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The states of a highly excited electron in a field of multipoles must be investigated in a number of 
problems of atomic physics. We develop here, for an analytic perturbation-theory calculation of 
quantum defects of Rydberg series, a procedure applicable in principle for arbitrary order of 
perturbation theory and for arbitrary multipole order. The calculations make use of the 
properties of the Coulomb problem at zero energy. The presence of a non-Coulomb central 
potential is taken into account with the aid of the model-potential method. The results are 
presented in the form of equivalent operators that describe the contribution of a given 
perturbation-theory order. Actual calculations are performed for dipole and quadrupole 
potentials in first and second order of perturbation theory. 

1. INTRODUCTION 

The problem of a highly excited electron in the field of 
multipoles is encountered in the theory of Rydberg states of 
molecules (see Ref. 1 and the bibliography therein). Similar 
problems can be encountered also in investigations of var- 
ious centers in a crystal lattice. For doubly excited states of 
the helium atom, the multipole dynamic field acting on an 
external electron is produced by an internal e l e~ t ron .~  An 
effective multipole potential appears also in the description 
of a hydrogen atom in the field of a high-frequency electro- 
magnetic wave.3 

The current literature contains detailed discussions of 
electron states in the field of a dipole (both pointlike and 
finite)-see, e.g., Ref. 4. This state is special, since it permits 
separation of the dynamic variables. 

The variables do not separate for a multipole of arbi- 
trary order, so that the problem is essentially three-dimen- 
sional. It is natural to investigate it by perturbation theory. 
Generally speaking, first-order perturbation theory in the 
multipole potential will not do here. For a dipole potential, 
for example, all the matrix elements in the subspace of states 
with a given principal quantum number vanish (details fol- 
low). We know that to calculate higher perturbation-theory 
orders it is necessary to sum over the entire energy spectrum 
of the quantum system, something analytically possible only 
in rare cases. 

We show below that the problem of Rydberg states of an 
electron in a field of multipoles is unique in that in principle 
it can be analytically calculated for a multipole of any order, 
and in any order of perturbation theory. The calculation pro- 
cedure is in fact the main result of the present paper, which 
can be used later in the diverse applications indicated above. 
It is based on special properties of the quantum-mechanical 
Coulomb problem at low energy. 

In Sec. 2 we introduce the notation and formulate the 
approximation. It is expedient to present the results in the 
form of equivalent operators whose matrix elements on un- 
perturbed states yield the energy corrections in the required 
order of perturbation theory. The equivalent operators 
themselves take the form of multipole potentials. Thus, for 
the contribution of a dipole perturbation in second-order 
perturbation theory such an operator is written in the form 
of a sum of a monopole and a quadrupole effective poten- 
tials. The presence of a central non-Coulomb potential is 

taken into account in the context of the well-known model- 
potential m e t h ~ d . ~  As an example of the application of the 
proposed calculation procedure, we consider dipole and 
quadrupole interactions in first (Sec. 3) and second (Sec. 4 )  
orders of perturbation theory. 

2. PERTURBATION THEORY AT ZERO ENERGY 

A central potential is applied to the unperturbed Ham- 
iltonian of a Rydberg electron. In the simplest case we have a 
pure Coulomb interaction: 

here r is the radius vector of the electron, and we use the 
atomic system of units. The unperturbed wave function is 

$ ,  ( )  = r Y ( N )  N=rlr, 

where land m are the usual spherical quantum numbers. For 
the radial wave function at low energy E we use the well 
known approximate expression6 

which is valid under the condition r( lE I - ' . 
The unperturbed Hamiltonian has a simple generaliza- 

tion that makes it possible to take into account the difference 
between a central and a Coulomb potential. To this end, a 
model potential is introduced into the Hamiltonian (see, 
e.g., Ref. 5 )  

where P, is the operator of projection on a subspace of states 
with a given orbital quantum number I; the constants c, des- 
ignate the potential power at a given I. The electron radial 
motion in such a potential is characterized by an effective 
orbital momentum A,: 

The radial wave function is 
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Another more universal possibility of taking into ac- 
count the short-range non-Coulomb interaction of the Ryd- 
berg electron and the atomic core is connected with R-ma- 
trix theory (see, e.g., Ref. 7).  In this theory the wave 
function outside the core (i.e., in the range of action of the 
pure Coulomb potential ), at r< (E ( - I ,  is a superposition of 
Bessel and Neumann functions: 

If the parameter is properly chosen a = cot [ (1~/2) (1 - 
A , ]  ) this function has in the semiclassical region an asymp- 
tote that coincides with the asymptotic function (1.6); this 
serves as an additional corroboration of the model-potential 
method. In principle, our calculation method can be devel- 
oped also using R-matrix theory. However, since the func- 
tion (2.7) does not decrease as r-0, it is necessary to trace in 
the calculations the contribution of the region of small r to 
the matrix elements. The actual equations that can be ob- 
tained in this case require therefore a separate analysis and 
will not be discussed here. 

In both cases the energy levels make up a Rydberg series 

where S, is the quantum defect (8, = A, - I). 
The role of the perturbation is assumed by the sum of 

the electric-multipole potentials 

where k  is the order of the multipole ( k  = 1,2,3,4 ..., for a 
dipole, quadrupole, octupole, hexadecapole, etc. ) , 

For an electric multipole, the potential has a power-law 
radial dependence: 

vI. (r) (2.11) 

so that the function V,, (r)  (2.10) is harmonic (satisfies the 
Laplace equation V2 VA,, = 0 at all points except the origin). 
The irreducible spherical tensor A,,, indicates the orienta- 
tion of the perturbation potential (for k  = l, for example, 
the direction of the vector of the corresponding dipole mo- 
ment). 

The corrections to the energy level are given by the usu- 
al Rayleigh-Schrodinger perturbation-theory equations 

where G(E) is the Green's function, and the tilde labels re- 
duced functions. 

The kernel of the operator G(E) is represented in the 
usual fashion by an expansion in partial waves: 

The radial Green's function g, (r,,r2) is constructed in 
the usual manner from solutions of the unperturbed radial 
equation at a given I, one regular as r-0 (F,) and other 
decreasing as r- w ( G, ) : 

where r, = min(r,,r,), r, = max(r,,r,) and W is the 
Wronskian of the solutions of F, and GI. Within the frame- 
work of the method of the model potential, F, is given by 
expression (2.6). Outside the core, at r <  IE 1 - ' , the func- 
tion G, takes the form (see Appendix 1 ) : 

G ,  (r) =r-"2{J2Al+l[ (8r)'"lctg cp l  (E) +N~A , + I [  (8r) I"'), (2.16) 

q1 (E) =n [ ( -2E)-" -h l] .  

The spectrum of the problem is specified by the condi- 
tion p, (E) = rn, which leads to (2.8). To change to the 
reduced Green's function it is necessary to separate the pole 
term at E = En,, which results in 

el (~)=r-'h{JzA,+l[(8r)'"]3[n(n+blj]-'+iV2k,+l[ (8r)"'I). 

(2.17) 

Ultimately, in the principal order as n -+ W ,  we get 

3. EQUIVALENT OPERATORS. GENERAL RESULTS 

Let us consider in greater detail the calculation of the 
second-order perturbation-theory correction. Since the per- 
turbation (2.9) is a sum of multipole potentials, it is neces- 
sary in the general case to calculate the correction of a mixed 
perturbation theory with potentials of multipoles of order k ,  
and k,  

We consider here an off-diagonal (in I and m) composite 
matrix element taken between the states $ ,,,,, and $ ,,q,q. 

The latter, generally speaking, is necessary since the unper- 
turbed state (2.2) is degenerate in the azimuthal quantum 
number m, and in the case of a pure Coulomb unperturbed 
Hamiltonian also in the orbital number 1. If the degeneracy is 
not lifted (at least partially) in first-order perturbation theo- 
ry, it is well known8 that in second order it is necessary to 
diagonalize the matrix V ~ V .  

Using the expansion (2.13) and the formalism of angu- 
lar-momentum theory9 we can represent (3.1 ) by a matrix 
element (in the angle variables) of a certain effective opera- 
tor W k , ,  k2, I , ,  4 ) :  

in the form of an expansion in the multipoles q: 

We use here the standard notation for a tensor product of 
irreducible operators9: 
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where C;:,,, are Clebsch-Gordan coefficients. The oper- 
ator Wq6 is an irreducible spherical tensor, and its matrix 
elements in the angle variables are expressed in terms of the 
irreducible matrix element (1,II Wq 1 1  1,) : 

For the latter we obtain the expression 

where 

while 

are respectively 3jm and 6j symbols, and we have used the 
following abbreviated notation for the radial matrix ele- 
ment: 

m 

(RnLl 1 VIRnlJ = R r , l , ( r )  V R , , 1 8 ( r ) r 2  dr. (3.9) 
0 

Although (3.2)-(3.8) may seem unwieldy, their phys- 
ical meaning is quite clear. The equivalent operator W is 
represented by a sum of multipoles whose order q, in accor- 
dance with the rule for angular-momentum addition, runs 
through values from Ik, - k,I to k, + k, (the parity of q is 
the same as the parity of the sum k ,  + k,). The orientation 
of the 9th multipole is characterized by an irreducible tensor 
A,< = ( A , ,  e A,, ),, . In this respect (3.3) is quite analogous 
to Eq. (2.9) for the initial perturbation potential. An irredu- 
cible matrix element of the 9th multipole is expressed as a 
sum over those values of the intermediate orbital momentum 
I, which are allowed by the angular-momentum-addition 
rules. The sum contains composite radial matrix elements, 
and their coefficients (I,I(~jl~~)(11,) reflect the result of addi- 
tion of the available angular momenta. 

Since the principal quantum number n enters in the ra- 
dial wave functions R,,$ and R,,, , the corrections to the ener- 
gy are of the same order in n (namely, - n - ) for all multi- 
poles and for an arbitrary order of perturbation theory. 
Comparing this circumstance with expression (2.8) for the 
energy of the Rydberg level, we see that the developed per- 
turbation theory yields the quantum defect 8, of the series, 
which is independent of n. 

The results of the present section do not depend on the 
form of the function u, ( r ) .  The actual form of this function 
is needed for the calculation of the radial matrix elements. 

4. FIRST-ORDER PERTURBATION THEORY 

A methodologically important advantage of the ap- 
proach developed in the present paper is the possibility of 
analytic calculation of the resultant radial matrix elements 
in all orders of perturbation theory. An important role is 
played here by the power-law dependence of the radial part 
u, ( r )  (2.11) of the perturbation. We begin the calculations 
with first-order perturbation theory. 

The integral obtained for the dipole potential reduces to 
a tabulated one [Ref. 10, Eq. (7.14.32) 1, which yields 

For a pure Coulomb central potential (c, GO, A,, = I, ) the 
integration over the angles in the matrix element yields 
I ,  - I, = f 1, and in this case the radial integral (4.1 ) van: 
ishes. All the matrix elements of the dipole-potential opera- 
tor are thus zero in the subspace of states with a given princi- 
pal quantum number n. This property is preserved also for 
the exact Coulomb wave functions" (see also Ref. 2 ) .  

For a quadrupole potential, using the known recur- 
rence relation for Bessel functionsI0 

1 
J , ( z ) / z  = - (J,-t(z)+J,+i(z) ) ,  

2v 
(4.2) 

we get 

(Rnl, 1 r-3 1 R7Ll3) 

This relation can be used, in particular, to take into account 
the influence of the quadrupole moment of the atomic nu- 
cleus on the Rydberg series of the levels. In the Coulomb 
case, in accordance with the results of Ref. 1 1, only the diag- 
onal (1, = I,) matrix element differs from zero, and the re- 
sult for this element coincides with the exact one6: 

5. SECOND-ORDER PERTURBATION THEORY 

Dipole interaction 

We consider first the calculation of the correction func- 
tions R ( I )  = g ,  v,, IR,,, ) for first-order perturbation theory. 
The integrals obtained for finite-limit Bessel functions by 
using expressions (2.6) and (2.18 ) can be explicitly calcu- 
lated and yield fairly compact results. Thus, in the dipole 
case ( k ,  = 1 ) we obtain 

23hr-' 
fp') ( r )  = - 

n" (hl,-hi,) (hl,+hl,+l) 

For higher-order multipoles (k, > 1 ) it is necessary in addi- 
tion to use the recurrence relation (4.2), and the correction 
function takes the form of a linear combination of Bessel 
functions with indices that differ by unity. Clearly, the appli- 
cation of the operator q,,, u, ,, to this function again leads to 
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functions of the same type. This method makes it possible to 
obtain analytically a correction function of any perturba- 
tion-theory order for a multipole of arbitrary order. 

We know that, given $ ( I '  we can find, by taking the 
average of the perturbation at a distance $'0' + $ ( I ) ,  the 
correction to the energy up to third order inclusive. We con- 
fine ourselves here to corrections up to second order, which 
are calculated with the aid of the equation 

The result is particularly simple in the Coulomb case: 

The effective operator W contains monopole (q = 0)  
and quadrupole ( q  = 2) terms. Direct calculation of (3.7) 
and (3.8) yields 

In the Coulomb case the results are greatly simplified: 

and correspond to the equivalence, established in Ref. 2, 
within the limits of the n layer (i.e., for all possible values of 
I, and I,) of the following operators: 

Art Rr, 3(Ar,) (Br,) - (AB) ri2 
--G(E,):, -- 

I.,  rl 2ri5 (5.8) 

for arbitrary constant vectors A and B. Note that the alge- 
braic method used to establish the equivalence of the opera- 
tors (5.8) cannot be used in the case of the unperturbed 
Hamiltonian (2.4). 

6. SECOND-ORDER PERTURBATION THEORY. GENERAL 
CASE 

To write down in compact form the second-order per- 
turbation-theory correction in the case of a perturbation of 
arbitrary multipolarity, we note that with the aid of (2.6) 
and (4.2) one can write 

h 

The operator D acts here on the orbital quantum number I 
and can be formally written in the form 

The composite second-order matrix element then takes the 
form 

and yields, in conjunction with (5.2), an analytic expression 
for any multipolarity. It is possible quite analogously, to ex- 
press also the matrix elements containing an arbitrary num- 
ber of Green's functions, i.e., corresponding to any order of 
perturbation theory. 

By way of example, Appendix 2 shows the calculation 
results for quadrupole interaction in second-order perturba- 
tion theory. 

7. CONCLUSION 

We have described here a procedure of calculating high 
perturbation-theory orders in the case of noncentral poten- 
tials of a special type, viz., fields of electric quadrupoles. We 
have used essentially the smallness of the unperturbed-state 
energy, and also the power-law dependence of the perturba- 
tion on the radial coordinate. Analytic results have been ob- 
tained also for an arbitrary integer exponent that is not con- 
nected with the index of the spherical function in expression 
(2.10). For electric-multipole potentials there exist many 
useful algebraic relations that generalize the statement that 
the operators (5.8) are equivalent; these relations must be 
considered separately. 

We conclude by pointing to a probable connection 
between our present results and the special symmetry prop- 
erties of the Coulomb problem at zero energy, properties 
described by a motion group of three-dimensional Euclidean 
space. 

The authors thank V. M. Borodin and Yu. N. Demkov 
for a discussion of the results. 

APPENDIX 1 

The function G, is by definition a solution of an unper- 
turbed radial equation that decreases exponentially as r+ cu . 
In the region of classically allowed motion outside the core, 
the semiclassical expression for this function takes the form8 

with r,,, and r,, respectively the right- and left-hand turn- 
ing points for the radial motion. The integral in this expres- 
sion is easily evaluated: 

where the second integral is calculated under the assumption 
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that r 4  I E I - ' . In this range of r, expression ( A  1 . 1  ) should 
take also the form of a combination of linearly independent 
solutions r -  ' /2J2AI + , [ (8r )  and r -  ' / 2N2A,+ ,  [ ( 8 r )  
The coefficients in this combination are determined from the 
condition of matching to (A l .  1 ), by using the asymptotes of 
cylindrical functions. The result, apart from normalization, 
takes the form (2.16). 

APPENDIX 2 

In second-order perturbation theory the equivalent op- 
erator for a quadrupole potential includes a monopole 
( q  = 0),  a quadrupole ( q  = 2 ) ,  and an octupole (q = 4):  

31 (1-1) 
t (I?,,, 1 ~.- 'g , -~r- '  1 Iln,)  

2 (21-1) (21+1) 

(21-3) ( 2 1 t  3 )  
+4 (21-1) (21+3)  

( R ,  l r - 3 g l r - 3  R (A2 .1 )  

The general expression for the radial matrix elements 
turns out to be quite unwieldy. We present here only the 
results for a pure Coulomb unperturbed potential: 

In this case 
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