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The difference magnetooptical resonances in the absorption of a weak optical field, encountered 
in the probe-field method and due to the anisotropic relaxation of the gas atoms, is considered. 
The polarization conditions of formation of such resonances are analyzed. The results of their 
microscopic calculation are presented. The magnitude of the resonances changes radically with 
variation of the magnetic field strength and light frequency. These features can be used to 
experimentally determine the structure of the anisotropic parts of the relaxation matrices of the 
atomic levels and transitions. The structure depends substantially on the nature of the interaction 
between the colliding gas particles. 

1. INTRODUCTION 

Wide use is made in the spectroscopy of gases of the 
isotropic collision model, which assumes the spherical sym- 
metry of the perturbation of the radiating particles by the 
buffer particles.' The conditions of applicability of this mod- 
el are not satisfied in many cases of practical interest, e.g., if 
the mean velocities E of the radiating particles exceed the 
mean velocities of the buffer particles 8,. In this case the 
radiating atom, moving with velocity v, is "blown" by the 
counterstream of buffer particles and is thus perturbed not 
isotropically, but axisymmetrically with symmetry axis 
aligned with v. As a result, the relaxation of the atoms under 
such conditions becomes anisotropic. 

In Refs. 2 and 3 a symmetric approach was developed to 
the study of the influence of the anisotropy of the collisions 
on the course of both the linear and the nonlinear optical 
processes. The symmetry properties of the dielectric suscep- 
tibility tensor of the gaseous medium were analyzed, and it 
was established that in the case of collinear propagation of 
the light fields the susceptibility of two-photon as well as the 
one;photon processes is axisymmetric if one allows for the 
anisotropy of the relaxations. The symmetry properties of 
the susceptibility under these conditions and in the presence 
of a magnetic field were also elucidated. 

Lowering of the symmetry of the susceptibility tensor 
due to the anisotropy of the collisions lies at the basis of the 
difference method for separating the contribution induced 
solely by the anisotropy of the collisions from those of the 
other magnetooptical processes. The essence of the method 
is the following: The polarization of the light fields varies 
periodically and the difference of the signals of the two-pho- 
ton process over two half-periods is recorded. The polariza- 
tions vary in such a way that the part of the signal of the two- 
photon process which is typical of isotropic relaxation does 
not vary. Such a difference signal is due exclusively to the 
anisotropic relaxation and vanishes in the absence of anisot- 
ropy. 

In the present paper we analyze the difference magne- 
tooptical absorption signals in one of the main methods of 
nonlinear laser spectroscopy-the probe-field method (see, 
e.g., Ref. 4).  Difference signals in the probe-field method 
allow one to obtain more detailed information about the an- 
isotropic relaxation in comparison with fluorescence differ- 

ence signals described in Refs. 2, 5, and 6, since they are due 
to the anisotropy of the relaxation of not only the energy 
states, but also the coherence which exists between them. 

In this paper we discuss in detail the polarization condi- 
tions of the formation of difference signals. Results of a mi- 
croscopic calculation are presented, and the behavior of the 
difference signals is analyzed as a function of the light fre- 
quencies and the magnetic field intensity.' 

2. POLARIZATION CONDITIONS OF THE FORMATION OF 
DIFFERENCE SIGNALS 

The essence of the probe-field method consists in the 
following. An atom interacts with two light fields. The 
strong field, resonant with the optical transition m-n, per- 
turbs the structure of the atom, and the weak (probe) field, 
resonant with the transition m-I (or n-l), probes this pertur- 
bation. 

An atom of the gas is also perturbed by collisions with 
other particles. Since the interaction of the atom with the 
light fields induces a coherence between the combining lev- 
els, these collisions perturb this coherence. All of these per- 
turbations manifest themselves in a probe-field absorption 
spectrum free of the masking effect of Doppler line broaden- 
ing. 

The power P delivered by the probe field per unit vol- 
ume of the medium can be represented to first order in the 
intensity of the strong field in the form 

wherex,,, is the fourth-rank nonlinear susceptibility tensor, 
and E, and E$ are the Cartesian coordinates of the complex 
amplitude vectors of the strong and the weak fields, respec- 
tively. 

To analyze the polarization conditions of the formation 
of the difference signals, it is convenient to write P not in the 
Cartesian representation ( 1 ), but in the irreducible spheri- 
cal tensor (IST) representation (see, e.g., Ref. 8 ) .  The dif- 
ference signal APin this representation can also be written as 
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Here P and are the values of the power at two successive 
half-periods of the modulation 

I@ ( 'Al ,  xz: x. q )  =Q) (XI, x2; x,q) --&(Xi,  x2; X ,  q ) .  

I (xq)  and Ip (xq )  are the polarization IST of the fields, 
(x, ,  x2; X, q) is the combined polarization IST of the polar- 

izations of the fields,x(x,, x,; x, q )  is the IST ofthe suscepti- 
bility of the two-photon process of rank X, E, and E$ are the 
spherical components of the fields: 

and (x,q,x,q21xq) is a Clebsch-Gordan coefficient.' The 
susceptibilities are determined by the properties of the medi- 
um and the type of radiative process, and depend on the 
frequencies w and wp, the wave vectors k and kp of the fields, 
and the static magnetic field H. 

The susceptibility x can be represented as consisting of 
two parts: x = xi + x 0 ,  wherexi is due to the isotropic part 
of the relaxation. For a gas in a magnetic field, the tensor xi 
is obviously invariant to rotation about H, i.e., it is an axial 
tensor. In the IST representation this symmetry is expressed 
by the fact that in the H-system of coordinates (with z axis 
aligned with H )  the only nonzero components of the tensor 
X, ( x l , x2 ;~ ,q )  are those for which q = 0. Therefore the con- 
ditions under which the part of the difference signal due to 
X, vanishes have the form 

The components of the nonlinear susceptibility 
X, (xI,x2;x,0) depend on the parameters of the medium 
(pressure, temperature), the external field, and the field fre- 
quencies w and w". Equation (6)  is satisfied independently 
of the indicated circumstances if the following condition is 
met for arbitrary x , ,  x,, and x: 

These conditions lead to a system of equations which con- 
nect the polarizations of the fields at different periods of the 
modulation. 

Under conditions of large Doppler broadening, the nor- 
mal Zeeman effect, the use of the resonance approximation, 
and a small difference in the magnitudes of the wave vectors 
kandkp: ( (k l  - IkpI)/Ikl <l,thetensor~~(x,,x~;x,O) pos- 
sesses an additional symmetry with respect to interchange of 
the indices x,  and x2 (Ref. 2).  In this case, Eq. (2)  is satis- 
fied if some linear combination of A@(x,,x,;x,O) and 
A@(x,,?t,;x,O) vanishes., This case is also analyzed in the 

present paper. In Ref. 2 it was found that this system of 
equations has nontrivial solutions only in the case of orthog- 
onality of H and the wave vectors k and kp of the collinearly 
propagating light fields. The solution of this system is ex- 
pressed most simply in terms of the polar (8 and O p )  and 
azimuthal (q, and @' ) angles of the Stokes vectors 

%= (ti ,  E2, E ~ )  = (sin 0 cos q, sin 8 sin q, cos 8) ,  

p= (Ejw, E2", EQ') = (sin 0" cos cp", sin Owsin cpv, cos 0") 

on the Poincark sphere, which completely describe the po- 
larization states of the light.9 

The Stokes parameters of each of the fields are deter- 
mined in their own system of coordinates with the z' axis 
aligned with the wave vectors of the fields (the k- and 
kp-systems), whereby they' axis in these systems is assumed 
to coincide with they axis in the H-system. The components 
of the electric vector E in the k-system are expressed in terms 
of the parameters 8 and q, in the following way: 

E,s=E cos (012) eiUt, E,.=E sin (012) ei("l+". (8) 

These expressions provide insight into the physical 
meaning of the azimuthal and polar angles 8 and q, of the 
Stokes vector 5. The angle q, is the phase difference of the 
Cartesian components of the electric vector E of the light 
wave. The tangent of half the polar angle, tan (8 /2), is equal 
to the ratio of the sides of the rectangle which circumscribes 
the polarization ellipse and is oriented along the x' and y' 
axes: tan(8/2) = b , / a ,  (Fig. 1) .  

Note that the ratio E,. /Ex, is the stereographic projec- 
tion of the Stokes vector f from the PoincarC sphere 
( I f  1 = 1 ) onto the equatorial complex plane (8 = 77/2) 
from the point 8 = ?r: 

For reflection-symmetric media there exist three non- 
trivial solutions corresponding to three types of difference 
signals, which differ by the way in which the polarizations of 
the fields change when one goes from one half-period of the 
modulation to the other. We will dwell on each type of differ- 
ence signal separately. The first type corresponds to vari- 
ation of the polarizations of the fields according to the trans- 
formations 

FIG. 1. 
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The difference signal is described by the following com- 
ponents of the tensor A@(x,,x,;x,q): 

A @  (2. 0: 2. 0)=-2-~h(cos 0-cos 0")ElZIE"/2, 

A@ (2. 0: 2, -t 1 )  =-6-'"A@ (2. 0: 2. 0) ,  
(10) 

(2. 2: 3. t 2 )  =T (2/3) (2. 0: 2. O ) ,  

A@ (0 2: 2. q)=-A@(2. 0: 2, q ) .  

The magnitude of the signal, according to Eqs. ( 10) and ( 8 ), 
depends only on the relative difference of the intensities of 
the field components aligned with H and orthogonal to it. 
Indeed, from Eqs. (8)  we have 

(IEx.Iz-IE,~12)l(!Ex*12+ lEy,12) 
=cos2 (012) -sin2(0/2) =cos 0. (111, 

It also follows from Eqs. (2 )  and ( 10) that the difference 
signal changes sign upon interchange of the polarizations of 
the fields for any counter- or copropagation of the waves. 
The simplest polarizations that satisfy the given type of dif- 
ference signal are linear polarizations (Fig. 2).  The differ- 
ence signal is extremal for cos 6 - cos & = + 2. This con- 
dition corresponds to orthogonal linear polarizations with 
one of the polarizations aligned with H. 

The second type of difference a signal corresponds to 
variation of the polarizations of the fields according to the 
transformations 

Here and below, the upper sign corresponds to the case of 
copropagation of the waves, and the lower signal--to coun- 
terpropagation. For this variation of the polarizations of the 
fields only the following components of the tensor 
A@ ( x  ,,x2;x,q) are different from zero: 

A @  (1. 2; 2. 0) =f2-::i sin 0 s i n 0 ~ s i n ( ~ ~ ~ " )  IE12/Eu12, 

A @ ( l .  3: X .  20)=2-'i20x(1121)X2>A@(1, 2: 2. O), 

A@(2, I :  x ,  q)=f(-I) 'A@(i,  2: x ,  q),  o=+l.  

To get a clearer picture of the polarization dependence 
of the difference signals described by these expressions, it is 
advantageous to express the latter in terms of the more cus- 
tomary polarization parameters of light: the angle of ellipti- 
city E (tan E = (b /a)<2/j62 1 ,  where b and a are the minor 
and major semiaxes of the polarization ellipse), and the 

FIG. 2. Two types of variation of the simplest polarizations of the fields in 
a difference signal induced by the anisotropy of relaxation in the probe- 
field method for counterpropagating fields a )  for 0 < t < T / 2  and b)  for 
T / 2  < r < T ( T is the period of variation of the field polarizations). 

slope angle $ of the major axis with respect to the x' axis of 
the k-system. The relations between the parameters p, 6 and 
E, $ are 

tg(2$) =tg 0 cos cp, s i n ( 2 ~ )  =sill 0 sin cp, (15) 

with the help of which it is easy to express the polarization 
dependence ( 13) of a difference signal of type ( 12) in terms 
of the parameters E and $: 

sin 0 sin 0" sin ( c p i c p F )  =sin(2e) cos (2eu) sin (2$") 

Tsin (28") cos (2.5) sin ( Q ) .  (16) 

This expression enables us to determine the transformation 
group of the polarizations of the fields which doe not change 
the absolute value of the difference signal. Such transforma- 
tions can be most diverse. The sole requirement on them is 
that the absolute value of expression ( 16) remain constant. 
From this entire manifold oftransformations, let us consider 
the subgroup of those that do not change the absolute values 
of any of the factors in expression ( 16). In this case it is 
possible to indicate the explicit form of the transformations 
of the polarization parameters. 

First, the symmetry (antisymmetry) of the difference 
signals with respect to substitution of the polarization of the 
weak field for the polarization of the strong field and vice 
versa is immediately obvious for the case of counter- (co-) 
propagating waves. The second transformation group fol- 
lows from the fact that the polarization parameters enter 
into expression ( 16) as arguments of trigonometric func- 
tions, which can take the same value for several different 
arguments. Thus, the difference signal does not change for 
either of the substitutions 

I J I + ~ / ~ - $ +  (n) ,  $w+n/2-$1'+ (x) .  

The additional term (T) is included only to keep the trans- 
formed values of $ and q within their domain of definition 
O t $ , q  <IT. Such a transformation corresponds to a reor- 
ientation of the polarization ellipse of either of the fields into 
the orientation symmetric with respect to the axis which 
makes an angle of 45" with the vector H. For the simulta- 
neous substitution 

the difference signal under consideration changes sign. Phy- 
sically, this transformation corresponds to a reorientation of 
both polarization ellipses into orientations symmetric to the 
initial orientations about the vector H. The difference signal 
also changes sign upon the transformations E +  - E, 

E ~ +  - E ~ ,  which correspond to a change in the senses of 
rotation of the vectors E and Ep in the polarization plane. 
Finally, the difference signal is invariant with respect to the 
simultaneous transformations 

A larger subgroup of explicit transformations of the po- 
larizations of the fields follows from an analysis of the left 
side of expression ( 16). The difference signal is invariant to 
the following transformations of the parameters 0 and p: 

1) 0+n-0, 2) 0"-+n-OM, 3) O*OIL, 
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(a is arbitrary). Change of its sign occurs in the case of the 
transformations 

The signal reaches its extreme value for polarizations of 
the fields which satisfy the conditions ((T = + 1 ) 

Conditions ( 17) are equivalent, as follows from relations 
(14), to the following conditions: 

which corresponds to an orientation of the polarization el- 
lipses of the fields at an angle of 45" with the vector H (i.e., 
$,,E = n-/4,3n-/4). The parameters E and E~ for the extre- 
ma1 difference signal are connected by the following rela- 
tion, which follows from relations ( 16), ( 18), and ( 19) : 

If conditions ( 19) are satisfied, the principal axes of the 
ellipses of the fields can be oriented either identically or at an 
angle of 45" with respect to each other. In the first case the 
ellipticity parameters, in addition to being related by (20), 
are also related by the inequality 

which points out the different helicity of the fields. In this 
case for $ = n-/4 and E > 0 expression (16) is positive for 
copropagating waves and negative for counterpropagating 
waves. In the case of orthogonal relative orientation of the 
ellipses, in inverse (21) is true. Therefore the extremal dif- 
ference signals that differ only in the orientation of one of the 
polarization ellipses (while preserving its shape) differ also 
in the sign of one of the ellipticity parameters E and 6 .  The 
sign of the difference signal with changed orientation of one 
of the polarization ellipses is the opposite of the sign of the 
initial difference signal if the ellipticity parameter of the 
reoriented ellipse also reverses sign. In the opposite case the 
sign of the difference signal does not change. In the case of 
simultaneous change of the signs of E and d the extremal 
difference signal changes sign in accordance with the general 
invariance property for the given type of difference signal 
indicated above. 

On the basis of what has been said, one can verify that 
there exist only three different polarization states for the 
extremal difference signals which have fixed values of / E /  

and I E ~ I  related by (20). 
The simplest polarizations that satisfy the extremum 

conditions for the given type of difference signal are circular 
polarization and linear polarization oriented at an angle of 
45" with respect to H (Fig. 2).  

In the third type of difference signal the law of variation 
of the initial light wave polarizations is obtained by succes- 
sive application of the polarization transformations corre- 
sponding to the difference signals of the first two types. 

3. RESULTS OF MICROSCOPIC CALCULATION OF THE 
DIFFERENCE SIGNALS 

An explicit calculation of the absorption difference sig- 
nals in the probe-field method was carried out according to 

the standard ~ c h e m e . ~  In this method the density-matrix op- 
eratorb is represented in the forme = b0 + bp , where is a 
small quantity which is due to the interaction with the probe 
field. Within the framework of the model of the relaxation 
constants, to first order in the amplitude of the probe field 
E the operators b0 and bp obey the equations4 

a p  - - i i 
at 

-1- I-$" - g [jiH, pol + - [P, i;O] z 6,  
12 f i  (22) 

h 

where r is the relaxation operator which accounts for the 
anisotropy of the collisions, ji is tGe magnztic dipole moment 
operator, g is the Land6 factor, V and Vi' are the interac- 
tion Hamiltonians of the strong and weak fields E and Ep 
~ i t h  theA ?tom in A t h e  dipole approximation: 
V =  - E.d, = - Ep.d, where d is the dipole-moment 
operator, and Q describes the excitation of the atoms in the 
absence of the light fields. In what follows, the anisotropic 
part of the relaxation operator r is assumed to be small in 
comparison with the isotropic part (which in all known 
cases is fulfilled-see Ref. 10 and the literature cited). This 
circumstance allows us to search for the solution of system 
(22), (23) by the method of iterations in the anisotropic 
part of the relaxation matrix. 

Within the framework of the probe-field method, a few 
concrete schemes of its realization are possible which differ 
in the number and arrangement of the combining energy 
levels, and also in the geometry of the propagating waves. 
Such an abundance of schemes allows us to use the probe- 
field method to obtain a vast amount of information about 
the anisotropic part of the relaxation matrices of both the 
energy levels and the coherences between them. A detailed 
microscopic calculation and analysis of the difference levels 
in all of the variants of the probe-field method was carried 
out in Ref. 11. The calculation was carried out within the 
framework of the semiclassical resonance approximation, 
assuming conditions of the normal Zeeman effect and iso- 
tropic excitation of the levels, and implementing a model of 
the relaxation constants which allows for the anisotropy of 
the relaxation. 

Here we present results of a calculation of the difference 
signals for a three-level system with arrangement of the com- 
bining levels of A-type (a  Raman-scattering-type process) 
in which the lower levels, n and I, have total angular momen- 
tum J ,  = J ,  = 0, and the upper level m, common to both 
transitions m-n and m-1, has total angular momentum 
J,,, = 1. 

For counterpropagating waves in this case the differ- 
ence signal of type (9)  has the form 
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I',j(xx,L; v,) = [ (2x+1) (2x1+1) I"' 

Here ov,dv,  and T v  are respectively the frequency, the re- 
duced matrix element of the dipole moment, and the isotrop- 
ic relaxation constant of the i-j transition; Ni,T,, and T ,  
are the population and the isotropic relaxation constants of 
the population and the alignment' of level i; A=gp&/fi, 
where g and p, are the Landi factor and the Bohr magneton: 
T v  (xxlL;v) are the anisotropic relaxation constants of the 
levels ( i  = j) and the transitions ( i f j )  [Ref. 101 ; P2 ( x )  is a 
Legendre polynomial; and B and u, are the mean thermal 
velocity and the modulus of the transverse component (with 
respect to k) of the velocity of the atom. The angular brack- 
ets denote averaging over the Maxwellian distribution 
W(u, ) of the transverse velocities v, : 

m 

(v,) j w (v,) I (v,) V l  dVL. 
0 

Graphs of the functions ~ e [ F , ( f i +  ,A)] and 
~e [F, ( fi + ,A 1 are shown in Figs. 3 and 4. In agreement 
with phenomenological  prediction^,^ these functions are 
even with respect to inversion of H and vanish when H = 0. 
The area under the graphs of R ~ [ F ,  (6 + ,A)] (see Fig. 3a) 
plotted vs fi + is equal to zero, i.e., the difference signal 

FIG. 4. Dependence of the real part of the nonlinear difference signal (24) 
due to the anisotropy of the relaxationgf the degenerate level m on a )  the 
total frequency detu_ning of the fieldsfi + for vgrious values of the Zee- 
man level splitting A: 1)  A = 0.5,2) A = 1, 3)  A = 3 and b)  the magni- 
tude of the Zeeman level2litting A for variou~values of the total frequen- 
cydetuningofthefieldsR+:l)fi+ = 0 , 2 ) R +  = 1 , 3 ) R +  = 3 . I n t h e  
construction of the graphs the relaxation constant of the common level m 
was taken to be equal to the half-sum of the relaxation constants of the 
Raman transitions: r,, = (r,, + r,, )/2. 

integrated over is expressed only in terms of 
+fF2(fi + ,A)dop. 

This statement is valid in general." Its physical mean- 
ing is that the spectrally integrated signal does not depend on 
any of the peculiarities of the perturbation of the radiation 
process, which in the case under consideration are described 
in Eq. (24) by the term proportional to F, (d +-,A). 

The behavior of the function Re [F, (6 + ,A ) ] changes 
radically upon variation of any of its parameters. The zeros 
of the function Re [F, ( fi + , x )  1 are located at the points 

-2 1/2 fiy'l + 1 -& (2 + A ) (Fig. 3a) and A''' = 0, 
+ (a: + 2n + - 1) "' (Fig. 3b), where it is to be noted 

that the zeros A''' do not exist for all values of d + . Thus, if 
lfi + 1 <fi - I, then R ~ [ F ,  (fi + ,A)] vanishes only at 
~ ' 0 ' = ~ ( c u r v e 1 i n ~ i g . 3 b ) . ~ o r f i - 1 < ~ ~ + / ( f i + 1  
two additional zeros appear: 
A''' = + (6':' + 2 6  + - 1 ) (curve 2 in Fig. 3b). 

The extrema of the function Re [F ,  ( fi + , x )  ] are locat- 
ed at the points fi':L= 0, + (x2 + 1) (the main positive 
extremum), + {A2 + 1) '/* [ (2' + 1) 'I2 + 21 )I/*, and 

FIG. 3. Dependence of the real part of the nonlinear dif- 
ferenoesignal (24) due to the anisotropy ofthe relaxation 
of the optical coJherence on a )  the total frequency detun- 
ing of the fields Q + for various values octhe Zeeman level 

0 - splitting A: 1) A = 0.5,-2) A = 1, 3)  A = 3 and b)  the 
Zeeman level splitting A for vario_us values-of the total 

-1/6 frequency detuning of the fields f l  + : 1)  R , = 0, 2 )  

-114 R ,  = 1 , 3 ) f 2 ,  = 3 .  
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FIG. 5 .  

+ { ( L 2 +  I ) ' / ~ [ ( & * +  1)1/2-2])1'2, where the last two 
extrema arise only for & > 0 (curve 3 in Fig. 3a). The mag- 
nitude of the extrema of Re[F, ( 6  + ,&) ]  grows monotoni- 
cally with increasing H. At & = 1 the negative extremum 
(6:' = 0 )  reaches its maximal value, equal to 1. With 
further increase of & its magnitude falls off, tending toward 
zero at large &. The positive extrema grow monotonically 
with increasing & toward a value of 1. In the limit &% 1 the 
function Re [PI  (6 + ,&) ] can be represented as a sum of two 
symmetrically shaped resonances with unit amplitude: 

The physical interpretation of these resonances is as fol- 
lows. Let the polarization of the strong field in one of the two 
polarization states of the difference signal be orthogonal, 
and that of the weak field parallel, to H (for such polariza- 
tions the difference signal is maximal). The atoms whose 
velocities satisfy the conditions - kp.v = Rp and 
- k . v  = R i- A interact resonantly with the strong and 

weak fields. In the absence of collisions, nonlinear reson- 
ances are absent in the action of the probe field, since the 
weak and strong fields interact with various sublevels. Iso- 
tropic collisions lead to a redistribution of the population of 
the Zeeman sublevels [the factor 1 - T,,/T,, in Eq. 
(24) 1 .  As a consequence of the anisotropic collisions, the 
optical polarization in the transition with AM f 1 is trans- 
ferred to the transition with AM = 0 (Fig. S ) ,  which is im- 
possible in principle for isotropic relaxation (see, e.g., Ref. 
4).  The result is a nonlinear resonance described by the func- 
tion F,(6 + ,&). 

The component of the difference signal proportional to 
F2(h + , x )  is due to the hidden1' alignment of the level rn, 
where the first and second terms in the square brackets of the 
expression for F, ( 6  + ,x) [Eq. (27) ] are respectively due 
to longitudinal and transverse alignment (in the H-system). 
The additional decrease of the second term with growth of 
the magnetic field in comparison with the first is due to the 
rotation of the transverse alignment in the magnetic field, 
which, in turn, lowers the efficiency of coherent interaction 
with the light. Therefore at large values of H (or R +  ) the 
function P 2 ( a  + ,&) is the sum of two independent Lorent- 
zians of unit amplitude, centered at the points 6 + ( Z )  (see 
Fig. 4) .  

For a resonant dipole-dipole interaction between col- 
liding particles,I3 at ( R  5 A ) /kEg 1 and cos 0 = - cos 
19 = 1 the difference signal (24) is roughly 6% of the usual 
nonlinear magnetooptical resonance. 

The difference signal of the second type ( 12) is ex- 
pressed in this particular case (J, = 1,J, = J, = 0 )  in the 
form 

AP=Pl Im( (N,-N,) [Fmr(112; v,) -r,, (112; v,)] 

x y- 'F,(Q+, A )  +Nm~,,(022; v,) rmz-'FI(Si+, A ) ) , L ,  
(35) 

'G ' ' 'G"2 sin 0 sin B'sin(p+pv), (36) 
yrmz 

Graphs of the functions ~ m [ F , ( d +  , & ) I  and 
1m [ ~ , ( d  + ,&) ] are shown in Figs. 6 and 7. The difference 
signal is even with respect to inversion of H, in agreement 
with phenomenological predictions.2 However, in contrast 
to difference signals of the previous type, it is asymmetric 
with respect to 6 + (see Figs. 6a and 7a). This property is 
valid also in general. Specifically, it turns out that for differ- 
ence signals of type ( 12) the asymmetric part of the differ- 
ence signal is proportional to the real parts of the anisotropic 
relaxation constants, and the symmetric part-to the imagi- 

1m Pj - @, i)l/(rn., ,rn, - 1) 
FIG. 6 .  Dependence of the imaginary part of the nonlin- 

- ear difference signal (35) due to the anisotropy of the 

006 - relaxation of the optical coh~rence on a )  the total fre- 
quency detuning of the kelds flu+ for varigus valuesgf the 
Zeeman level splitting A: 1) A =_1, 2)  A = 2, 3) A = 3 
and b) the Zeeman level splitting A for various v_alues of 
t_he total frguency d e t ~ n i n g  of the fields R + : 1) 
R + = 1,2)  R + = 2 , 3 )  R , = 3. In addition to thecon- 
ditions indicated in Fig. 4a, the ratio of the relaxation 
constants of the alignment T,,,, and the orientation T,,,, is 

- 4 - 3 - 2 - 1  0 1 2  3 Y a - 4 - 3 - 2 - 7  U 7 2 3 Y '+ equal to T,,,/T ,,,, = 1.03. 
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FIG. 7. Dependence of the imaginary part of the nonlin- 
ear difference signal ( 3 5 )  due to the anisotropy of the 
relaxation of the degenerate Level m on a )  the total fre- 
quency detuning of the lkelds for varicus valuescf the 
Zeeman level splitting A: 1) A = 1, 2 )  A = 2, 3 )  A-= 3  
and b) the magnitude of the Zeeman level splitting A for 
y r ious  vaJues of the total frequency Getuning of the fields 
a + :  1)  R +  = I ,  2 )  R +  = 2 ,  3 )  f L +  = 3 .  Thecondi- 

-2 -7 0 1 2 i  tions are the same as in Fig. 6. 

nary parts. For difference signals of the other kind (9)  the 
situation is the reverse. ' ' 

The area under the plot of F, vs R + is equal to zero, 
and the difference signal integrated over wp is expressed 
only in terms of Jf,dwp. As in the case of the difference 
signal (24), this is a general property and has the same phys- 
ical meaning. 

The functions F, and F4 differ from the functions F, and 
F, only by the factor (rm2/rrnl ) L ( U A / I ' ~ ~  ) 

- L(aA/Trn, ). This characteristic factor reflects a physical 
property of the given type of difference signal. It is due to the 
difference between the interaction of an atom in the magnet- 
ic field with circularly polarized light and with linearly po- 
larized light. Let us clarify this circumstance by an example. 
In one of the two polarization states let the strong field be 
circularly polarized and the weak field be linearly polarized 
at an angle of 45" with respect to H. In the other polarization 
state let the situation be the reverse. For such polarizations 
the difference signal is maximal. In these polarization states 
the light interacts with all the Zeeman sublevels, and the 
resonance conditions and the intensity of the interaction 
with each of the sublevels are identical for these two polari- 
zations. The difference consists only in the phase relations 
between the circular components of the fields. The latter 
circumstance explains the falloff of the difference signals of 
the given type at large ( fi + ). Indeed, for large magnetic 
fields (frequency detunings) the atom interacts resonantly 
with only one of the circular components. The phase rela- 
tions between the different components in this case are not 
important. Therefore, the interaction of the atom with the 
indicated circular and linear polarizations is identical, and 
as a consequence of this the difference signal vanishes. 

In conclusion we note that the results which we have 
presented of the calculation of the difference signals in the 
absorption of the probe field for the case in which the com- 
mon level m for the transitions m-n and m-1 is located above 
the others (Raman-scattering-type process) are easily ex- 
tended to the case of two-photon absorption or two-photon 
fluorescence (in which the level m is located between the 
levels n and I )  for copropagating waves. For this it is only 
necessary to make the substitution a+ - - R _ . 

4. CONCLUSION 

The symmetry properties of the nonlinear susceptibility 
tensor x of a gas is closely connected with the anisotropy of 
the relaxation of its constituent molecules. For isotropic 
collisions of the molecules the tensor x is invariant to rota- 
tions (isotropic). For anisotropic collisions it is axial with 
symmetry axis along the direction of the collinearly propa- 
gating light waves. 

This difference in the symmetry o f x  lies at the basis of 
the formation of those difference magnetooptic signals of 
two-photon processes which are proportional to the anisot- 
ropy of the relaxation. The difference signal is the difference 
of the intensities of the two-photon process which arises as a 
result of replacing the initial polarizations of the light fields 
(which can be arbitrary) by others which are related to the 
initial polarizations by some definite law. 

Nontrivial difference signals, proportional to the ani- 
sotropy of the relaxation, exist only when the magnetic field 
is perpendicular to the wave-propagation direction (devi- 
ation from this configuration produces a contribution pro- 
portional to the isotropic relaxation and to the square of the 
deviation angle). For a reflection-symmetric medium there 
are only three such types of difference signals, differing by 
their law of variation of the field polarizations. The symme- 
try groups of each type of difference signal with respect to 
the transformations of the initial polarizations of the fields 
have been found. The class of light-field polarizations for 
which the difference signal attains its extremum has been 
found. 

The absorption difference signals in the probe-field 
method are even with respect to inversion of the magnetic 
field. The magnitude of the magnetooptical difference signal 
undergoes a radical change upon variation of the magnetic 
field and of the frequency detuning of the wave fields from 
the resonant frequencies of the transitions in the atom (Figs. 
3,4,6, and 7 ) .  For a reflection-symmetric medium the even 
(with respect to sign reversal of the detunings) and odd 
parts of the difference signal of one type are respectively 
proportional to the real and imaginary parts of the aniso- 
tropic relaxation matrices. For the other type of difference 
signal the situation is the reverse. 

The different types of difference signals are described 
by a diverse set of elements of the anisotropic part of the 
relaxation matrices both of the combining levels and the 
transitions. Only the terms of the difference signal which 
correspond to the anisotropic reorientation of the levels con- 
tribute to the intensity integrated over the spectrum. 

Using the different variants of the difference signals of 
both types (counter- and copropagating waves, signals inte- 
grated over d ), it is possible to obtain information on the 
various elements of the anisotropic part of the relaxation of 
the levels and the transitions which describe the difference 
signal. Knowledge of the relaxation matrix can be used to 
elucidate the nature of the interaction between the colliding 
particles. The magnitude of the signal for the 1-0 transitions 
and the resonant dipole-dipole interaction between the par- 
ticles for (R  - A)/kE, I'/kE< 1 is around 6% of the ordi- 
nary nonlinear signal. 
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"The term "hidden" alignment, first introduced in Ref. 12, denotes the 
presence of alignment of several subensembles of atoms with given ve- 
locity, but its absence for the gas as a whole. 
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