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We propose a novel phase-conjugation method for two mutually incoherent beams of light, based 
on coupled ring cavity geometry. A theoretical description of our approach makes it possible to 
determine the power characteristics, as well as the mode structure of the counterpropagating 
radiation at the threshold of oscillation. Experimental results are in good agreement with 
theoretical predictions. We discuss several applications. 

1. INTRODUCTION 

Phase conjugation of low-power continuous-wave (cw) 
laser radiation with attendant amplification is a problem 
with important practical applications. One way to achieve 
the objective is to configure a mutually-pumped phase con- 
jugation'-' system employing photorefractive crystals. 
These systems make is possible to conjugate two mutually 
incoherent laser beams, one weak and the other strong, while 
at the same time coupling energy from the latter to the for- 
mer. As a result of the phase conjugation, the weak beam can 
come away with considerably enhanced intensity relative to 
its original value. Phase conjugation systems have also been 
used to phase-lock the radiation from two or more 

In this paper, we describe a novel approach to mutually- 
pumped phase conjugation in an oscillating configuration (a  
brief description of which was given in Ref. 6) that differs 
fundamentally from previous feedback designs. We have 
carried out the first theoretical analysis for a configuration 
of this type, incorporating a three-dimensional model for the 
determination of the mode structure of the scattered radi- 
ation near the oscillation threshold, and a nonlinear one- 
dimensional model for calculating the power characteristics. 
The proposed configuration has been implemented experi- 
mentally. Outstanding features include a low oscillation 
threshold, no requirements that the beams be carefully fo- 
cused, and the widest range among existing designs'-3 of the 
intensity ratio between the two beams yielding phase conju- 
gation. 

The geometry of the system is as follows (see Fig. 1); 
two laser beams A ,, and A ,, are incident upon the two re- 
gions 1 and 2 containing nonlinear photorefractive media 
(we employ the doubly-subscripted notation A, for electro- 
magnetic waves, where the first subscript i = 1-4 conforms 
to the standard notation for four-wave mixing, and the sec- 
ond j = 1-2 designates the medium in which the interaction 
takes place). Having traversed one nonlinear medium, each 
beam is redirected to the other medium by a set of mirrors, 
and there it interacts with the other beam. For example, after 
crossing region 1 along path L,, beam A ,, is sent to region 2 
(where its designation becomes A ,, ), where it overlaps 
beam A ,, . Likewise, after crossing region 2 over path L,, 
beam A ,, is sent to region 1, where it overlaps beam A ,, . 

In this type of system, absolute instability (oscillation) 
give rise to scattered radiation counterpropagating with re- 
spect to the input beams, with the temporal coherence of the 
scattered light counterpropagating relative to the signal 
beam A ,, being controlled by beam A ,, , and vice versa. In 
each of the two regions, wave-vector overlap of the interact- 

ing beams creates four holographic index gratings. Since the 
coherence time of the signal beams A ,, and A ,, under typi- 
cal experimental conditions is much less than the typical 
response time of the photorefractive medium, only one grat- 
ing is effectively excited-the one written by coherent pairs 
of signal and scattered waves. Reading this grating out with 
the signal beams closes the feedback loops that generate the 
scattered radiation. 

2. THEORETICAL ANALYSIS. GENERAL RELATIONS AND 
THREE-DIMENSIONAL LINEAR MODEL 

We employ a simplified set of coupled equations for our 
theoretical analysis of four-wave mixing in the beam-overlap 
regions. If one averages over an interval longer than the co- 
herence time of either of the signal beams A ,, and A ,, , this 
set of equations becomes identical to the set usually em- 
ployed (e.g., see Ref. 7) ,  which describes four-wave mixing 
in a photorefractive medium into which a single holographic 
grating has been written. If the relative transverse displace- 
ment of the beams over the path length in each of the interac- 
tion regions is small (01 /d  4 1, where 0 is the angle between 
the beams, 1 is the path length in the nonlinear medium, and 
d is the typical transverse size of the beams), then neglecting 
diffraction, this set of equations reduces to 

FIG. 1. Geometry for mutually-pumped phase conjugation. Regions 1 
and 2 contain photorefractive media, and M, and M, are beam-bending 
mirrors. 
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Here y, is the nonlinear coupling coefficient, the nonlinear 
medium occupies the region O c z ~ h ,  and derivatives in this 
system are taken (in the present approximation) along the 
common direction of propagation z. Transverse to the beam 
propagation direction, the coordinate r = (x,y) acts as a pa- 
rameter in ( l ). The system ( l ) is to be supplemented by 
boundary conditions that specify the incoming signal beams, 
as well as the free-space diffraction of the signal and scat- 
tered radiation in the external optical train formed by the 
mirrors (Fig. 1 ): 

Azl  ( r ,  i l )  =a ( r )  , Azz ( r ,  1 2 )  = b  ( r ) ,  

A, ,  ( r ,  1 , )  =A3 ,  ( r ,  1 2 )  =0 ,  

A  0  = I A z l ,  Ahl ( r ,  0 )  
(2)  

A l l  ( r ,  0 )  = LIAsz,  A12 ( r ,  0 )  =LzA3i .  

Here i, is the diffraction operator, with 

ik, 
XexP{%[ ( X + X ' ) ~ +  ( Y - Y ' ) ' ] } .  

T in Eq. (3)  is the (intensity) reflection coefficient of the 
mirror system, pi is the phase shift over path Lj, k,  is the 
wave vector of the radiation, x is measured in the plane of 
incidence of the signal beams, y is perpendicular to it, and the 
two-mirror geometry shown in Fig. 1 rotates (inverts) the 
image about the x axis. 

Under typical experimental conditions, the optical path 
length L is some tens ofcentimeters, and the transverse beam 
dimension d is typically of the order of several millimeters. 
The Fresnel number N = k,d '/L will then be much greater 
than unity, and variations in the spatial structure of the 
beams propagating through the optical train will be associat- 
ed with their nonvanishing wavefront curvature. Writing the 
electromagnetic fields at the boundary of the nonlinear me- 
dium in the form 

where Bij specifies the transverse structure of the beam, and 
varies slowly compared to an exponential, while Rg is the 
beam's radius ofcurvature, we obtain from Eqs. (2)  and (3)  
the following behavior for the radii of curvature of the signal 
beams as they propagate along the external optical train: 

Similarly, for the scattered radiation we obtain 

For the functions B V ,  the boundary conditions (2)  and (3)  
yield 

B12 ( x ,  y, 0 )  =T'"a,-l exp (icp,) B,, ( - x / a , ,  yla,,  0 )  , 

Bci (x, y, 0 )  =T"Za2-i exp (icp,) B2,  (-x/a2, ylaz, 01, 
(7)  

Bli (x, y, 0) =T'"pl-' exp(icpz)B3~(-x/Pt ,  Y I P I ,  O) ,  

BIZ (x ,  y, 0 )  =T'"p,-' exp ( i c p , )  B,, (- .ZIP,,  Y I P z ,  0 ) .  

It is clear from (7) that a;. and p, are essentially trans- 
verse scaling coefficients for the cross sections of the beams 
as they propagate through the external optical train. 

The conditions for cancellation of rapid phase varia- 
tions associated with the radii of curvature of the beams in 
each of the interaction regions yield the system of equations 
R i / ' + R v 1 - R ; ' - R < ' = O ( j =  1,2),whichhastwo 
solutions: 

The solution (8a) corresponds to the situation in which the 
phase component associated with the wavefront curvature of 
the scattered beams is conjugate to the corresponding com- 
ponent of the signal beams: 

The second solution does not possess this property. To deter- 
mine the conditions under which the present configuration 
phase-conjugates the signal beams, we shall analyze the solu- 
tion (8a), and ascertain just when it is feasible. Mathemat- 
ically, the boundary-value problem formulated here consists 
of the two sets of equations ( 1 ) for each of the interaction 
regions plus the boundary conditions (7) and (8a). The so- 
lution of ( l )  is well known,' which makes it possible to re- 
duce the boundary problem to a set of algebraic and tran- 
scendental nonlocal equations interrelating the values of 
BU (Z = 0)  at different values of the transverse coordinate r. 

A similar approach has been used in a three-dimension- 
al analysis of the nonlinear characteristics of a stimulated- 
Brillouin-scattering (SBS) ring cavity.9 A full solution of 
the nonlinear problem is rather involved, and must be ob- 
tained numerically. We therefore restrict ourselves here to 
the region near threshold, which enables us to determine the 
mode structure of the scattered radiation for the present con- 
figuration, as well as the threshold for mode excitation. A 
threshold analysis relies on the amplitude of the scattered 
radiation being small compared with that of the signal 
beams: A ,,,A ,,. , ( A  ,,.,A ,,. Assuming the signal beam ampli- 
tudes A ,, and A,, to be given, and introducing the form fac- 
tors for the scattered radiation 

Fij(r,  z ) = A l i ( r ,  z ) lAz j ' ( r ) ,  Fsj(rr ~ ) = A 3 j ( r ,  ~ ) l A & i ' ( r ) ,  
(10) 

we may use the boundary conditions F,, (r,lj ) = 0 from ( 1 ) 
to obtain 

F3j(r, 0 )  =Fij(r,  O ) P j ( r ) ,  (1 1) 

Pi ( r )  = exp ( yjlj - [ I - D ~  exp y , ~ ,  - ( : ; : l ) l - ' ~  

where Dj = (A ,, (r)/A ,j ( r )  1'. 
The form factors for the scattered radiation leaving the 

system are then 

l - D ~ ) - l -  (12) Fii ( r ,  1,) =F3j ( r ,  0 )  (1-Dj) [exp  ( y i l J  - I+DJ 

Boundary conditions (7) ,  (8a), and ( 1 1 ) yield the sys- 
tem of equations 

F3, ( x ,  y, 0 )  =T esp[ i (cp2-9 , )  IP, ( r ) F 3 , ( - a l x ,  a i y ,  01, 
(13) 
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whose solution, along with ( 12), provides complete infor- 
mation on the transverse structure of the scattered beams. 

This set of equations can be put into formal correspon- 
dence with the usual linear unstable resonator (see Ref. 10, 
Chapter 3), the theory of which implies that solutions of 
( 13) will be stable when 

Solutions of ( 13), inasmuch as they are modes of the 
nonlinear oscillator under consideration, form an infinite se- 
ries, and can be labeled with three indices m,n,l the first two 
defining the transverse structure of a mode, and the last be- 
ing associated with the frequency shift of the scattered radi- 
ation relative to the frequency of the signal beams. This shift 
enters into Eq. ( 13) through the nonlinear coupling coeffi- 
cients y,, which in general are complex quantities that de- 
pend on the frequency difference between the electromag- 
netic'waves that write an index grating into the nonlinear 
medium; they also depend on the external electromagnetic 
field occasionally imposed on the crystal to control the mag- 
nitude of the real and imaginary parts of the coefficient y." 
If the latter field is not present (as we shall assume from here 
on), then y, = yjO) ( 1 - iArj ) - ' where yjO) is real, 
A = w, - w,, is the frequency difference between the scat- 
tered and signal radiation, and r, is the relaxation time of the 
medium. 

An analysis of Eqs. (13) shows that the frequency- 
shifted modes have comparatively high excitation thresh- 
olds. In particular, the most interesting modes from a practi- 
cal standpoint are those in the (m,n,O) family, which have 
zero frequency shift (i.e., I = 1 ) and therefore yield real cou- 
pling coefficients yj . Near the coordinate origin (r  +O), the 
transverse structure of an (m,n) mode (omitting the third 
index, which equals 0)  has the asymptotic form 
~ " ' " '  (x,y) -xmyn (m and n are nonnegative integers). 
The threshold for an (m,n) mode as r -  0 follows from ( 13), 
and is given by 

which determines the threshold dependence of the nonlinear 
coupling constants y,,y, for excitation of an (m,n) mode on 
the transmission coefficient T of the optical train, on the 
ratiop = IA ,, (O)/A ,, (0) 1' of the intensities as the centers 
of the signal beams incident upon the first and second inter- 
action regions, and on the scaling factors a, ,a,  for the signal- 
beam cross sections as they pass through the optical train. 
Hereafter, to avoid further complication, we examine the 
case of identical nonlinear coupling constants 
~111 = 3/21, = ~ 1 .  

We see then from ( 15) that the mode structure of the 
present device is independent of the phase difference 
between p, and p, accumulated during propagation of the 
two beams along different paths in the optical train; in other 
words, it is insensitive to the path lengths L,,L,. This re- 
mains true as long as the path-length difference IL, - L,I is 
less than the coherence length of both of the incident beams. 

An analysis of the dependence of the mode-generation 
thresholds on the coefficients a, ,a,  shows that the mode- 
stability condition ( 14) also selects modes according to their 
excitation threshold, with the minimum threshold belonging 
to the (0,O) mode. The mode-excitation thresholds increase 

FIG. 2. Threshold value of the nonlinearity coefficient ( y l ) , ,  as a func- 
tion of the scaling coefficient a of the incident beams, for p = 1 and 
T = 0.33. The curves are labeled by the value of m + n. 

with decreasing a,. For example, with a, = a, = a and 
p = 1, Eq. ( 15) yields for the threshold value of the coupling 
coefficient yl 

In Fig. 2 we have plotted the a-dependence of (yl),, for a 
few of the lowest-order modes with low-lying excitation 
thresholds. 

It is worth noting that the mode indices m and n, which 
define the mode structure relative to the x and y axes, respec- 
tively, enter into ( 15) and ( 16) as a sum; that is, the x and y 
axes are on an equal footing. This results from neglecting the 
noncollinearity of the overlapping beams in our model (the 
thin-medium model). In Ref. 12, which dealt with the mode 
structure of an SBS ring oscillator in the opposite case of a 
medium that completely fills the entire beam-overlap region, 
it was demonstrated that noncollinearity of the beams pro- 
vides for selection of the radiation in the plane of intersection 
(x axis), so that beam compression is only required for selec- 
tion with respect to they axis, i.e., the x and y coordinates are 
no longer on an equal footing. 

An analysis of the dependence of mode-generation 
thresholds on the intensity ratiop of the signal beams shows 
that the threshold increases at both high and low values ofp, 
attaining a minimum at some intermediate value, which de- 
pends on the scaling factors a, and a,. In other words, for 
some given value of the nonlinearity constant yl, oscillation 
takes place over a finite range of values of the parameter p. 
Asp  - oo , the threshold for mode (m,n) given by ( 15) be- 

FIG. 3. Threshold value of the nonlinearity coefficient ( yl)  ,, for generat- 
ing the lowest mode as a function of the intensity ratiop for the centers of 
the signal beams. Curve I :  a,  = a, = 0.8, T =  0.33; curve 2: a, = 0.9, 
a, = 0.3, T =  0.33. 
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and ( 3) are replaced by 

FIG. 4. Form factors for scattered radiation at the system output 
(F, ,  curve 1 ) and within the optical train (F,, curve 2) for incident beams 
with the Gaussian intensity distribution lA ,, ( r )  1 = IA ,, ( r )  1 
= exp( - 1 2 / 2 ) ,  for a ,  = a, = 0.8, T =  0.33. The dashed curve is 

exp( - 1 2 / 2 ) .  

comes 

Forp-0, (15) yields 

In Fig. 3, we have plotted thep-dependence of the oscil- 
lation threshold ( yl) ,, for both equal and unequal values of 
the scaling factors a,, for the lowest available threshold of 
the (0,O) excitation mode. 

Using Eqs. ( 12) and ( 13), a knowledge of the threshold 
values (ylj,, enables one to determine the spatial structure 
of any mode at its excitation threshold, having specified as 
input the spatial distributions of the signal waves A ,, ( r  ) and 
A ,, ( r ) .  Figure 4 shows plots of the scattered-radiation form 
factors within the optical train (F,,. (r,O) ) and at the system 
output (F,, (r,l) ) for identical signal beams with a Gaussian 
intensity distribution 

I A,, ( r )  1 '= 1 A2,(r)  I '=exp[-  (x2+y2) /d2]=exp(-g2) ,  

where d is the beam diameter, all for equals scaling factors 
a, =a, = = 0.8 for the (0,O) mode. The vertical axis 
shows the value of F,(g) = F,, (r,O) = F3, (r,O) and 
F, ({) = F,, (r,l) = F,, (r,l), and the horizontal axis shows 
the value off. Perfect phase conjugation would correspond 
to coordinate-independent form factors F, and F,; depar- 
tures from a constant value characterize the extent to which 
accurate phase conjugation takes place. Note that when yl is 
real, so are the functions F, and I;;, so that the phase struc- 
ture of the scattered radiation, according to (9),  is complete- 
ly reversed, and the amplitude structure is distorted. This 
situation arises only when yl is real. For complex values of 
the coupling constant, corresponding either to frequency 
shifts of the scattered radiation or to the presence of an elec- 
trostatic field in the crystal, the phase structure of the scat- 
tered beams would also be distorted. 

3. ONE DIMENSIONAL NONLINEAR MODEL 

The most systematic way to ascertain the power charac- 
teristics of the present design is to make use of a three-dimen- 
sional nonlinear model. The most satisfactory description of 
system behavior above threshold, however, is provided by a 
one-dimensional nonlinear model, the principal advantage 
of which is its simplicity. In the one-dimensional approach, 
the transverse structure of the interacting beams is not taken 
into account by ( I),  which describes four-wave mixing in 
each of the interaction regions; the boundary conditions (2)  

Introducing the nonlinear reflection coefficients 

for the signal waves and determining the dimensionless pa- 
rameter p = I b / a  IZ, which equals the ratio of signal-wave 
intensities fed to the first and second interaction regions, we 
find that the boundary conditions ( 19) and the integrals of 
the motion of the system ( 1 ) yield 

while to determine the absolute value of R ,,, , we obtain from 
the solution to the boundary-value problem ( 1 ) , ( 19) 

where 

Glj=l-esp pj, 

GZj= (Aj+2dJ-Qj) + (Aj+2dj+Q,) esp  pJ, 
(23) 

G3j= ( Aj-Qj) - (A,+QJ) exp Pj, 

In (23), wehaveusedthenotation A, = d ,, - d lj, Q, = (A; 
+4R,d:,)"2, pj = -%y,l,Qj(dU + d 2 , ) - ' ,  d l ,  = Tp, 

d l ,  = T, d2 ,  = 1, dZ2 =p.  
Equation (22) has infinitely many solutions, corre- 

sponding to different frequency offsets of the scattered radi- 
ation relative to the signal-wave frequency-that is, to dif- 
ferent longitudinal modes, in the language of the previous 
three-dimensional analysis. In the present context, there are 
no transverse modes. The lowest-lying mode has zero fre- 
quency shift, corresponding to purely real values of the cou- 
pling coefficient yj . From here on we shall examine only that 
mode. Its excitation threshold may be obtained by letting R,, 
R,-0 in (22) and (23); in the simplest case, withp = 1, we 
have 

Comparison of (24) with ( 16) shows that the threshold 
behavior as a function of the transmission coefficient of the 
optical train as given by the one-dimensional model is qual- 
itatively correct, but that the two equations will be identical 
only when a = 1, in which case the present design provides 
no selectivity among transverse modes. 

The oscillation threshold increases when p becomes ei- 
ther greater than or less than unity. For large enough values 
of the coupling coefficient yl, the range of signal-wave inten- 
sity ratios for which oscillation takes place is given by 

which is approximately the same as obtained from the three- 
dimensional considerations leading to (17) and (18) with 
a,,, z 1. 
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FIG. 5. Incident-beam nonliner reflection coefficients R,  (curve 1) and 
R, (curve 2) as functions of beam intensity ratiop for T = 0.5, yl = 3. 

FIG. 6 .  Experimental setup. L,, L,: helium-neon lasers; MI-M,: beam- 
steering mirrors; M,: half-silvered beam-splitter with R=. 10%; C,,C,: 
photorefractive crystals of SBN:Ce; PM,, PM,: power meters. 

An increase in the nonlinear coupling coefficient rela- 
tive to its threshold value leads to an increase in the nonlin- 
ear reflection coefficients R,  and R,. The maximum possible 
value of the reflection coefficients, resulting from large val- 
ues of the nonlinear coupling coefficient, correspond to a 
complete conversion of the energy in each signal beam into 
radiation conjugate to the other beam, allowing for the 
transmission coefficient of the optical train: 

Figure 5 shows the typical behavior of the nonlinear 
reflection coefficients R,  and R, as a function of p; these 
curves were obtained from (21)-(23) with T = 0.5, yl = 3. 
The reflection coefficients are the same for p = 1, and are 
almost equal to the maximum attainable value R = T (26). 
Equation (26) provides a good description of the behavior of 
R ,,, (p)  in Fig. 5 forp# 1 as well, but not for values ofp that 
are too large or too small. Further increases or decreases inp 
at fixed yl bring the system back down toward threshold, 
and reduce the reflection coefficients. The maximum signal- 
wave intensity ratio for which oscillation takes place, for the 
parameters used in Fig. 5, is p,,, z 200, and the maximum 
value of the reflection coefficient for the weaker beam is 
R ~ 2 7 .  

4. THE EXPERIMENT 

The experimental setup is shown in Fig. 6 .  The two mu- 
tually incoherent beams were derived from 2-mW LG-52-1 
and LG-52-2 helium-neon lasers ( A  = 0.63 pm) ,  and were 
steered to nonlinear medium C, by the rotary mirrors M, 
and M,. The nonlinear medium was cerium-doped barium- 
strontium niobate (SBN) l 3  approximately 3 mm thick. The 
two beams, propagating approximately parallel to one an- 
other, were =: 2 mm in diameter inside the crystal, and were 
separated by z 6 mm. Both the optical axis of the crystal and 
the plane of polarization of the laser beam lay in the plane of 
incidence. 

After passing through crystal C,, the beams were re- 

directed by mirrors M,-M, back through the crystal at an 
angle of 40" in such a way that each beam overlapped the 
other. The optical path lengths L ,  and L, (see Fig. 1)  were 
about 40 cm, and with due allowance for absorption in the 
crystal, losses due to Fresnel reflection at the crystal facets, 
and mirror losses, the (intensity) transmission coefficient T 
was approximately 33%. 

The beam splitter M,, located in front of C,, enabled us 
to monitor both the incident power (I,, I,) and the return 
power (I :,If) using power meters PM, and PM,, respec- 
tively. The incident power was varied using half-wave plates 
and polarizers (not shown in Fig. 6) .  The nonlinear interac- 
tion in the crystal resulted in the appearance of phase-conju- 
gate radiation appearing after - 100 sec. The spatial struc- 
ture of this radiation depended on the ratio of the diameters 
d l  and d, of the first and second laser beams on their first 
pass through C, ,  to their diameters d ; and d ;  afterwards. 
These ratios could be adjusted using positive and negative 
lenses in the feedback loop. 

In Fig. 7 we have reproduced photographs of the coun- 
terpropagating radiation for three different values of beam 
compression. In Fig. 7a, we have a , d  ;/dl=: 1.8, a,d ;/ 
d , z l ;  for Fig. 7b, a l z 1 . 8 ,  a,z0.7; for Fig. 7c, a,=:1.8, 
a2z0.45.  Theoretically, violation of the condition 
Ia,a,l < 1 results in substantially greater divergence of the 
counterpropagating radiation than of the incident beams. 
This increase occurs only along they axis, however, perpen- 
dicular to the overlap plane of the beams; it thus has no 
bearing upon our model, in which thex and y coordinates are 
on an equal footing. The reason is that the thin-medium ap- 
proximation assumed in the theory is not entirely consistent 
with the experiment, and a correct treatment would require 
that one take account of the noncollinearity of the beams in 
the overlap region. As Jcr,a,J approaches unity, the beam 
divergence along the y axis decreases (Fig. 7b), and for 
lala, 1 < 1 (Fig. 7c), the counterpropagating radiation has a 
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FIG. 7. Photographs of the intensity distribution of the phase- 
conjugate radiation. a )  a,=. 1.8, a,=: 1; b) a,=: 1.8, a,=0.7; c )  
a, ~ 1 . 8 ,  a,=.0.45. 
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FIG. 8. Experimental points and theoretical dependence of the 
normalized sum of counterpropagation intensities 7 = (1: + I f ) /  
( I :  + If),,, as a function of the incident-beam intensity ratiop = I,/I, 
for I, + I, = const: 

divergence comparable to that of the incident beams. 
To test for the presence of a phase-conjugate wavefront, 

a glass "phase" plate of nonuniform thickness was placed in 
the beam path in front of crystal C,, and focusing lenses were 
placed in the feedback loop to collect the light scattered past 
the phase plate and to provide beam-compression factors 
a,,, close to unity. The fraction of phase-conjugate light in 
the counterpropagating beams, as measured using a stan- 
dard method,14 was - 80%. 

In this experiment, we also studied the effect of the opti- 
cal path difference IL, - L21 on the oscillation process; this 
difference was adjusted by moving mirrors M,, M, and M,, 
M,. We found that as long as the difference IL, - L21 is 
much less than the coherence length of either laser, it has no 
influence on oscillation. Upon further increase in the differ- 
ence (L, - L2 (, the intensity of the counterpropagating radi- 
ation falls off, and when IL, - L,I z 4 0  cm (which in the 
present case is comparable to the laser coherence length), 
generation ceases. 

The power characteristics of this design were measured 
for incident-beam values of a, and a, close to unity. In Fig. 
8, we have plotted experimental values of the normalized 
sum of counterpropagating intensities r] = ( I f  + I f ) /  
( I f  + I f ) m a x  for I, + I, = const as function of p = 12/11 
(I, and I, are the incident beam intensities). The overall 
reflection coefficient R = ( I f  + I,R)/(I, + 12) for the en- 
tire optical train is maximized at p = 1, and allowing for 
Fresnel reflection at the input facet of the crystal, it comes to 
approximately 25%. Note also that the experimental points 
in Fig. 8 are symmetrically disposed about the vertical axis. 
If the optics were to become misaligned and the beams over- 
lapped less in one region than in the other, the peak of the 
curve would be displaced to the left or right. 

We compared the theoretical data in Fig. 8 with theory 
in the following manner. Equating Eqs. (22) and (23) with 
the experimental value of the maximum intensity ratio 
p,,, z 4 0  for which oscillation ceases, we found the value of 
the nonlinear coupling constant yl. Having assumed an over- 
all transmission coefficient T = 33%, we obtained ylz2.3. 
We then constructed the curve for ~ ( p )  shown in Fig. 8, 
making use of Eqs. (22) and (23) with ylz2.3 and 
T = 33%. The theoretical value of the maximum reflection 
coefficient R is approximately 28%, in good agreement with 
the experimental data. We also checked the theoretical rela- 
tion (21) experimentally; the measured points showing 
I f / I f  as a function of p = 12/1, and the corresponding 

FIG. 9. Ratio of counterpropagating intensities I :/Ifas a function of the 
incident-beam intensity ratio p = Z,/I,. Experimental results are shown 
as points; the straight line is given by theory. 

theoretical straight line are plotted in Fig. 9. 
Notice that with unequal incident beam intensities, it is 

simple to obtain a reflection coefficient greater than unity for 
the weaker beam. This has enabled us to observe oscillation 
in a cavity comprised of a plane mirror and a phase-conju- 
gating mirror. Theory predicts, however, that such a cavity 
will only operate under "hard" excitation conditions-that 
is, it requires a very specific level of seed radiation. In our 
experiment, we therefore made two beams of approximately 
equal intensity overlap in crystal C, (Fig. 6),  and then after 
the appearance of counterpropagating radiation, one of the 
beams was blocked and mirror M, was positioned in the opti- 
cal path and oriented normal to the incident beam. The in- 
tensity ratio between the phase-conjugate radiation and the 
pump radiation incident on crystal C, and provided by beam 
I, was about 6%. The theoretical value obtained by solving 
the one-dimensional system ( 1 ) with appropriately modi- 
fied boundary conditions is approximately 7%, in good 
agreement with the experimental results. 

We also point out that a phase conjugation system en- 
ables one to attack the problem of receiving and returning a 
weak signal with gain. In fact, since the beam conjugate to 
the signal beam has the frequency of the second laser, that 
same laser can be used to simplify the radiation returned by 
using a dynamic hologram. This arrangement has been im- 
plemented experimentally. To do so (see Fig. 6),  mirror M2 
was replaced by a semitransparent beam splitter with reflec- 
tion coefficient - 10%. The radiation passing through that 
splitter (indicated by a dashed line) was reversed by mirror 
M, and sent on to crystal C, (SBN:Ce), which was similar to 
C, .  Two-wave mixing in C2 then produced amplification of 
the phase-conjugate radiation I f .  The overall reflection co- 
efficient obtained experimentally for the incident radiation 
I, was approximately 20. 

5. CONCLUSIONS 

In discussing this experiment, we have compared theo- 
retical models designed to describe the present configuration 
with experimental data. We will now also compare this con- 
figuration with others that have appeared As 
we do so, it should be borne in mind that there has been no 
detailed theoretical analysis for Refs. 1-3 to compare theory 
with experiment quantitatively. The theoretical models pro- 
posed in Refs. 1 and 15 treat scattering in these systems as a 
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consequence of the development of oscillation (absolute in- 
stability). But for the configuration discussed in Ref. 1, for 
example, a three-dimensional analysis similar to the one car- 
ried out in Ref. 12 shows that this setup is not an oscillator, 
and that scattering is due to convective instability. The ap- 
plicability of the models advanced in Refs. 1 and 15 to the 
actual experimental situation is a problem that requires close 
study. Subsequent comparisons must be undertaken with 
this in mind. 

In comparing the theoretical models, the configuration 
of Ref 1. has the lowest threshold among those discussed in 
Refs. 1-4 (yl),h,,i, = + 2. At the same time, within the 
context of the one-dimensional model, the configuration 
that we have examined here has a threshold only half as high. 
Again, among the configurations in Refs. 1 4 ,  the range of 
signal-beam intensity ratios p at which phase conjugation 
takes place is the widest in the setup of Ref. 1, where it is 
given approximately by exp( - yl) < p  <exp(yl). For our 
device, we estimate a much wider range: T -' exp( - 2yl) 
< p <  Texp(2yl). 

There are no experimental data on the range of beam 
intensity ratiosp for the configuration of Ref. 1; for those of 
Refs. 2 and 3, 0.1 < p  < 2 and 0.5 < p  < 5, respectively. Fur- 
thermore, for the latter system, both reflection coefficients 
are low over the entire range ofp ( 5 25% ) . With the crystals 
that we used in the configuration proposed here, 
1/40 < p  < 40. 

In the present paper, thus we have proposed a novel 
configuration for phase conjugation of mutually incoherent 
light beams in a photorefractive medium. We have carried 

out a theoretical analysis of this system, including the con- 
struction of a three-dimensional linear model for determin- 
ing the mode structure of the scattered radiation at the 
threshold of oscillation, and a one-dimensional nonlinear 
model for calculating its power characteristics. The pro- 
posed configuration has been realized experimentally, and 
the empirical results have been compared with theory. 
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