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Propagation of femtosecond periodic pulses along a fiber waveguide is considered. Expressions 
are obtained for the field intensity and amplitude. The Whitham modulation equations are 
derived and solved to describe an oscillatory region of the field near the point of wave reversal. 

1. INTRODUCTION 

One of the recent successes in the physics of fiber wave- 
guides has been the development of a method for generating 
light pulses of - 10-100 fs duration (for a review see, for 
example, Ref. 1 ) . Although pulses of picosecond duration 
can be described by the familiar nonlinear Schrodinger equa- 
tion (NSE),  in the femtosecond range we have to allow more 
rigorously for nonlinear effects. It is shown in Ref. 2 (see 
also Refs. 1 and 3-5) that for typical values of the physical 
parameters the most important are the effects that follow 
from the failure of the hypothesis of a quasisteady nonlinear 
response. Since this quasisteady hypothesis cannot be em- 
ployed, the evolution of an envelope of a pulse in a fiber 
waveguide must be described by a generalized NSE 

where use is made of the dimensionless variables z = Z /Ld 
representing the coordinate along the fiber waveguide, 
t = ( T - Z / u ,  )/r, is the "instantaneous" time, and ij 
= (y/2) ' I 2  A ;  here, L, is the characteristic length or dis- 

tance in which a pulse spreads out as a result of dispersion, v, 
is the group velocity, T, is the characteristic duration of a 
pulse, y is a parameter representing the nonlinearity of the 
fiber waveguide, A is the amplitude of the field envelope, and 
b is a parameter describing departure from the quasisteady 
approach (see Refs. 1-5). Inclusion of the last term in Eq. 
( 1 ) is essential also in the description of such effects as the 
reversal of a "shock" wave in a nonlinear fiber waveguide 
and formation of an oscillatory region in the vicinity of the 

simple expression (see Ref. 12) 

q ( t ,  z )  =b-Ih exp (-iz/bZ+it/b) u(2zlb-t, z )  

to the solution of another integrable equation 

iu,+utt-2i ( I  uIZu)  *=O. (2 )  

The integrability of this "nonlinear Schrodinger equation 
with a derivative" (NSED), first established in Ref. 13, fol- 
lows from the fact that it represents the condition of compat- 
ibility of two linear equations which contain a spectral pa- 
rameter A and which we shall use in the form proposed in 
Ref. 8: 

and 

-- a'1 - A (a ,  r, q )  $,+B (h,  r, q )  +z, 
d z 

where in the case of the NSED we can assume that 

q=u, r=u', F=2hZ, G=2a, A=-8ik4-4iIu/2h2, 

B=8h3u+ (2iuf +41 u / ' u )  )., (5  

C=8hSu'+ (-2iutq+41 u l'u*) h. 

reversal point (for experimental results see, for example, 
The systems of equations ( 3 )  and (4)  have two basic solu- 

Ref. 6).  An analysis of problems of this type requires the 
tions $ = ($, , $, ) and p = (p, ,p, ), which satisfy different 

knowledge not only of the soliton solutions of Eq. ( 1 ), which 
boundary conditions. In finding the periodic solutions of the can be found in Ref. 7, but also of its periodic solutions. Since 
NSED it is convenient to go over to systems of equations Eq. ( 1 ) is integrable (see Refs. 8 and 7),  its periodic solu- 
which are satisfied by the "squares of the basis functions" tions can be found by the finite-band integration meth- 
(see Refs. 14 and 15): o d ~ . ~ . ' ~  We shall use these methods inthe next section to 

study single-phase periodic solutions of Eq. ( 1 ), which are 
most important from the point of view of physical applica- 
tions. 

Periodic waves in real physical problems are naturally 
inhomogeneous. If the degree of inhomogeneity is relatively 
small, the evolution of a periodic wave can obviously be de- 
scribed by the Whitham averaging method." In Sec. 3 we 
shall derive the Whitham equations for slow changes in the 
parameters that determine the periodic solutions, and we 
shall find the solutions corresponding to oscillations of the 
envelope in the vicinity of the point of wave reversal. 

2. PERIODIC SOLUTIONS 

We shall simplify somewhat the analysis using the cir- 
cumstance that the solutions of Eq. (1) are related by the 

f = - ' / L z ( ~ I + 2 + ~ 2 $ l ) ,  ~ = ( F I + ~ ,  h=-~l i . - .  (6)  

These systems are described by 

af/dt=-iGrg+lGqh, dj/irz=-iCgtrB7z. 

8g/c1t=2iGqf-2Fg, dg/dz=2iBf+2Ag, ( 7 )  

dh/dt=-2iGrf+2Fh; dh/ii~=-2iCf-2~/1FL. 

We can easily demonstrate that the expression 

f2--gh=~ (8) 

is independent o f t  and z, so that P i s  a function of A alone. 
Periodic solutions are distinguished by the following condi- 
tion: P = P(A), which is a polynomial of A. Substituting the 
system (5)  corresponding to the NSED into the system (7) ,  

80 Sov. Phys. JETP 70 (1), January 1990 0038-5646/90/010080-05$03.00 @ 1990 American Institute of Physics 80 



we can demonstrate that in this particular case the polyno- 
mial P(A) can contain only even powers of A.  Nontrivial 
solutions are obtained if P(A) is of degree )6, and degrees 6 
and 8 correspond to one-band periodic solutions. The 
knowledge of these solutions is sufficient for the description 
of such typical physical tasks as, for example, the formation 
of solitons as a result of a reversal of a shock wave, so that we 
shall confine our treatment to these solutions. Moreover, in 
the case of many-band solutions describing the interaction of 
nonlinear waves, the inverse scattering problem gives us so 
far insufficiently workable expressions. We shall show later 
that the solutions corresponding to the sixth degree of the 
polynomial P(A) are special cases of the solutions of the 
eighth-degree P(A). We shall therefore assume that the pol- 
ynomial P(A) is 

where f Ai  are zeros of P(A ). We can then easily show that 
the system (7)  is satisfied by the expressions 

where 

and the quantities f, , f2 , I u 1 2, andp are related by the follow- 
ing condition deduced from Eq. (8) :  

The variablep is known as a point of an additional spectrum 
in the eigenvalue problem (3)  with periodic boundary con- 
ditions. The dependences of p on t and z can be obtained 
from the system (7)  if we substitute thereA2 = p and bear in 
mind that f(p1!') = ( ~ ( p " ~ ) ) " ~ .  

Hence it follows that the point p moves along an elliptic 
Riemann surface (w, A )  defined by the equation 
w2 = P(A The usual procedure (for example, integra- 
tion of the NSE in Refs. 14 and 15) involves integration of 
the system ( 13) forp subject to the initial conditions select- 
ed so as to satisfy the equality ( 12). However, we can readily 
avoid this additional condition in our one-band case if right 
from the beginning we consider the motion of p only along 
such paths which satisfy always the equality ( 12). (This 
method of deriving workable expressions for one-band peri- 
odic solutions of the NSE was proposed in Ref. 16.) In fact, 
equating the coefficients of like powers of A in Eq. ( 12), we 
obtain 

where I denotes the square of the modulus of the field 
I = (U 1'. Hence it follows that the natural parameter for spe- 
cifying the path ofp is the variable I.  Solving the system ( 14) 
for p ,  we obtain 

where R (I) is a fourth-degree polynomial in I: 

R (I) = [4sz*8 (s,) '"- (I-s,) '1 '+64I [zt (s,) '" (I-s,) -s3]. 
(16) 

In the above expressions (s, ) I / *  is understood to mean 
(s4) ' I 2  = AlA2A3A4. The polynomials R ( I )  will be called 
"resolvents" of the polynomial P(A ), because their zeros are 
related to the zeros of P(A) by the following simple symmet- 
ric expression:') the upper signs in ( 16) correspond to the 
zeros 

I,= (h,+h2+h3-hr)2, I,= (hi+hz-hs+hr) ", 
(17) 

I,= (hi-h2+h3+h4) ', I,= (-hl+hz+ hr+h;) ', 

and the lower signs in Eq. ( 16) correspond to the zeros of the 
resolvent 

I,= (a,+az+a3+a,)2, z2= ( a , + ~ ~ - a ~ - a ~ ) ~ ,  
(18) 

I,= (hl-hz+hJ-h4)2, I&= (-hi+ hz+ lL3-hl)' . 
The above transition to the sixth-degree polynomial P(A ) is 
obtained if one of the values Ai  is assumed to vanish. 

It follows from Eqs. ( 13) and ( 14) thatp depends only 
on the phase 

The convenience of introduction of the resolvent R ( I )  be- 
comes particularly obvious if we go over from the equation 
for p to the equation for I. Differentiating P (~ ' / ' )  
= f *(pl/') with respect to I,  we obtain 

which yields the expression for the derivative 

dl i (-R (I) ) ''? - . -- - 

dp 4f (p"? . 
Multiplying Eqs. ( 19) and (20), we find that the intensity I 
satisfies 

d l  
-= (-I? (I) ) ' I2.  
dW 

This equation is readily solved using elliptic functions. If I is 
known, then the system ( 11 ) readily yields u(t, z). Using 
Eq. ( 14), we find then that 

where fi ( W) is obtained from the equation 

Substituting here Eq. (15) and using Eq. (21 ), we find that 

dlnu" d l n I  
-- - -I/' - 
dW dW 8 

where use is also made of the identity 

which follows from Eq. ( 16). 
The parameters characterizing the solutions need not 

satisfy any additional requirements apart from the obvious 
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condition that I be real and positive. It follows from Eqs. 
( 17) and ( 18) that this condition is satisfied, for example, if 
all the quantities A, are real, so that all the intensities Ii are 
real and greater than zero; if two zeros of A, are complex- 
conjugate and the other two are real, then the two values of Ii 
are real and positive; if A, split into two complex-conjugate 
pairs, then again the two values of I, are real and positive. 
We shall first give the appropriate expressions for I. 

If all A, are real, we shall renumber them to satisfy the 
inequalities A,>A2>A3>A,>0, so that in both cases of Eqs. 
(17) and (18) we haveIl>12>13>14>0. Theintensity Ican 
vary within the limits I, >1>12 and 13>1>14, where the resol- 
vent R (I) = II (I - I, ) is negative. Integration of Eq. (21 ) 
is carried out using standard expressions (see, for example, 
Ref. 17 ) and yields 

where 

where Wo is the value of the phase z = 0 when t = 0. If, 
however, 

the equations in the system ( 18) give the following values for 
the zeros of the resolvent 

The intensity I can oscillate only in the interval I, >1>12 and 
is described by Eq. (24). One possible case, when two zeros 
ofA, are complex-conjugate and the other two are real, leads 
to more complex expressions, but we shall not use them and 
not write them down. 

Explicit expressions for the periodic NSED solutions 
can be derived conveniently using the Weierstrass elliptic 
functions. We shall therefore introduce zeros of the corre- 
sponding Weierstrass cubic polynomial (see Ref. 19): 

The familiar relationship between the Jacobi elliptic sine and 
the Weierstrass g function can be used to transform Eqs. 
(24) and (25) to the unified form 

defined by 

p ( x )  =e3- (I i -12)  (1%-I3)/4, 

P ( p )  =e3-1' (11-12) ( I i - I s ) /41 i ,  

whereas in Eq. (25) we have I, = I, and x andp are given by 

P ( x )  =e3- (I2-1,) ( I3 - I , )  14, 

f? ( p )  =e3-I,  (I2-I , )  (I3-I , ) /41, .  (32) 

Substituting Eq. (30) into Eq. (23), and integrating this 
equation employing standard expressions from the theory of 
elliptic functions, we obtain the following expression for the 
periodic solution of the NSED (2): 

+ 16i ( s , )  '"z} (I,,) '': 
o ( x ) o ( W + p )  a ( W - x )  , (33) 

o ( p ) o Z ( W + x )  

where and a are the Weierstrass functions. 
It is of interest to investigate the soliton limit of these 

solutions when I, = I,, so that the modulus of the elliptic 
functions of Eq. (26) is k = 1 and we have 

ei=e2=a= (1,-I,)  (I2-Z4) 112, 

e --za=- 
3 - (Ii-Iz) (12-1,) 16. (34) 

Introducing the notation 

we find that the solution (33) with I, =I1 and with the 
parameters x and p given by Eq. (3 1 ) is readily reduced to 

u ( t ,  z )  =I/,  exp{i (-si+3Z2/2) W -  ( - I l l l )  'hW/2+16i (s()'z) 

We shall consider two characteristic special cases of 
this solution. 

1. We shall first assume that A ,  = A, = a + io and a ,  
= A, = a - ip, so that 

I,=16a2, 12=13=0, I,=-16fi2, cosZ(I' /2)  =f iZ / (aZ+p2) .  

The above expression suggests the parametrization 

a = A  sin (r/2), p=A cos ( r / 2 ) .  

Substitution of these two parametric expressions into Eq. 
(36) yields the soliton solution 

u ( t ,  z )  =4A sin I' el ie  e4e+e-ir 
eze+e-2e+ir e k O + e i F  ' (37) 

where 

(D=2tA2 cos I?-8zA' cos 2 r ,  

0=2tA%in r -8zA4  sin 2I'. 

I=I ,  fP ( W - W a )  -P ( P I  The above differs only in notation from the soliton solution 
@ ( W - w a ) - P  ( x ) '  (30) given in Ref. 13. 

2. Let us now assume that all values of A, are real and 
where I, is the initial intensity when W = W,. We shall sim- 

that 
plify the expressions by assuming that Wo = 0. Then, Eq. 
(24) corresponds to I, = I, and the parameters x andp are A , =  ( a + j ) / 2 ,  h2=hs=P12, a,=- ( a - p ) l 2 ,  (38) 
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so that 

Substitution of these expressions in Eq. (36) yields 

u (t, z) =aei@ 
ch 20 ch (20+ir/2) 

ch2(20-ir/2) ' 
where 

This is a "bright" soliton appears against a background of a 
constant pedestal, as can be seen particularly readily from 
the expression for the square of the modulus of the field 

which naturally is identical with the corresponding limit of 
Eq. (24). 

The soliton limit of the solution (33) with I, = I, can 
be considered in a fully analogous manner. We shall give 
only the final result for the case of the distribution of zeros in 
accordance with Eq. (38) : 

where sin2(r/2) = a2/(4D '), whereas @ and Oare given by 
Eq. (40). The square of the modulus of the field is [see also 
Eq. (2511 

I= I u ( t ,  Z) I 2=4a2B2/ [a2+ (4pZ-a2)cth2 201. (43) 

Obviously, Eqs. (42) and (43) describe a "dark" soliton 
against a constant pedestal. Solutions of this type have al- 
ready been obtained by numerical integration of the NSED 
(Ref. 4). 

An important qualitative circumstance revealed by our 
analysis and distinguishing the solutions of the NSED from 
the solutions of the NSE is the existence of two solutions 
described by Eqs. (24) and (25) for the same set of zeros A i  
of the polynomial P(A ) . It follows that at an inhomogeneous 
solution point where I, = I, we can match a solution of the 
type given by Eq. (25) characterized by smaller oscillations 
of the amplitude to a solution of the Eq. (24) type corre- 
sponding to large oscillations of the amplitude. For a quali- 
tative description of the inhomogeneous solutions we have to 
derive the Whitham equations governing the evolution of the 
parameters A,. 

3. WHITHAM EQUATIONS ANDTHEIR SELF-SIMILAR 
SOLUTION 

The inverse scattering method has led to the discovery 
that it is in fact the most effective method for obtaining the 
Whitham modulation equations directly in the diagonal Rie- 
mann form.'' This made it possible to derive Whitham equa- 
tions not only for the Korteweg-de Vries equations ",'s but 
also for the sine-Gordon eq~ation,~'  the nonlinear Schro- 
dinger equation,,' and equations describing the self-induced 
tran~parency.,~ Integrable equations follow from the com- 
patibility conditions 

of the linear systems (3)  and (4), and the corresponding 
Whitham equations can be obtained by the following simple 
procedure. Using Eqs. (44) and (7),  we can easily show that 

which are generating functions of an infinite sequence of 
conservation laws. Their averaging gives rise to a generating 
function for the Whitham equations. Substituting Eqs. (5)  
and ( 10) in the first expression in Eq. (45) and averaging 
this first expression over the wave period, we obtain 

where we use the normalization f - gh = 1 (see Ref. 18) 
and average in accordance with the rule 

K(k) 
(41) 

T = j d ~ = ' / ,  j dp - - 
( -  ( p )  ) 'I2 [ (hI2-h3') (hZ2-hL2) 1"' ' 

where K(k )  is a complete elliptic integral of the first kind, 
whereas k is defined by Eq. (26). Integration in Eq. (47) is 
along the plots of Eq. ( 15 ) . We can easily show that these 
plots surround the cuts between /2 and A : or between A : 
and A : . In view of their topological equivalence, the result of 
integration is the same in both cases. Equation (46) has sin- 
gularities ofA2 at A ' = A f and the condition of vanishing of 
the coefficients in front of the singular terms, which result 
from differentiation of [P(A)]''2 with respect to z and t ,  
yields the following equation for A,: 

dhi 1 dhi -+--=o, 
a z  ui at 

where 

The average values in the above expression can be calculated 
using the self-evident formula 

1 2 dT d lnT 
- =---=- (A,.-,> T dhr' 2-, dhi2 

so that the group velocities v, are described by 

1 
- = - 2 Z h i ' +  2) I 

4(h,2--h2Z) (hi2-hpZ) K (k )  
(hz2-Ah2) E (k) - (h12-AhZ) K (k) ' 

1 
-= - 2 Z h i 2  - 4 (hi2-hZ2) (h22-h32) K (k) 

~2 (h12-h32) E (k) - (hz2-h32)K(k) ' 
1 4 (hZ2-hS2) (h32-hA2) K (k )  

\ 7 / 1  

- - = - 2 Z h t 2 + .  V3 
(h22-h42) E (k )  - (hZZ-hJ2) K (k) ' 

1 
- = - 2 Z k , ' -  u4 

4(hl2-Ah2) (kg2-h:) K (k) 
(LIZ-hSZ)E(k) - (XI2-h:) K (k) 
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Equations (48) and (49) constitute the required system of 
Whitham modulation equations for the parameters A, gov- 
erning the periodic solution of the NSED. 

We shall apply these equations by considering the prob- 
lem of evolution of the oscillatory region after "reversal" of a 
~ a v e . ~ " ~  We shall assume that at the instant of reversal the 
wave profile is close to a "step," and that the region of transi- 
tion from a higher intensity I, =Ia to a lower intensity I, 
= I, is very narrow, so that its initial value can be ignored 

after a sufficiently long time when the asymptotic Whitham 
method becomes valid and we can use then the self-similar 
solutions of the system of equations (48). We shall assume 
that the intensity at the point of reversal, where the deriva- 
tive becomes infinite, is I,. Then, the oscillatory region splits 
into two parts and in one of them there is a transition of the 
average value (I ) from I, to I,, whereas in the other part the 
transition is from I, to I, with the aid of solutions of the (24) 
and (25) type, respectively, where theparametersAi depend 
on the self-similar variable T = z/t. This dependence is given 
by the system of equations (48) which in the self-similar case 
become 

The intensities found above set the limiting values of the 
parameters A, when use is made of the relationships 

so that in the region I, >(I)>I, only the parameter A, 
changes from A, at the point z, characterized by (I ) = I, to 
the value A, at the point z, with (I ) I,, whereas in the range 
I, >(I ) >Ic there is only a change in the parameter A, from 
A, at the point z, characterized by (I) = I, to A, at the 
point z, with (I ) = I,. Therefore, the solution of the system 
(50) is 

The above expressions describe implicitly the dependence of 
Ai on z/r; after substitution of Ai  into Eqs. ( 17), (24), and 
(25 ) we obtain the values of the intensity I in the oscillatory 
region. The corresponding substitutions of the parameters in 
Eq. (33) give the expressions for the field amplitude in the 
oscillatory region. We shall also give the velocities at the 
boundary points z,, z,, and z, which are readily obtained 
from Eqs. ( 5 1 ) and (49 ) : 

The solution obtained provides a quantitative explana- 
tion of the characteristic pattern of oscillations of the field in 
the oscillatory region. In the vicinity of the point z, these 
oscillations have a large amplitude which decreases away 
from z, in either direction, so that the oscillations disappear 
completely at the boundary points z ,  and z,. 

The author is grateful to A. A. Vedenov, V. G. Nosov, 
A. L. Chernyakov, and V. R. Chechetkin for discussing the 
results. 

I '  In the case of the nonlinear Schrodinger equation the polynomial P ( A )  
is of the fourth degree and the similarly derived polynomial R ( I )  is its 
cubic resolvent (see Ref. 16). 
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