the 
entirevelocity spectrum (w/v = q + ?r/L), and it is this part 
which is modulated in the radiation field. 

EMISSION OF ELECTROMAGNETIC WAVES BY ELECTRONS 
IN THE FIELD OF A STANDING ELECTROMAGNETIC WAVE 

As noted in Refs. 7-9, interaction between electrons of a 
modulated beam with a "third body" produces spontaneous 
coherent emission at a frequency w or at frequencies that are 
multiples of w. In the case considered here, the body in ques- 

tion is the same standing wave on which the modulation 
takes place. 

The energy of coherent emission of frequency w' is de- 
termined from the equation (see Ref. 9) 

where k' is the spontaneous-emission wave vector, 
n' = kl/k ' is a unit vector, and w = k 'c. 

Equation ( 19) is valid when LN 'I3 > 1 (quantum case) 
or N > qAv/v (classical case), where N is the electron 
density. 

Let us calculate the coherent-emission power 
dII = ~ E / T ,  where T is the interaction time. For a current 
density j given, for example, by Eq. ( 14) we get 

The angular distribution of the emission is obtained 
by making in (20) the substitutions k: = k cos 0, 
k ;=ks inOs inp ,  k:=ksinOcosp,  dR=sinOdOdp, 
d k' = k I2dk 'dR and by integrating over dk ' = dwl/c. 

The angular distribution of the spontaneous-emission 
flux is given by 

The most important in (21) are the exponential factors. 
They show that the emission propagates within a small solid 
angle in the z direction. It is interesting to note that in the 
(y,z) plane, i.e., at p = ~ / 2 ,  the characteristic radiation 
propagation angle is O,=(kb) ' I 2 .  In the (x,z) plane 
(p = 0)  the radiation propagates within an angle 
x , = ( k a ) ' .  I f a z b ,  thenOo>>Xofor k b ~ 1  and ka>>l .  

CONCLUSION 

Let us assess the current-density modulation ampli- 
tudes in the classical and quantum cases, using estimates 
based on Eqs. ( 14) and ( 18). Let the standing-wave electro- 
magnetic field intensity be 67, = 3. lo7 V/cm and the wave- 
length K ,  = l o p 5  cm, so that the effective potential is 
V, = (eZ?,K,)2/2mc2 = 0.4 eV and q = lo5 cm-'. Assume 
an electron velocity v = lo9 cm/s ( E P  1 keV) and Av/v 
= 10W3. Then o = qu = 1014 s ' ,  L=: 1 cm, and the modu- 

lation amplitude is (e%',/qE) ( V,/E)  ( V / A V ) ~  z 10-"ego. 
Assuming a traveling-wave electromagnetic-field intensity 
8?8?, = lo5 V/cm we find that the modulation amplitude 
reaches 10%. It must be borne in mind that this estimate has 
been made for the classical case AE>tiw. In the opposite 
limiting case h) AE the quantum modulation amplitude 
takes, according to ( 18), the form 
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e 8 0  Vo v --- 
tioq E Av' 

At 8,  = 5.107V/cm, +h = 1 eV, Vo = 0.04 eV, q = 5-lo5 
cm-',v=3~109cm/s(E=2.5~103eV),v/Au=3~103and 
L = 5 10 -' cm, the modulation amplitude reaches 10% at 
8, = lo6 V/cm. Let us compare the current-density modu- 
lation amplitude produced in Ref. 7 with expression ( 16) for 
the case 

For o = qv this relation is determined by the quantity 
( E  /Vo) (Av/v) 4 1 if E  does not exceed Vo greatly and 
Av/v4 1. The interaction of the electron current with the 
traveling electromagnetic wave is obtained, e.g., using ( 16), 
by measuring the change of the current when the laser is 
turned on. Another possibility is observation of the DCE. It 
must be borne in mind here that observation of the DCE at 
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the frequency o is difficult if the angle 8, is close to the 
divergence angle of the modulating wave. It is therefore best 
to observe the DCE at kb - 1, ka - 1, and an angle 8, - 1 rad. 
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