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The virtual-photon structure function, measurable in deep inelastic scattering of electrons by a 
photon, is calculated in QCD by means of an expansion in inverse powers of the photon virtuality 
p2 at intermediate values of x and intermediate Q = 10 GeV2 ( x  = Q '/2y, where Q is the square 
ofthe momentum transfer from the electron to the photon and v is the energy transfer). A model 
is constructed which describes the resulting structure function in terms of the contributions of 
physical states and has the correct analytical properties inp2. The model is used to extrapolate to 
the pointp2 = 0, i.e., the real-photon structure function is determined at intermediate values ofx; 
good agreement with experiment is obtained without allowance for the QCD evolution. It is 
shown that the higher terms of order l/p4 (the contribution of the gluon condensate) in the 
structure function of a soft longitudinal photon and in the Callan-Gross relation vanish. 

1. INTRODUCTION 

Since the time of Witten's paper,' interest in the study of 
photon structure functions has not weakened. As Witten 
showed, in the framework of perturbative QCD one can cal- 
culate the part of the structure function that dominates at 
large x, which is usually parametrized as follows: 

F, (x) =F:". (2) + ~ 2 f f ~ ~  (5). (1)  

The fact that, when logarithmic corrections are taken into 
account, the perturbation-theory contribution FP.'-  (see 
Fig. 1) contains a term a,  ' (Q  ') has turned out to be im- 
portant, and has raised hopes of a relatively "clean" deter- 
mination of AQcD . However, the uncertainty in the function 
F FAD,  corresponding to the nonperturbative hadronic con- 
tribution, has given rise to great difficulties on this path. To 
estimate the hadronic contribution, as a rule, different var- 
iants of the vector-dominance model have been used (see, 
e.g., the review in Ref. 2 and the recent discussion in Ref. 3 ) ,  
but no satisfactory algorithm for separating FP.'. and F y A D  
has been proposed. Attempts made in this direction4s5 have 
inevitably contained as a constituent element the introduc- 
tion of an extra parameter, which has made the extraction of 
AQcD from experimental data difficult. An even more artifi- 
cial (from our point of view) attempt to describe experiment 
was made in Ref. 3, in which the logarithmic evolution began 
practically from AQ,, and the sensitivity to this quantity 
disappeared completely. 

Another occasion for debates directly related to the 
above discussion is the question of the existence of singulari- 
ties at small x that arise when one goes beyond the frame- 
work of the leading logarithmic appro~imation.~-' The de- 
gree of the divergence increases with increase of the power of 
a,, and the question arises as to what is the region of the 
variable x in which calculations in perturbation theory re- 
main legitimate. 

To clarify these questions, knowledge of the hadronic 
part of the photon structure function is needed. Up to now, 
this part has been estimated extremely appr~ximately.'.~ 
The vector-dominance model has been employed, and it lias 
been assumed that the vector-meson structure function can 
be described as a product of dependences on x that are char- 
acteristic for the region of small x (Regge behavior) and for 
the region of large x (quark counting). Here, the overall 

normalization has been fixed on the basis of the assumption 
that the quarks in the vector meson carry half of its momen- 
tum. With the aid of these hypotheses, the authors of Ref. 9 
obtained 

ZADla=0.2x0.' (I-s) . (2)  

In Refs. 10 and 11 another approach to this problem 
was developed: The structure function of the virtual photon 
was calculated. In Ref. 10 it was demonstrated that in the 
case of a virtual photon a natural cutoff arises in the radiative 
corrections to the moments of the structure function, which 
are divergent for a real photon. In Balitskii's paper," which 
is the closest to ours, the virtual-photon structure function 
was calculated in the form of an expansion in inverse powers 
of the photon virtuality p2, and, in particular, the contribu- 
tion of the gluon condensate (OIG:, 10) to this expansion 
was taken into account. However, the method proposed by 
Balitskii is suitable only for the calculation of the second 
moment of the structure function (and here, too, there are 
difficulties, associated with allowance for the region of small 
x; see below), and it is difficult to extend it to higher mo- 
ments. 

In the present paper, we calculate in QCD the photon 
structure function and, in particular, its hadronic part in the 
region of intermediate values of x and Q 2. The method used 
is conceptually close to the method proposed in Refs. 12 and 
13 for the calculation of nucleon structure functions. The 
idea is as follows. We consider yy scattering of two virtual 
photons with momenta q andp in the case when the virtua- 
lity of the first is much greater than the virtuality of the 
second: 

Let Ip21 be much greater than the characteristic hadronic 

FIG. 1. 
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scale: Ip2 I ) R ,,Zf, where R,,,, is the confinement radius. To 
calculate the structure function of the virtual photon with 
momentump (henceforth, we call it the soft photon) we can 
then use an expansion in inverse powers ofp2, i.e., an opera- 
tor expansion can be performed both in q2 and inp2. As was 
shown in Ref. 13, expansion in l/p2 is legitimate in regions of 
intermediate x, not close to the boundary values x = 0 and 
x = 1 : As x -+ 0 and x -+ 1 the series in l/p2 diverges. 

In the expansion in powers of l/p2 we take into account 
not only the perturbative contribution (the simplest quark 
loop) but also the next term due to the interaction of the 
quarks with the gluon condensate. We thereby find in QCD 
the virtual-photon structure function F2(x,p2) with 
allowance for nonperturbative terms, and it becomes possi- 
ble to determine the smallest values ofp2 for which the series 
in l/p2 still converges. On the other hand, the same structure 
function can be represented, by means of a dispersion repre- 
sentation inP2, in the form of an integral of contributions of 
physical states (see Fig. 2).  We use the following model of 
the physical spectrum: the vector meson plus a continuum 
starting from a certain threshold p i .  The representation con- 
sidered has the correct analytical properties in p2 and is 
thereby free from the fictitious singularities inp2 that arise in 
the perturbative approach. All the parameters of the ha- 
dronic contributions are fixed uniquely by comparison with 
results of calculations in QCD. It is shown that the resulting 
expression for the structure function of the soft virtual pho- 
ton can be extrapolated to the point p2 = 0. We thereby ob- 
tain the structure function of a real photon, with allowance 
for the hadronic component. Our results for the latter differ 
substantially from the model calculations of Refs. 8 and 9. 

We note that the physical interpretation of the individ- 
ual contributions to F2 (x)  in our approach differs from that 
in the usual approach. Indeed, we recall that in the language 
of sum rules the physicalp meson is determined by part of a 
loop (that part of the dispersion integral over this loop 
which is dual to the p meson) and by the principal power 
corrections. Therefore, from the point of view of the sum 
rules, the separation of F2 into Fgt  and FFAD inevitably 
contains double counting: It is a sum of states from two dif- 
ferent bases-the quark-gluon basis and the hadron basis. In 
our approach F2 consists from the outset of contributions of 
hadronic states, the principal of which is the contribution of 
the p meson. The latter is dual to part of the quark loop in 
Fig. 1 and contains a correction from the nonperturbative 
interaction. The remaining part of the quark loop can be 
interpreted as the contribution of the higher hadronic states. 

In the present paper we confine ourselves to taking the 
light quarks into account, and assume them to be massless. 
We shall not take into account perturbative logarithmic cor- 
rections to QCD, and therefore our results will be correct in 
the region of not very large values of Q *: Q - 10 GeV2. 

The plan of the subsequent exposition is as follows. In 
Sec. 2 we describe the method of calculation of the photon 

FIG. 2. 

structure function, based on an operator expansion of the 
correlator of four electromagnetic quark currents. In Sec. 3 
we calculate the principal QCD diagrams determining this 
correlator in the kinematic region of scattering of a virtual 
photon by a virtual photon. In Sec. 4 we carry out a direct 
calculation of the structure functions of a real photon and a 
transverse p meson, and compare the results with experi- 
ment. In the Conclusion we briefly discuss the principal re- 
sults of the paper and indicate possible ways of refining 
them. 

2. METHOD OF CALCULATION OFTHE PHOTON STRUCTURE 
FUNCTION 

In its main features, the proposed method repeats the 
approach used in Refs. 12 and 13 to calculate the nucleon 
structure function, and therefore we shall confine ourselves 
to recalling the principal aspects. We consider the amplitude 
of deep inelastic forward scattering of a virtual photon (q2) 
by a virtual photon (p2) via intermediate hadronic states. 
The imaginary part of this amplitude is determined by short 
distances, if x is not too close to 0 or 1, and lq2 I, Ip2 I ) R 22. 
This circumstance permits us to use an operator expan- 
sion-namely, to represent the indicated amplitude in the 
form of the sum of the very simple diagrams of Fig. 1 and 
power corrections to them. 

Thus, we start from the four-current correlator 

h 

where J, = ijQy,q is the electromagnetic quark current, 
and calculate the imaginary part Im V,,,, in s = (p + q12 
for fixed p2, q2 <O at t = 0. In the following, we shall be 
interested in a configuration in which one of the photons is 
strongly virtual and the other is weakly virtual, i.e., the scal- 
ing limit. Then we must retain in all the calculations the 
main terms of the expansion inp2/q2. The region Q = - q2 
in which we shall work is assumed to be such that logarith- 
mic QCD corrections are unimportant. All these conditions 
can be satisfied, in principle, if lp2/ = 1 GeV2 and Q 2 =  10 
GeV2. 

It is not difficult to verify that the arguments given in 
Refs. 12 and 13 for the applicability of the operator expan- 
sion are valid for Im V,,,,. The contribution of the unit 
operator to the expansion is specified by the imaginary part 
of the square diagram in Fig. 1. The reader familiar with the 
method of QCD sum rules will easily set up the next opera- 
tors relevant in this problem. In the first place, one must take 
into account the vacuum expectation value of the operator 
Gi,, then the condensate $$, etc. 

We shall assume that we have been able to calculate all 
the principal contributions to Im V,,,, (the actual calcula- 
tion will be performed below, in Sec. 3) .  We turn to the 
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physical interpretation of the imaginary part of the correla- 
tor (3  ) . Multiplying it by the phonon-polarization four-vec- 
tors ep (p) and e: (p) of the (in the general case, virtual) 
photons and summing over the polarizations, we can write 
for the tensor that arises the standard expansion in the struc- 
ture functions of the virtual photon: 

We note the fundamental advantage and simplicity of 
the problem under consideration in comparison with, e.g., 
the problem of the determination of the nucleon structure 
function. There is no need to distinguish the physical state of 
interest to us by a procedure of the borelization type. The 
photon is distinguished from the outset by its weak coupling 
with the hadronic states. Henceforth, we shall confine our- 
selves to the leading terms of the expansion inp2/Q 2, i.e., to 
operators of twist 2 in the operator expansion of the currents 
interacting with the hard photon; this corresponds to the 
limit 

vTT'2=F2(p2, x ) ,  Il.,=F, (p2, r ) .  

As already noted above, the method we are using is ap- 
plicable in the region of intermediate x. The inapplicability 
of the method for small x is due to the fact that if we consider 
Im V(s, q2, p2, t ) ,  instead of the imaginary part Im V(s, q2, 
p2, t = 0)  of the forward scattering amplitude, then, as 
shown in Ref. 13, the latter has a singularity in t at 

It can be seen from (5)  that for not too small x and 
lp2/ % R :,'f the singularity in t is located far from zero, i.e., 
short distances play a role in the t-channel. However, as 
x-0 the singularity in t tends to zero, long distances come 
into play, and the method of operator expansion inp2 can no 
longer be applied. As x - 1 we find ourselves in the region of 
resonances in the s-channel, i.e., the operator-expansion 
method is again inapplicable. It follows that the method is 
not applicable for the calculation of moments of structure 
functions. Even in the approximation that we are using, 
when the operator G;, is taken into account a singularity 
arises as x-0, leading to a logarithmic divergence for the 
second moment. In the language of moments, this implies 
the need to take account of vacuum expectation values in 
external fields,and precisely this approach was used in Ref. 
11. 

3. CALCULATION OFTHE FOUR-CURRENT CORRELATOR IN 
QCD 

We turn to the direct calculation of the imaginary part 
of the correlator (3)  on the basis of the operator expansion. 
The calculation of the contribution of the unit operator, i.e., 
of the imaginary part of the diagrams of Fig. 1, contains 
nothing new: These diagrams have been calculated repeated- 
ly in the literature (see, e.g., the reviews in Refs. 14-16 and 
the earlier papers cited there). In the approximation of zero 
mass of the quarks and in leading order inp2/Q the contri- 
bution of the diagram of Fig. 1 to the structure function W, 
(i.e., the coefficient of thep,p, structure) has the form 

The expression (6)  arises when one sums in (4)  over all 
polarizations of the virtual photon; i.e., in the Lorentz gauge 
B,e;e:'is replaced by 4 ( - S,, + p,pp/p2), the density ma- 
trix of the unpolarized photon. Below, we shall also need 
separate expressions for the transverse-photon structure 
function F? 

. , 

($ e:) -' FZT (x, p2) 

and the longitudinal-photon structure function Fk: 

where 

is the familiar expression for the polarization vector of a 
longitudinal photon. It is not difficult to see that 
F;+~F:=I;,. 

Contrary to naive expectations,the longitudinal-photon 
structure function Ff(x,p2)  does not vanish asp2-0. This 
anomaly in the longitudinal-photon structure function has 
been discussed by us previously," and is connected with the 
zero mass of the quarks: In the case of massive quarks the 
expression ( 8 )  should be multiplied by 
p2/[p2 - mi/x(l - x )  1, where m, is the quark mass. We 
note that the crossover from the regime with a constant (in- 
dependent of p2)  function Pi(x,p2)  to Ft(x,p2)  ccp2 oc- 
curs at extremely small values ofp2. 

The next term of the operator expansion in p2 for the 
correlator (3)  is the operator G,?,,. As always, the calcula- 
tion of the coefficient functions is conveniently performed in 
the fixed-point gauge for the gluon field with the use of the 
standard expression for the propagator of a massless quark 
in an external gluon field.It we choose the fixed point in the 
upper left corner of the diagrams of Fig. 1, the diagrams of 
Fig. 3 are found to be nonzero. The subsequent integration 
over the momentum is performed in the first nonvanishing 
order in p2/Q2. For reliability, these calculations were 
checked by means of the analytical-computations program 
"REDUCE-2". 

We shall give the result for the case when Im V,,,, is 
multiplied by the unpolarized-photon density matrix. Then 
the coefficient of the structure p,,p, in the leading twist is 
equal to 
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there being no contribution from the diagrams of Figs. 3f 
and 3g. 

We return to the original expression for the contribu- 
tion of the gluon condensate to Im V,,,, in the case of longi- 
tudinal photons; i.e., we multiply this amplitude by @,@, . 
After rather laborious calculations one can convince oneself 
that the structure function of the longitudinal photons is 
equal to zero in order (G  ')/p4. Thus, the gluon condensate 
in the leading twist gives a contribution only to the structure 
function of the transverse photons. 

Calculations of the power correction to the structure 
function F, (x )  and, correspondingly, to the Callan-Gross 
relation have been carried out separately. It was found that 
there is no power correction to F, ( x )  = F2(x)  - 2xF, ( x )  
from the gluon condensate. 

It is possible that the absence of a power-law correction 
of order (G ')/p4 in F$ (x,p2) has a profound cause. The fact 
that for massless quarks the value of F f(x,p2) does not van- 
ish a s p 2 + 0  has the character of an anomaly, and is due to 

FIG. 3. 

a diagram of the crossing type. The analogous correction to 
the function FL turns out to be equal to zero. 

The expression (9 )  is, in essence,the principal nonper- 
turbative contribution to the structure function of the pho- 
ton in the region of intermediate values of x. In fact, the 
contribution of the operators m, $, $, and m, $,uG$,, 
which is represented in Fig. 4, is proportional to S (  1 - x )  or 
6 ( x ) ,  i.e., it arises from a region in which the entire ap- 
proach, generally speaking, is inapplicable. An imaginary 
part in s in the region of intermediate values of x will be 
possessed only by low-dimension radiative corrections to 
terms of the operator expansion, i.e., by diagrams with an 
extra hard-gluon exchange (of the type of the diagram in 
Fig. 5) .  Although the calculation of such diagrams is techni- 
cally complicated, it can be performed subsequently to refine 
the results. 

The region of applicability of the approximation used 
can be estimated from the expression for F2(x)  itself. With 
the standard choice 

the appearance in Im V,,,, of a pole inp2 in the diagram of 
4n2(0 1 (a, /n)  G,,' 10) =0.45 GeV4 

Fig. la. In a certain sense the situation is analoaous to the - 
usual axial anomaly, in which, as is well known, nonpertur- numerically this contribution amounts to 50% of the contri- 
bative corrections are completely absent in the calculation of bution of the simple loop for ~ ~ 0 . 2  and p2 = - 0.5 GeV2. 
the correlator This implies that for smaller values of x andp2 higher terms 

of the expansion, not taken into account by us, become im- 
, ~.\u{ipx+irv} ( 0 1  T ~ . A , ( Y ) .  J . ( x ) .  J ~ ( o )  10). portant. 

where A, is the axial current of the quarks. If such an anom- To conclude this section, we note that our result for the 

aly (based on the fact that in both cases the answer is com- correction from the condensate (O/G:, 10) differs from the 

pletely determined by pole singularities) is valid, we may result of the calculations performed in Ref. 18 for the func- 

expect that there will be no nonperturbative corrections of tion F,. In the terms proportional to l /x there is a factor-of- 

any dimension to the contribution made by the loop in Fig. 1 two discrepancy, and, in addition, in Ref. 18 other terms 

to F f .  appear that are absent in our result. 

The analytical computer calculations have made it pos- 
sible to obtain the first scaling-violating power-law correc- 
tion to (9) .  It reduces to the result that the expression (9 )  
should be multiplied by the factor 

1-3x4p2/Q'.  (10) 

We note that the correction ( 10) is completely built up from 

4. CALCULATION OFTHE STRUCTURE FUNCTIONS OF THE 
PHOTON AND VECTOR MESON. COMPARISON WITH 
EXPERIMENT 

We shall represent the expression for F2L(x,p2)  in 
terms of contributions of physical states by means of disper- 

FIG. 4. FIG. 5 .  
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sion relations in p2. In the general case this expression has 
the form 

m 

All the integrals in ( 1  1) converge, since the subtractive 
terms in the third integral in the right-hand side of ( 1 1 ) are 
included in the second integral, and the subtractive term in 
the second integral is included in the first integral. We take a 
model of the hadron spectrum in which the right-hand side 
of ( 11 ) is described by the contributions of the vector meson 
and of the continuum, which begins from the threshold p i .  
Then q, T . ~  and pTL can be written as 

c r , ' s L  ( x ,  p l Z )  =(Fvr'L ( x )  6 (p12-m,.') + yT*'. (2, p r Z )  0 ( p ' z - p o 2 ) ,  

The contribution of the continuum is determined from the 
condition that for Ip21 + cc (but Ip21 < 1q21 ) the right-hand 
side of ( 12) coincide with the contribution [determined by 
the expressions (7)  and (8)  ] of the simplest quark loop of 
Fig. 1. In order to find the unknown functions q,, y, C and P, 
we write (7) and (8)  in the form of the dispersion integrals 
that arise in ( 11 ). By simple transformations of the inte- 
grands in the Feynman integrals describing the contribu- 
tions of the diagrams of Fig. 1 we can represent them in the 
form ( 11 ); namely, 

1 2 a  
F2'. ( x ,  p2) = -- 

d p r 2  

n 

After substituting ( 12) into ( 1 1 ) and comparing with ( 13) 
and ( 14), we obtain 

aT(.x) =- l + ( i x ( l - - x ) ,  aL ( x )  =0, 

y T  ( x )  = O .  y L  ( x .  / I " )  = 4 x  ( I - x )  0 [2v/x-p"] . 
(15) 

[All the quantities should be multiplied by (3a/.rr) Ze: . In 
the language of local duality, our approach corresponds to 
the fact that the nonperturbative part is related to the region 
of small k :  in the diagram of Fig. 1, i.e., to 
k : /x( l - x)  < p i ,  where k ,  is the transverse momentum of 
the quark. ] 

To find the remaining unknown functions 
q,EL(x) and C ; L ( ~ ) ,  we substitute (12) and (15) into 
( 1 l ) ,  compare the resulting expression with the results (7)- 
(9) of the QCD calculations,and require that these expres- 

sions coincide in the expansion in powers of l/p2 up to terms 
- l / ~ ~ .  (We restrict ourselves to terms - l/p4, since terms 
- l/p6 were not taken into account in the calculations in 
QCD.) As a result, we find 

z e ~ p ~ ( p . 2 - m . . z ) x 2 ( ~ - x ) .  C V L  ( x )  = - - 
.r[ 

(18) 

Substituting ( 15)-( 18) into ( 1 I ) ,  we obtain the final ex- 
pressions for the virtual-photon structure functions: 

The expressions (19) and (20) have the correct analytical 
properties inp2, unlike the results of the perturbative calcu- 
lations, in which (see Refs. 2, 9, and 14-16) the correct be- 
havior asp2 + O  was achieved "by hand." 

The function C L (x )  determined above is connected 
with the structure function f (x)  of the transversely polar- 
ized meson by the relation 

whereg, is the photon-vector-meson transition constant for 
a vector meson with unit charge and consisting of quarks of 
the same flavor. The quantity g, is related to the y-p transi- 
tion constant by 

and, experimentally, 

(see, e.g., Ref. 19). 
For a longitudinally polarized vector meson the rela- 

tion (21) holds, but with the opposite sign. The reason for 
this is that for longitudinal photons we used the normaliza- 
tion condition ( e :  ). = 1, whereas for a longitudinal vector 
meson we should have ( e :  ) = - 1. 

We now discuss the possibility of extrapolating our re- 
sults ( 19) and (20) to the pointp2 = 0. As already noted, for 
x > 0.2 in the operator expansion inp2 we can come down to 
p2=0.5 GeV2, at which the correction amounts to about 
50%. It may be supposed that atp2 = 0.5 GeV2 the represen- 
tation of the physical spectrum in the form of the vector- 
meson contribution and a continuum is a sufficiently good 
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approximation, since we know from experiment that below 
thep meson ( rn; = 0.6 GeV2) there is no appreciable contri- 
bution of states with the quantum numbers of the photon. 
Thus, forx > 0.2 we can extrapolate the structure function of 
the transverse photon to the pointp2 = 0 and obtain the real- 
photon structure function 

Upper bounds on the admissible values of x can be ob- 
tained from the following considerations. For values of x 
close to unity the physical states that are formed in yy colli- 
sions are resonance states. If the initial state is also a low- 
lying meson (thep meson), then for Q - 5-10 GeV2 its con- 
tribution will be strongly suppressed by the form factor. If, 
however, in the initial and final states we take a sum of such 
resonances (p, p', p" ) ,  the result will be substantially 
greater. Thus, for x-+ 1 our model is poor. In addition,the 
operator-expansion series diverges as x - +  1. Finally, the 
expression (17) for the vector-meson structure function 
does not lead to the behavior [ a ( 1 - x )  as x +  1 ] that fol- 
lows from quark counting. All of this points to the fact that 
our approach ceases to be applicable for values of x close to 
unity. An upper bound on the region of admissible values of 
x can be obtained from the requirement that for Q - 5-10 
GeV2 the masses of the resonances created be significantly 
greater than thep-meson mass. It follows from this require- 

FIG. 6.  Comparison of the photon structure function (24) with experi- 
mental data (*from Ref. 21, and 0 from Ref. 22) for different values of 
Q2:  a )  23 GeV2; b) 9.2 GeV2; c )  5.3 GeV2; d )  4.3 GeV2. 

ment that ~ ~ 0 . 7 .  Consequently, our approach is legitimate 
in the region 0.2x(x<0.7. 

For p2 = 0 the expression (24) is the complete real- 
photon structure function, which can be compared with ex- 
perimental data. [As noted above, F i ( x )  vanishes for 
(p2 I < mi/x( 1 - x) .  ] In Fig. 6 we present the values of F2/a 
calculated from ( 19) in comparison with the results of ex- 
periment. In the calculation we took p i  = 1.5 GeV2-the 
standard value of the threshold of the continuum in the cal- 
culation of thep-meson mass in the sum-rule method.20 For 
0.2(x<0.7 we observe reasonable agreement with experi- 
ment in a broad range of Q without allowance for perturba- 
tive QCD corrections, indicating that the latter have an in- 
significant role for such values of Q 2. Thus, in our opinion, in 
this region of Q 2  it is practically impossible to determine 
AQ,, with sufficient accuracy. We stress once again that the 
agreement with experiment has been achieved without any 
adjustable parameters. 

The hadron part of the structure function-the last 
term in (24)-is presented in Fig. 7 in comparison with the 
model expression (2)  obtained in Ref. 9. It can be seen that 
forx > 0.4 our hadron part is considerably greater. By means 
of the expression obtained above for the vector-meson struc- 
ture function one can calculate the momentum fraction car- 
ried by the quarks in the vector meson in the region of inter- 
mediate values of x. The result is 

J ax fVT (x) =0.34, 

which seems to be extremely reasonable. 
In the case of the longitudinal-photon structure func- 

tion we have no possibility of reliably estimating the region 
of values of p2 and x in which our approach is applicable, 
since the correction due to the gluon condensate vanished. 
Forp2 = 0 the right-hand side of (20) is negative, i.e., extra- 
polation of (20) into the region of smallp2 is impossible. For 
p2 = - 0.5 GeV2 the expression in square brackets in (20) is 
equal to 0.5, in comparison with the asymptotic value of 1. 
This gives grounds to assume that, starting fromp2 = - 0.5 
GeV2, (20) represents the structure function of the virtual 
longitudinal photon. Another possibility, which was dis- 
cussed above, is that all the terms of the series in l/p2 vanish, 
so that in the region of convergence of the series only the 
anomalous contribution (8)  remains. In this case we have a 
definite prediction for the longitudinal-photon structure 
function, namely, Eq. (8),  but, of course, our model is no 

FIG. 7. The solid curve is the complete photon structure function (24) ;  
the dash-dot curve is the hadron part of the photon structure function 
(24); the dashed curve is the hadron part of the photon structure function 
(2) .  Q 2  = 5 GeV2. 
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longer applicable. To clarify the question of whether (8 )  
really does fully determine the longitudinal-photon struc- 
ture function, it would be important to calculate higher pow- 
er corrections in l/p2. 

In connection with the problem of small x, we note that, 
in our opinion, the hope that the x-0 singularities arising 
from the nonperturbative and perturbative contributions 
will cancel has little foundation. At least part of the singular 
(as x-0) contributions to the term proportional to 
(01 Gi,, 10) has an explicitly different nature. 

5. CONCLUSION 

In the present paper, on the basis of QCD and a descrip- 
tion of the hadron spectrum that satisfies the analytical 
properties of the structure function with respect to the pho- 
ton virtuality p2, we have calculated the photon structure 
function in the region 0.2(x(0.7. The resulting hadron part 
has been found to be extremely large,and significantly larger 
than in previous model calculations. Allowance for this had- 
ron part is absolutely necessary in the calculation of the 
QCD evolution of the photon structure function, and experi- 
mental investigation of it is evidently not a better way of 
determining Au,, than the study of deep inelastic lepton- 
nucleon scattering. In view of the above-discussed possible 
absence of nonperturbative effects in the function F f (x ) ,  it 
is of great interest to study this function experimentally. 

Natural refinements of the results obtained could in- 
clude an analysis of the contributions of operators of higher 
dimensions and the contributions of higher twists, and also 
allowance for evolution effects. 

The authors (in particular, A. G. 0. and A. Yu. Kh.) 
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