
Coherent four-wave mixing of light pulses 
A. A. Zobolotskii 

Automation and Electrometry Institute, Siberian Division, USSR Academy of Sciences 
(Submitted 27 April 1989) 
Zh. Eksp. Teor. Fiz. 97,127-135 (January 1990) 

The dynamics of the polarization of quasimonochromatic electromagnetic waves in a medium 
with a cubic nonlinearity is studied. It is assumed that two pairs of fields propagate in opposite 
directions and the sum (difference) of the carrier frequencies of some fields or polarization 
components is close to the characteristic frequency of the medium. To solve the problem of the 
evolution of fields with nonvanishing asymptotes the inverse scattering transform method is 
employed. The relevant technique is developed and soliton and quasi-self-similar solutions are 
found describing the start of decay of the initially unstable state. The possibility of using the 
results to describe wave front reflection, spontaneous generation, and related effects is discussed. 

1. INTRODUCTION 

The four-wave interaction in media with mirror sym- 
metry is basic for values of intense fields below saturation. 
An important particular case of such interaction is degener- 
ate four-wave mixing (FM), i.e., the nonlinear interaction of 
waves having the same frequency but otherwise differing in 
the direction of propagation or polarizations.'-3 Data exist 
on the observation of such FM in different media for contin- 
uous and pulsed radiation. Degenerate FM leads to different 
effects such as the amplification of the signal wave running 
ahead, wave-front reversal (WFR), and the reconstruction 
of holographic  image^.^ Related phenomena arise in the res- 
tructuring of polarization of two wave packets having une- 
qual carrier freq~encies.'-~ In a series of studies different 
partial solutions were obtained for the evolutionary equa- 
tions describing the above  effect^.^,"' 

The most often used approximation is the inexhausti- 
bility of intensities of reference waves."' However, in a 
number of FM systems the coefficient of field transforma- 
tion (more precisely, of the number ofphotons) reaches val- 
ues of order unity, exceeds it and in systems in which an 
explosive instability  occur^.^ In this connection the necessity 
arises of constructing a more complete theory describing the 
evolution of all fields taking part in FM. The excitation of 
WFR effects and others with FM requires in the majority of 
cases significant field powers which may be reached often 
only by use of ultrashort light pulses (USP). This fact also 
underlines the necessity of considering nonstationary ef- 
fects. 

The most convenient analytic tool for the above pur- 
poses is the inverse scattering transform method (ISTM) .9 
This method was employed in of FM of light 
waves in a nondispersive medium with a cubic nonlinearity. 
The case of interaction of two counterpropagating waves 
with a difference of carrier frequencies close to the frequency 
of the medium was considered in Ref. 10. Topologically sta- 
ble solutions of the domain-wall type were used for describ- 
ing the restructuring of the polarization. In the framework 
of new models of FM, a soliton regime and a self-similar 
regime describing the decay of the unstable state of the sys- 
tem were studied in Refs. 11 and 12. 

The models of FM studied in our work are particular 
cases of those considered in Refs. 10-12. However, in con- 
trast to preceding studies, nonzero asymptotes are consid- 
ered here for all fields (components of field polarization) 

participating in the FM. This fact causes a modification of 
the ISTM technique and correspondingly of the solutions of 
the problem. We note that the constructed ISTM technique 
generalizes the corresponding results obtained by use of this 
method to include the study of a niodel of an isotropic ferro- 
magnet.13-l6 The statement of the problem with nonzero 
asymptotic fields results from specific properties of the prob- 
lem of FM for which a special choice of initial field polariza- 
tions is not required. 

The results obtained below can also be used in other 
areas of physics in which formally equivalent models arise, 
for example in the theory of a plasma for carrier frequencies 
much higher than the plasma frequency,I0and for the theory 
of elementary particles in the SU(2)  model of Vaks-Larkin- 
Nambu-Iona-Lazino. " 

The plan of study is the following. In Sec. 2 the studied 
models of FM are presented. Sec. 3 is devoted to develop- 
ment of the ISTM technique and contains the solutions. Pos- 
sible physical consequences are discussed in Sec. 4. 

2. FM EQUATIONSAND STATEMENT OFTHE PROBLEM 

We represent a field propagating in a homogeneous me- 
dium in the following form: 

where E ,* are the slowly changing envelopes of wave pack- 
ets, and k ,* and a,* are the carrier wave vectors and fre- 
quencies, respectively. The frequencies wj* are chosen such 
that their sum or difference is close to the characteristic fre- 
quency of the medium: 

where Y is the detuning. In a medium with a cubic nonlinear- 
ity the change of the nonlinear part of the permittivity is 
proportional to the product of the field envelopes. Condition 
(2)  allows one to neglect in the final equations the nonreson- 
ant Kerr self-action of the fields. The nature of the nonlinear 
part of the evolutionary equations can be In 
one study" these equations were derived by the adiabatic 
exclusion of a mode of natural oscillations of the medium for 
times much shorter than relaxation times and for sufficiently 
large detunings Y. The derivation of the final equations is 
presented in Ref. 11. Finally, Maxwell's equations in the 
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FIG. 1 .  FM diagrams: a and c are for o,+ = w: # w, = w;- ; 
b is form: = w; = o: = o,+ . The horizontal lines indicate 
the energy levels of the medium. The straight lines originat- 
ing from the lower level correspond to the field with envelope 
E ,+ , carrier frequency o t  , and wave vector k ,+ , and the 
lines originating from the upper level correspond to the field 
with corresponding parameters E ,- , o,- and k ,- .The index 
i = 1 distinguishes the left pair of fields from the right pair 
( i  = 2) .  The arrows indicate the direction of field propaga- 
tion along the z axis. 

a b C 

approximation of a rotating wave reduce to the following for diagram c, 6, T, V ,+, P, and a are the same as above, 
form [for definiteness we choose the minus sign in Eq. ( 2 )  1 : a = - 1 V - = V = - V ,f = - V ; , 9 2 

where V ;2 are the field group velocities, V +  = wi'/k F, R+=2El+E,-/PIz, F+=2pE1-Ez+Ili+. 
k , + = k C + k ,  =k,,w,+ =w,+#w, =w,, 

The integrals of motion of Eqs. (4)  are 
2nNo a = ---- I xij(oic) 1 ' ,  

Av F , 2 + ~ l F + [ ~ = 1 ,  R , ~ + E ( R + ( ~ = I .  (5) 

and No is the active-particle number density. We used here 
the assumption of a weak perturbation of the medium and x ,  
is the scattering tensor which for the case considered of an 
isotropic medium is proportional to a 6-function, x ,  = S , x .  
Diagrams of FM are shown in Fig. 1, where the directions of 
propagation of the fields along axis z are shown by arrows. 

The field dynamics may qualitatively depend on reso- 
nance conditions and the direction of field propagation." 
Diagrams a and b in Fig. 1 are described by systems of equa- 
tiops which are isomorphic to each other and do not reduce 
to equations corresponding to the FM diagram in Fig. 1 (c).  
One can represent the system of equations ( 3 )  in the form 

We consider the following stationary solutions of Eqs. 
(4):  

F, ' I~+'=ER~'F+~,  R+'F-O=R-'F+', (6)  

R+'=F+"O, R30F30=*1. (7)  

We find from Eqs. (5)  and (6)  the possible solutions for 
a =  1: 

rI+rz-=rz+rl-P2, rl+rl-=-r2-r2+, (P~+-(P~+-(P~-+(P~-=~,  

and fora = - 1: 

ri-r2+=-r,-r2-, rl+ri-=-r2+rz-PZ, (P~++(P~---(P~--(P~+ =0, 

(4)  where E f2 = r;2 exp(ip ,f, ). In the linear approximation 
the stable states are 

for diagrams a and b, E =  1, V =  V,+ = V, f  = - V ;  
= - v;, For the stationary states (7)  the condition of stability has 

the form 
'1 

In the present study we will seek soliton solutions de- 
scribing deviations of the system from the stable asymptotic 
form (6)  or (7).  As will be soon from the following, produc- 
tion of a soliton by FM requires synchronization of two USP 
propagating in the same direction or the introduction of 
pulsed fields with nonzero polarization components. A sta- 
ble soliton regime occurs only for a = 1 (for arbitrary 
asymptotic forms). In this case if the initial state of the sys- 
tem is unstable, a weak perturbation, for example quantum 
fluctuations of the medium, initiates the decay of such a state 
and intense transfer of energy between components of field 
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polarization. The final state of the system depends on the 3. CONSTRUCTION OF ISTM 
sign of E and on the values of asymptotic forms (6)  and (7 ) .  The system of equations (4)  can be represented in the 
In the latter case, for a sufficiently small perturbation, one form of the compatibility condition (azL - aXA + 1 
succeeds in finding in explicit form the shape of the first = O )  of two systems of linear equations: 
spike of the quasi-self-similar solution which, as computer 
calculations show, consists of an infinite train of damped 
oscillations. " 

wheren = F 3 , p  =i&F+,,ii= - i&F-,z= - ~ T , a n d / Z i s a  
spectral parameter. An ISTM technique for the spectral 
problem (9)  with E = 1 was constructed in Refs. 11-14, 16 
for the asymptotic conditions pn = 0. In the present study 
these results are generalized to the case of arbitrary constant 
values E +  (z,x) asz- f W .  

Let 

The spectral problem (9)  has the involute 

$'=Mi$(%) M-' ,  (12) 

where 

The unperturbed Eq. (9)  has fundamental solution matrices 
forz- f CO: 

The scattering matrix T is defined by the equation 

where q, ' are fundamental Jost-solution matrices, q, * 
-q, ,f as z- _+ w . We have from Eqs. ( 12) and ( 14) 

The coefficient a (A), the first column of the Jost matrix q, +, 
and the second column q, - have analytic expressions in the 
upper half plane. The zeros of a (A, ) determine the discrete 
spectrum of the problem. The matrix of Jost solutions has 
the following triangular representation: 

Because in all the following expressions contain values of 
constants only for z- + W ,  we omit the "plus" superscript 
from no+ and po+.  Substituting Eq. ( 16) in Eq. (9)  we find 
that K,, ,  are solutions of the problem 
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K& ( z ,  S )  +ponKL~:,  ( z ,  s )  -inno&,.. ( z ,  s )  

=ippoeK2,s8 ( z ,  s )  +inOpEi,,, ( z ,  s )  , (18) 

with K, , ,  (z,s) -0 as s-+ _+ co and the following conditions 
on the diagonal 

p= (1-n)  
ipo+K2 ( z ,  z )  (no - I )  -POK (z ,  z )  

i ( l -no )+Rl  ( z ,  Z )  ( n o - l ) + ~ p o ~ z ( ~ , Z ) '  (19) 

K2(r ( z ,  Z )  = - p o n ~ l l s  ( z ,  s=z) + K , : ~  ( z ,  S = Z )  nn, 

+ p p o e ~ z ~ F  ( z ,  s=z) + n,pR,,, ( z ,  s=z). (20) 

Integrating Eq. ( 14) along the real axis with multiplier 
exp(iAy)/(2?~A), we finally obtain the Marchenko equa- 
tions: 

m 

v ( ~ . ~ ) + ~ ~ F ( ~ + ~ ) + ~ ~ ( ~ , ~ ) F ( ~ + ~ ) ~ ~ = o .  (21) 
L 

m 

~ ( z ,  y )  + ( l - n , ) ~ ( z + y ) +  3 ( - E )  V ( Z ,  y) ~ ( y + s ) d s = ~ ,  (22) 

where 

U ( z ,  y )=( l -no )K2(z ,  y ) + p o K 1 ( ~ ,  Y ) ,  

V ( z ,  y )  =PoKz(z,  Y )  -8 ( 1 -no )Kl ( z ,  Y ) .  

The continuous and discrete spectra A, of problem (9) 
(Im A, > 0)  contribute to the kernel F: 

I b ( h )  exp ( ihx)  dh b ( A k )  exp ( ihkx) 
F ( z )=-  - 

a (A) k ah' (Ak) hk 
423)  

2n-_ 

Before finding the solution of Eqs. (21 ) and (22) using Eqs. 
( 19) and (5) ,  we represent the connection between the "po- 
tentials" V(z,z) and U(z,z) in the form 

~ = 2 Q l ( l + ~ l Q I 7 ,  (24) 

n=l-2/( l+eIQ12),  (25) 

where 

Q-tipo-B(z, z )  ] / [ i ( l - n o )  - eB] .  

The soliton single-pole solution satisfies the following 
kernel form: 

Fl ( z )  =c exp ( i h l z ) ,  c=-ib ( A l )  la,.' (h,)  k , ,  (26) 
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where c and A ,  are some complex numbers and Im A ,  > 0. In U ( z ,  y)  = [- ( I -no)  F, ( y + z )  
this case the solution of Eqs. (21) and (22) has the form -epoF, ( y + z ) P ,  ( 2 z ) / i (h l -X i )  1 D-l, 

where 

D=l-EF,  ( 2 z ) P 1  ( 2 ~ ) / ( h , - X , ) ~ .  

- (1-no)Fi(y+z)Pl  ( 2 z ) / i (h l -X l ) ]D- I ,  (27) Finally we obtain from Eqs. (24) and (25) 

whereA= l/[i(/Z, -XI) ]  and f=F, (2z) .  found in the framework of the above stated theory. Linear 
For po -0 and no - 1 Eq. (30) reduces to the form analysis shows that for p, = 0, E = 1 and 

here q =  2iz(i,  - X I  + ln(A ' + A '1 "'. The nonsingular the solution describing (x,z) is concentrated in the region 
(for some po and A) solution (29), (30) describes the "di- where 
vergence" of initial wave polarizations and a return to the 
initial stable state (11). The obtained soliton solution, in 
contrast to the domain-wall solution described in Ref. 10, 
does not have a topological charge, but is nevertheless stable. 
The dependence on the variable x is found from the system 
( 10). For asymptotic states satisfying Eq. (6),  we have 

Correspondingly for the asymptotes (7) we obtain 

1  
P (h, x) = p  (h, 0 )  e r p [ i  (1 + -) j R, (0 ,  x') d z ' ]  

2he-1 -- 

is the self-similar variable. 
The solution describing the leading edge and apex of the 

first spike can be found from the Marchenko equations (2 1 ) 
and (22) for 1) 1 in which case the coefficient p(A,O) is 
determined by expression (36) (in this case forp, = 0)  be- 
cause this solution joins with the linear one for small 7. To 
find the solution we exclude U(z,s) from Eqs. (21 ) and (22) 
and then, integrating over s with weight exp(iAs), we find 
the function 

We consider the case of small Fand K,,, , i.e., we neglect m 

in the Marchenko equations (21) and (22) the product j ~ ( z ,  s) exp(ihs)ds. 
FK,,, . We find from Eqs. (24) and (25) that - rn 

n c n 0 + i ( p ~ F ( 2 z )  - ~ 0 F ( 2 z ) )  + 0 ( I F ( 2 z )  1 2 ) ,  (34) The integrals overA and2 contained in the obtained expres- 

( p - p o )  [to=-i ( l+no )  yoF(2z)  - i  ( I -no )  p0F(2z)  sion are calculated by the saddle-point method," by deform- 

+ O( lF(2z )  12). ( 35) ing the contour so that it passes through the saddle points 

Taking the inverse Fourier transform, we reconstruct the 
x 

'Ir 

scattering coefficient p from Eqs. (34) and (35) from small (2h,-1) I Z/ ~ R , ( x ,  0 )dx  I = = t i .  
deviations from asymptotic states: o 

m 

With an accuracy to an unimportant constant phase rnulti- 
2y.p ( A ,  0 )  =ih 1 e i h z [  ( p ( z )  - - P ~ ) P ~ -  (1-no) ( n ( z )  --no) ldz. plier, which is determined by the behavior of p(/1,0) at 

- - 
(36) 

zero, I' we find 

In the case of an unstable initial system state a small n=na[1  - y2 

perturbation is sufficient to initiate the process of nonlinear q  (y2+q2)'" ch y2/2 
] [ 1 + 0 ( ~ ) ] ,  rlYi (38) 

FM and can be a weak signal pulse or fluctuations of the 
medium. In this case the coefficient p contains all the neces- where 
sary information because the discrete spectrum of problem X 

(5)  is absent. As shown by a computer calculation, the gen- I E ( ~ + , O )  l 2  y = J R ,  ( x ,  O )  ax, qa=2q+ln --- 
era1 solution for Ip (z,x) I in this case has the form of damped (4nq)'" ' 
 pulsation^.'^ It is often sufficient for practical purposes to 

0 

find only the form of the leading edge of the pulse formed in 
FM. The leading edge and apex of the first "spike" can be 
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4. CONCLUSION 

The solutions obtained in this study show that the dy- 
namics of USP and the nonlinear stage of FM are to a consid- 
erable degree determined by the choice of direction of propa- 
gation of reference waves (opposite or parallel) and the field 
asymptotes. For E = 1 the maximum coefficient of transfor- 
mation ofphoton number A = n - no does not exceed unity. 
Often the experimental value of A is small: A 4 1. It can be 
seen from expression (30) that in these conditions it is more 
advantageous to use an elliptical field polarization. Actual- 
ly, the photon-number change characterized by the value A 
for p, - 1 has the order of magnitude 

while for p, = 0 (circular polarization) 

For the use of FM as a mechanism of reversing a wave front 
one needs to determine the degree of distortion of the signal 
wave front in the course of amplification. The self-similar 
solution (38) describes amplification of a weak bare field 
-p(O,z) for which the information on its leading edge is 
contained in the coefficient p(il) .  It can be seen from Eq. 
(38) that significant distortion of the signal wave front (am- 
plified in the FM process) does not occur up to values 
A-0.5. 

The interaction scheme for E = - 1 is especially inter- 
esting for practical applications because the corresponding 
solutions may be singular, i.e., an explosive instability may 
occur. As a result, the coefficient of field transformation 
may be (theoretically) much larger than unity. For p, = 0 
the singularity occurs for any value of the soliton parameters 
( 3  1 ) . A difference of p, from zero leads to vanishing of the 

singularity at some values of il and p,, i.e., to a qualitative 
change of the character of the FM. 

We present parameters values for which observation of 
coherent FM and the above-described effects are possible. 
We choose the interaction diagram depicted in Fig. lc. For 
the 4s-5s transition in KI vapor we have w;t2 = 1.8. lOI5 
s-' and x(w,f ) = 1.2. loWz2 cm2 (Ref. 18). For a pressure 
of 10 Torr we have crw;e2/k,+) = 2.0.10W5 CGSE. The 
field intensity is I E ;t, 1'- lo2 V/cm2. The front length of 
USP is in this case 1-2 cm. 
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