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We consider the application of the l/Nexpansion to the calculation of energies (of both discrete 
levels and quasi-stationary states) and wave functions, as well as to the problem of two Coulomb 
centers and the three-body problem. We show that in many cases (for example, for the cZ 
charmonium states) the method yields high accuracy even for low quantum numbers, including 
the ground state. The relation of these results to the properties of minimizing-uncertainty 
coherent states is discussed. 

1. INTRODUCTION 

At the present time the l/Nexpansion is widely used in 
quantum mechanics and field theory (see, e.g., Refs. 1-16). 
The procedure consists in first generalizing to a space of 
arbitrary dimension D and then taking the limit as D- CC, 

which is equivalent in quantum mechanics to fi-0 or 
M- C C .  In that limit the problem reduces to the classical 
motion of the particles and, in particular, to the determina- 
tion of the equilibrium orbit or (in the case of several parti- 
cles) the equilibrium classical configuration. Taking into ac- 
count the effect of quantum fluctuations about it and effects 
of anharmonicity leads to the expansion 

whose coefficients can be calculated recursively. The phys- 
ical dimension D = 3 is then substituted in the final formulas 
resulting in a good approximation to the exact solution." 

Different versions of this method result from different 
choices of the expansion parameter: N = 1 + D /2, where 
I = 0, 1, ... is the orbital angular momentum; N = I + +D-a 
("shifted" 1/N expansionss9 ); N = [1(1+ 1 ) ] for D = 3 
(see Ref. 16). The 1/N expansion has been worked out in 
greatest detail for problems with ~ p h e r i c a l ~ * ~ - ' ~  and axial 
symmetry (hydrogen atom in magnetic4 and e l e ~ t r i c ' ~ " ~  
fields ) . In Refs. 10 and 1 1 the 1 /N expansion was considered 
for the three-body problem. 

Usually the 1/N expansion is applied to the discrete 
spectrum. In Ref. 12 it was shown how to apply it to obtain 
the energies and widths (E = E, - iI'/2) of resonant states. 
This made possible the utilization of this method in the theo- 
ry of the Stark effect in a strong field,I3*l4 which turned out 
to be particularly convenient in the case of Rydberg states. 

from now on fi = M = 1 ) . If n + cc while p  is fixed then the 
particle is localized near the classical equilibrium point 
x = x,, determined by the equation" 

x3v' (x) =-v, (2.2) 

where Y = n2g- I,  the energy En, = (g2/2n2R 2 ) ~ , ,  and 

Thus we have D = 3, 1- CC,  and N=n (in the case of the 
Coulomb field n coincides with the principal quantum num- 
ber of the level) so that in the following we shall speak of the 
l/n expansion. 

Comparison of the Schrodinger equation for 
r-r, = Rx, with the equation for the harmonic oscillator 
shows that the role of the parameter n is played by the ratio 
M /fi. The amplitude of the zero-point vibrations of the oscil- 
lator is proportional to (fi/Mw) cc n - so that we put 
accordingly 

and expand the quantities entering the Schrodinger equation 
in powers of n - (in contrast to r, the variable remains 
finite in the limit as n + oo ). In this way we determine succes- 
sively the coefficients in Eq. (2.3) and the corresponding 
coefficients (in powers of n - for the wave functions. For 
example: 

The present paper is devoted to the following questions: where we have introduced the following notation: 
1 ) application of the 1/N expansion to the calculation of 
energies and wave functions; 2) precision of the method in 0= [3 ( l i - v , ) ]  'I1, 0=4(1-v3), r=i5/l? (v,+'/,), (2.6) 
the case of low quantum numbers; 3) application to the 
problem of two Coulomb centers and to the three-body prob- 

V h  = - 2 X k -  I -- dkv 
lem; 4) the 1/N expansion and coherent states. ( k + l ) !  dxk (2.7) 

2. ENERGY CALCULATION 
(we note that w is the frequency of small vibrations about the 
equilibrium point x,) . 

We consider the attractive potential Analytic expressions for the coefficients E ' ~ '  that follow 

V ( r )  =- (hZ/MR2)  gv ( x )  , x=r/R, are quite unwieldy, however they are easily calculated with 
(2'1 ) the help of recurrence relations16 convenient for computer 

( g  is a dimensionless coupling constant, n = p  + 1 + 1, calculations. 
p=0,1,  ... is the radial quantum number The case E = 0 (i.e., the instant of appearance of the 
(often denoted by n,), I is the orbital angular momentum; bound state in the short-range potential) requires special 
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discussion. The "reduced" energy ~ ( v ) ,  as a rule, increases 
with increasing Y and for some Y = (Y,, ),,, the level is ex- 
pelled into the continuum. In the zeroth approximation 
(n- C U )  we have 

where 5, is the root of the equation xu' + 2u = 0. Order l/n 
corrections may be obtained from Eqs. (2.3 ) and (2.5 ) . De- 
noting by g,, the coupling constant corresponding to zero 
energy of the nl-level we have 

(we take w, a, and T at x = 5,). 
With further increase of the parameter v (for 

Y = Y* > vCr ) the frequency w may become vanishing. At 
that point the classical solution becomes unstable-a colli- 
sion occurs between the two solutions corresponding to sta- 
ble and unstable equilibrium points in the effective potential 
U(r), which includes the centrifugal energy. For 
Y > Y* U(r) no longer has a minimum for real 0 < r < co , the 
equilibrium point X,(Y) moves off into the complex plane, 
and the coefficients in the l/n expansion become complex. 
Such a solution, making no physical sense from the point of 
view of classical mechanics, is of particular interest on going 
over to quantum mechanics: it is precisely the solution that 
defines within the framework of the l/n expansion not just 
the location but also the width of the resonant states. For 
further details see Refs. 12 and 17. 

3. THE WAVE FUNCTIONS AND $(O) 

The calculation of the wave functions (in particular, of 
the asymptotic coefficients for r-0 and r- co ) is of substan- 
tial interesL2' By making use of just two terms of the l/n 
expansion, analytic formulas asymptotically exact as n - cu 

may be obtained for an arbitrary smooth potential V(r). 
To this end, having made the replacement (2.4), we 

note that in the region n 2  the function 
x,, ( r )  = rR,,, ( r )  coincides with the wave function of thepth 
level ofthe harmonic oscillator with frequency w, Eq. (2.6). 
We continue it (with the help of the WKB method) into the 
subbarrier region f < 6 or f f + , where 
f +  = + [ (2p  + 1 )/w] ' I 2 ,  and expand all quantities at the 
point x = x, in powers of l/n thus obtaining the desired re- 
sult. Here we shall list just the formula for the asymptotic 
coefficient at zero: 

X,,I ( r )  =C,~R-('+ LI r '+I+ . .  . ,  r+O, (3.1) 

J '14 

F.I = [.--I ( 2 n w ) ~ 1 2 x ~ - \ r p ~ - [ n ~ o + ( ~ P + ~ ~  1 ~ 1 ) .  
x ( p ! )  

(3.2) 

(the tilde indicates that the expression is approximate), 

where 

Analogous expressions may be obtained for r > r + , includ- 
ing that for the asymptotic coefficient for r- cu and for the 
effective 

The Eq. (3.2) retains its form also for the states with 
E = 0 provided one replaces x, by E, [see Eq. (2.8) ] and sets 

where Z = w(F,),u = x2u(x)/E~v(Eo). 
Lastly we consider the wave function for finite r, confin- 

ing ourselves for simplicity to the nodeless states (p = 0, 
n = l + l ) . T h e n  

wherea=2(1  -u3)w- ' ,b=  ( a -  1 ) o - '  and 

accurate to terms of order I/n. This formula is valid near the 
equilibrium point x,, including the turning points x * . The 
terms proportional to n - ' I2  take into account corrections 
due to anharmonicity and substantially improve the agree- ,- 

ment between the expression (3.5) and numerical calcula- 
t i o n ~ . ~ ~  

4. ACCURACY OFTHE l/NEXPANSlON 

Our formulas are asymptotically exact for I -  a, and p 
fixed. However in physical applications one needs usually 
n - 1. To begin with, it is not clear whether the l/n expan- 
sion could be useful for low quantum numbers. To answer 
this question we consider a few examples (see also Refs. 15 
and 23). 

a)  For power-law potentials 

V ( r )  =grN/N (4.1) 

we have 

(scaling), so that it suffices to put g = 1. In this case 

and the energy has the expansion: 
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FIG. I .  Energies of the states with I = n - 1 in the 
Yukawa potential [for v >  (v,, I,, we show Re 
E,, 1. The solid, dashed and dash-dot curves corre- 
spond to one, two, and three terms of the series 
(2.3). The curves are labeled by the I values. 

E,1=1/2nz*y1(n+2)(uo+ al/n+a2/n2+ . . .), (4.2) e(")=3x0~+2x0z-~, E ( l ) =  (2p+l)  ( I + X ~ ~ ) ~ ( W - ~ ) ,  
~ ( ' ) = ~ / 2 0 - ' [  (2p+1) (1+Xo2) '0- ( 1 + 3 ~ ~ ~ + ~ ~ / g ~ ~ ~ )  

where 
-4p (p+l) (I+ 19/6x02+'/rzo') ] (4.6) 

w = ( N  + 2) 'I2. The coefficients a, decrease rapidly with 
increasing k for - 1 < N 5  4. For N  = - 1 and 2 all 
a, =O for k>2 and the series (4.2) cuts off: 

= - 1 for N =  - I,&,/ = 2n3[1 + ( p  + 1/2)/n] for 
N = 2. The asymptote (3.2) is accurate to within one per- 
cent even for the ground state if N<6 (for nodeless states). 

b) For the description of quarkonium19220 and multi- 
quark systems2' we use the funnel potential 

V ( r )  =-x/r+r/a2, (4.4) 

for which 

u(x) =x-'-5, R= (xuZ) "I, a= [(1+31rO2) / (I+xo2)]  I", 

with x, determined from the equation x3 + X  = v 
n2x-3/2 -1 H a . ence 

x0=3-'"{ [(1+t)'>+t'"I1"- [ ( I f  t)"Lt"%] ' A ) ,  (4.5) 

where t = 6.751z~x-~a - 2 .  Using Eq. (2.5) we find 

Calculations using these formulas are elementary. A com- 
parison with numerical calculations3' is shown in Fig. 1, 
where the same values of x and a were used as in the descrip- 
tion of cZ charmonium. Here one should keep in mind that 
scaling r-ar reduces the Schrodinger equation to the stan- 
dard form 

and the following relations hold between the parameters 

Setting 2M = m, = 1.84 GeV, x = 0.52 and a = 2.34 
GeV- ' (parameters of the Cornell potential2') we obtain 
A =  1.37623. As can be seen from Table I, the first three 
terms of the l/n expansion determine the energy to an accu- 
racy no worse than 1% and reproduce the charmonium 
spectrum quite well. It is noteworthy that using the formulas 
(2.5) one can easily perform the calculations for other po- 
tentials, arising in quantum chromodynamics, as well. 

In Table I are also given values of the ratio Z,,/c,, . The 
degree of agreement between the asymptote (3.2) and the 
exact coefficients c,, for nodeless ( p  = 0) states is striking. 
However forp> 1 the agreement worsens, so that it becomes 

TABLE I. Precision of the l/n expansion for the funnel potential (cZ charmonium). 
I I I I 

I ??,,(?.) I 31, GeV I I 
State 'nl  t c n ~ / l ' n l  - 1 iln I Exact I i111 I Exact / Exp. I Exact I 
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desirable to include in (3.2) order l/n correction (see Ap- 
pendix 1 ) . 

C )  For the Yukawa potential 

u(x) =e-xx-i, o= [I-xo2/ ( l + x o ) ]  (4.8) 

and the v dependence ofx, and do' is determined parametri- 
cally." In that case 

~ , ,=2e-~=0 .7358 ,  v,=0,8340. (4.9) 

As long as v <  v,, x,(v) and the coefficients E ' ~ '  are real. 
For v-v, the coefficients in the l/n expansion become sin- 
gular 

& ( O ) a  (Y *  - 4))3'2, &(')a (Y* - v)'I2, d2)a (Y* - Y)-I, 

and dk'- M starting with k = 2. Therefore the l/n expan- 
sion is inapplicable near v z  v, , but for v > v, (when the 
equilibrium point x,(v) moves off into the complex plane) it 
again becomes applicable (see Fig. 1 ). Just as in the case of 
the funnel, three terms of the series (2.3) ensure good accu- 
racy for the energy calculation, which only improves with 
increasing I. 

d) The Tietz potential2' 

is a good approximation to the Thomas-Fermi potential in 
neutral atoms and at the same time permits an analytic solu- 
tion26,27 for E = 0. At the instant of appearance of the nl- 

level one has (p,, ),, = 2/(n + I) (n + I + 1 ), which for the 
potential written in the form (2.1 ) gives 

It is not hard to verify that the formulas (2.9), (2.10) repro- 
duce this result [all remaining terms in (2.9) vanish]. 

A THE TWO-COULOMB-CENTERS PROBLEM 

One encounters the problem of two Coulomb centers in 
various areas of physi~s.28~29 We describe a new approach to 
this problem, based on the l/n expansion. 

The Schrodinger equation has the form 

where 

SI, 2=R/2*z, pz= ( x 2 t  y2)'", 

R being the distance between the two centers, Z,,, being 
their charges and 

$ (r) =Y (p, Z)  p-% exp (irnrp) 

being the wave function. 
We confine ourselves to states of lowest energy for given 

m (i.e., n = m + 1). After the scale transformation 

r=nzr', R=n2R', E=en-', Y (p', z') =Q) (nZp', n2z') (5.2) 

Eq. (5.1 ) reduces to an equation in which l/n plays the role 
of the Planck constant 4: 

(in what follows we omit the prime on the reduced variables 
p', z', R '). 

In the n - M limit the particle is localized at the mini- 
mum (p,, z,) of the effective potential U = V(p,z) + 1/2~'. 
From the conditions dU/dp = dU/& = 0 follow the equa- 
tions 

which determine the dependence ofp, and z, on the param- 
eters ZIR and Z,R of the problem. The potential U(p,z) 
reduces near the point (p,,z,) to a two-dimensional aniso- 
tropic oscillator, which determines two terms of the l/n ex- 
pansion 

Here wi are the frequencies of normal vibrations about the 
equilibrium point 

01, z=p"-2( l*3~)1: ,  C=COS al  cos a2=sls2/rlr2 (5.6) 

(a l  and a, are the angles of the triangle (Z,,  Z,, e )  at the 
vertices Z, and Z,). The coefficient d2' is given in Ref. 17. 
The subsequent corrections dk' can be found by viewing 
(5.3) as the equation for an anharmonic o~cillator.~ The al- 
gorithm for their calculation reduces to recursion relations, 
which are easily realized on a computer and permit the reli- 
able calculations of scores of coefficients of the l/n expan- 
sion. 

The stationary point (p,, z,) is a local minimum if 
w2,,, > 0. Physically the answer is obvious in two, limiting 
cases. If R - M there exist two minima of U(p, z)  : an abso- 
lute minimum for s, = R, s, = O,p, = Z ; ' and a local mini- 
mum for s, = 0, s, = R, p, = Z ; ' (we assume for definite- 
ness that Z, < Z,). Corresponding to them we have circular 
electron orbits, perpendicular to the z axis (connecting the 
Z ,  and Z, charges). On the other hand, if R -0 then there is 
a single minimum at s, = s, = 0 and p, = (Z ,  + Z,) - I .  

The disappearance of the local minimum occurs at R = R, , 
when one ofthe frequencies wi vanishes. Adding to (5.4) the 
condition c = 1/3 we obtain 

where (Z ,  <Z2) 

In the case Z, = Z, = Z the minima are symmetric 
with respect to the plane z = 0. For R = R, = 1.299 Z -  
the two minima merge into one, and for R < R, the circular 
orbit lying in the plane z = 0 becomes stable. On the other 
hand if Z, #Z,, then for R = R, the local minimum merges 
with one of the saddle points and disappears. It can be shown 
that R, (Z, - Z2) = R, (Z , ,  Z,). We list numerical val- 
ues: R, = 1.299 for Z ,  = Z2 = 1; 2.699 for Z ,  = 1, Z, = 2; 
3.489 for Z ,  = 1, Z, = 3 ,... . 
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FIG. 2. The energy of the ground term (solid lines) and the 
classical approximation E,, (dashed lines): a )  for Z ,  = 1, 
Z ,  > 0; b) for Z, = 1 ,  Z ,  < 0. The curves are labeled by values 
of Z,. 

Let us compare the formulas obtained here with other 
known29 expansions for the two-centers problem. For R - w 

there is present in the system a bound state localized near 2 , .  
The coefficients dk) may be expanded in inverse powers of 
R, and E ' ~ )  -0 faster than R - (at least for k<7). Calcula- 
tions show that the sum of three terms of the l/n expansion 
gives an approximate value for the reduced energy E accurate 
to order R - 4 .  Thus the l/n expansion ensures excellent re- 
sults for R ) 1. 

In the other limiting case (R-0) the l/n expansion 
reproduces theenergy E(R)  only accurate toorder R 2, how- 
ever it does not contain terms a R klnR, present in the ex- 
pansion of the exact energy.29 

We now pass to numerical calculations and compare 
the exact terms E(R ) with the results of the classical approx- 
imation Ecl (R)  = E'" ( n  - 2R )/n2. Here we shall consider 
the least favorable case n = 1. 

The solid lines in Fig. 2 describe the energy of the 
ground state for Z, > 0 and Z2 < 0, while the dashed lines 
describe the dependence Ecl (R ). It is seen that the classical 
approximation is quite precise (particularly for 

- 0.5<Z2<0.5), although the "small parameter" l/n 
equals unity. In Fig. 2b the crosses denote the values 
R = R,, , for which the level is expelled into the continuum, 
while the vertical dashes on the curves E,, (R)  indicate the 
values ofR, for which merging of the two classical solutions 
takes place (analog of v = v, ). In the region R, < R < R,, 
(for Z2 < - 1) there appear in the system quasistationary 
states since the local minimum U(r) lies above zero, and the 
particle may tunnel through the barrier. 

In Table I1 values of the energy of the ground term 1 so 
obtained by summing the l/n expansion are compared with 
results of numerical solutions of the Schrodinger eq~at ion .~ '  
It is seen that the l/n expansion ensures an accuracy needed 
for most physical applications. By applying more complicat- 
ed methods of summation it turned out to be possible to 
determine, starting from Eq. (2.3), also the complex ener- 
gies of the quasistationary states. The details of the calcula- 
tion can be found in Ref. 17, which contains a more detailed 
analysis of the l/Nexpansion in the problem of two centers 
as well as results of numerical calculations. 

We have considered above only states with n = m + 1, 

TABLE 11. Energy of the ground term in the two-centers problem.' 

R I L = l j = l  I R I Z 1 I (  l z , = l ,  ZI= --I I  R I Z , = , .  
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which for n+ ca go over into the ground state of the two- s - ( N - ~ ) / ? T  , S ( N - 3 )  L = ~ + ( ~ - 3 ) 2 U  er  

dimensional oscillator. However the method can be general- 
ized to excited states as well. Thus, the first correction equals 

3 

1 

&('I= (ni+1/2) o1~+(n,+l/2) oL- (nl+nz+l)/p,2, (5.8) 

where ni = 0, 1, ... are the oscillator quantum numbers, and 
wi and po have the same meaning as before. 

6. THE THREE-BODY PROBLEM 

The 1/N expansion was first applied to the three-body 
problem in Ref. 3, where the first three terms E ' ~ '  were deter- 
mined (which, however, were insufficient for a satisfactory 
approximation of the energy). In Ref. 10 the number of cal- 
culated coefficients was increased to eleven. Here we shall 
briefly describe the further development of this method. 

We consider the system of three particles in a space of 
dimension No = 3 and introduce the N-dimensional poten- 
tial 

( V,,, - V(rl, ,r2, ,r,, ) ). We confine ourselves to S-states, for 
which the wave function depends only on the three variables 
ro The kinetic energy operator in N-dimensional space will 
be represented in the form 

3 

where 

( (l+cosO,) ---+---- 
4 ,=, " dl-,, or,,, ( " )  orzJ 

(6.3) 
m,h=nzJmh/ (mJ+mk),  cos O , =  (r tJ ' -k~. ,k2-rJk' ) /2r iJr ,k ,  

and (i, j, k )  is a permutation of the basic triplet ( 1, 2, 3 ) . 
The second term in T,, linear in derivatives, is eliminat- 

ed with the help of the transformation 

where S is the area of the triangle with sides r,,, r,,, and r,,, 
while hi are its heights (hi = 2S/rj, ). In (6.4) only the sec- 
ond term, containing the centrifugal potential U,, depends 
on N. Setting @ = S N -  3)'2 \V a nd rij = N2sV we arrive at 
the equation 

and E = N 2E. For N +  oo the wave function p becomes local- 
ized in the neighborhood of the minimum of U,, , whence 

a 

with the value U, taken at the minimum point of U,, . Higher 
order terms in the 1/N expansion 

take into account corrections due to anharmonicity. These 
were calculated by means of a recursion procedure5' similar, 
generally speaking, to that used in Ref. 10, even though it 
differed from it substantially in detail. 

We consider a few examples. For a system of three par- 
ticles with masses m ,  = m, = 1, m,) 1 and equal pair-inter- 
action potentials 

the l/Nexpansion coefficients are given in Table I11 (for the 
ground state). To sum the series (6.7) use was made of Pad6 
approximants [ L  / M I ,  whose values are listed in the last 
three rows of Table 111. The signs, which coincide for all 
three approximants, may be viewed as reliable. It is seen that 
for potentials with Coulomb singularity the accuracy of the 
energy calculation is lower by 1-3 orders, as compared to 
potentials that are finite at the origin. Let us note that for 
~ ( r )  = - r - exp( - p r )  the minimum of the potential 

TABLE 111. Coefficients of the 1/N expansion for the three-body problem and its summation 
with the help of Pad6 approximants [L / M I .  

a{,) 

~(11 ,  

L / l l  1 - 1  I r -  1 r e x p i  1 n 1 + + I  1 (-rl 

I 

21 Sov. Phys. JETP 70 ( l ) ,  January 1990 Mur eta/. 21 



U,, exists only for p < p ,  ~ 0 . 4 6 8 ,  and for u(r)  = 

- Aexp( - r)-forA>A, =; 1.351. 
It is known'' that for potentials with Coulomb singular- 

ity at the origin the energy has a pole at N = 1; for example, 
for a single particle in a Coulomb field we have 

With this in mind it becomes convenient to expand in 
1 / ( N  - 1 ), and not 1/N. In Table IV we give the results of 
summing such an expansion for the exotic atom ppa 
( m ,  = m, = l,m3 = 4) .  

In the case ofthe two-body problems-states in spaces of 
dimension N = 5,7,9 ,... have the same energy as P-, D-, F- ,... - 
states in three dimensions. For the three-body problem this 
is generally not so, but the S-state in five-dimensional space 
has, as before, the same energy as one of the P-states for 
N = 3.31 Using this fact we have calculated the energy of the 
state (2p12 3P (it is more stable against decay by annihila- 
tion) with the help of the 1 / (N - 1) expansion for N = 5. 
The Pad6 approximants give here a substantially higher ac- 
curacy than in the preceding case since the expansion pa- 
rameter is smaller by a factor 2. 

With the help of the above method we have calculated 
energy levels of the three-particle anharmonic oscillator 
( ~ ( r )  = 1/22 + Rr4) for 0 <R < 1.5, as well as the ground 
state of the screened helium atom and the mesic atom 
p p a. 

7. THE 1 l n  EXPANSION AND COHERENT STATES 

The states which correspond in the limit n- w to 
closed circular orbits of the electron are in some sense spe- 
cial: for them the classical approximation retains the qualita- 
tive peculiarities of the quantum problem, and often also 
ensures sufficient accuracy for the calculation of the energy 
even for n - 1 (besides the examples discussed in Secs. 2-5 
we may also mention the hydrogen atom in electric and mag- 
netic fields). The reason is that the indicated states are (for 
n > 1) coherent states, which minimize the uncertainty rela- 
tions for ApAq. 

We shall demonstrate this on the example on the hydro- 
gen atom in the absence of external fields, where analytic 
solutions are known. The wave function of the 10,0,m) state 
has the form 

TABLE IV. Energy of the exotic jja atom (in units 
e = f i  = m, = 11, obtained by summation of the expansion in pow- 
ersof 1 / ( N -  1). 

I I 
~I./ l l l  I Ground state 

where/= lml = n  - 1 and 

For the operators r and j, = 1/2[fi. ( r / r )  + ( r / r )  .fi] 
= - (i/r) (a /a r ) r  we calculate the mean: 

where Ar = ( 7 - 3) 'I2 is the dispersion. In this way, for 
n $1  the states under consideration minimize the uncertain- 
ty relation for the radial and transverse to the orbit plane 
components of p and r, and therefore they are closest to clas- 
sical mechanics6' 

For all other states Inlm) the product ApAq exceeds 
1/2. Thus, if n- cc and the radial quantum number 
p = n - I - 1 = 0, 1, 2 ,... is fixed, then 

On the other hand if both quantum numbers n andp are large 
then ApAq grows proportional to n. For example, for ns- 
states 

The Schrodinger equation has exact solutions also in 
the case of the three-dimensional harmonic oscillator 
V(r) = a2?/2. Analogously to the preceding we obtain 

In general (with the exception of states for which p and 
1 - lml are of order unity) the product of uncertainties 
Ap, Aq, a n for n -. w . Therefore the quantum fluctuations 
increase without bound and the concept of a classical orbit 
loses meaning. 

The minimality property is preserved upon turning on 
external fields as well as upon changing the internuclear dis- 
tance in the problem of two centers. We shall illustrate this 
with the Stark effect as on the example. 

In that case the circular orbit corresponding to the 
states 10,0,m) with Im I = n - 1 > 1 is shifted and changes its 
radius upon turning on the electric field E9. Here 

and the parameter r is determined from the equation 

Here F = n4%', E = 2 n 2 ~ ,  and we use atomic units. Whence 
for F- 0 

r = F + 4 F 3 +  ..., r o = n 2 ( 1 + 2 F 2 +  1 9 F 4 +  ... ), 
and for F- F, = 212.3 = 0.208 1 (classical ionization 

) we have 
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We confine ourselves to nodeless states (for 1 (p <n  the dis- 
cussion is analogous). Since the Schrodinger equation sepa- 
rates in parabolic coordinates l, 7, q, we have 

(r10, 0, m>,,,= (llnr,'") (o~o , ) " '  exp {-'I2 
+m,,ii2] +imp). (7.8) 

and the frequencies of small vibrations about the classical 
point of equilibrium ({,, y o )  equal 

m i =  (I+%) (1-r')2(1+3~)'b/2n3, 
(7.9) 

a,= (1-r) ( 1 - ~ ~ ) ~ ( 1 - 3 ~ ) ' ~ / 2 n ~ .  

Going over in Eq. (7.8) to the coordinates 7. = r - r, and 
Z = z - z, we obtain the two-dimensional Gaussian distribu- 
tion: 

From here it follows that 7. and Z have the same dispersions o 
and correlation coefficients p: 

Integrating 1 $ 1 2  over one of the variables r or z we obtain a 
Gaussian packet with dispersion u independent of the size of 
p. In any event this is the case as long as the solution remains 
real (i.e., up to F = F* , when the classical solutions collide 
and then move off into the complex plane'3314 ). 

In this fashion inclusion of the external field does not 
change the minimality properties ( ApAq- l /2 for n - m ) 
for the states described in the classical limit by closed orbits. 
Once this is recognized the applicability of the classical ap- 
proximation and its high accuracy (see above Secs. 4 and 5)  
become quite natural. 

The authors would like to thank V. M. Vainberg, B.M. 
Karnakov, E. A. Solov'ev and A. I. Sherstyuk for useful 
discussions during this work, and also A. M. Badalyan, S. G. 
Pozdnyakov, and S. Yu. Ovchinnikov for help in performing 
the numerical calculations. 

APPENDIX 1 

Let us discuss refinement of the asymptote (3.2). For 
n - w  

The coefficients B, are readily found in the cases where the 
exact solution is known. For example, for the Coulomb po- 
tential x, = n2, w = l ,  and the integrals (3.3) are equal to 
J, = 2 In n - 1, J, = 0. On the other hand, for the exact 
wave function 

Therefore for n - CZJ and for fixed p = n - I - 1 we get 

where B, ( x )  are the Bernoulli polynomials. In particular, 
8, = (42p2 + 18p + 1)/48,P, = (10p3 + 7p2 +p)/32,  etc. 

Let us denote by Z,, the approximation beyond (3.2): 

in which terms of order l/n are taken into account. Then 
E,,/c,, = 0.99984, 1.24,0.99998, and 1.08, respectively, for 
the states Is, 2s, 2p, and 3p. Passage from Z.,, to ?,, signifi- 
cantly increases the precision of the approximation (since 
i;,,/c,, = 1.021, 2.33, and 1.65 for the states Is, 2s, and 2p). 
The situation is analogous for the harmonic oscillator and 
for the Tietz potential. In this way calculation of order l/n 
corrections to (3.2) may substantially broaden the region of 
applicability of this approximation to states with a number 
of nodes p - 1. 

From (A3)  we have for p = 0 

Bkt' = 2 (-1) ( k - I ) / 2  
P k =  ( I )  ! ( 4 ) -  (A5)  

2"lk (k+l)  
From here it is seen that the series in (A1 ) diverges, and the 
l /n  expansion is asymptotic. 

"The series (1.1 ), as a rule, diverge, therefore to calculate E,,, to high 
accuracy it is necessary to make use of methods of summation of diver- 
gent series-such as Pad6 approximants ( P A ) ,  etc. (we omit technical 
details of the calculations referring the reader to Refs. 16 and 17). It is 
important in practice that in many cases even two-three terms of the 
l/Nexpansion yield values of E,,, and wavefunctions of acceptable pre- 
cision for physics. 

2' Thus, values of g'(0) are needed in calculating the pp annihilation 
widths,'' the decay widths of ~harmonium,".~" and the four-quark 
states." Another example is the calculation of the reaction speed of 
nuclear fusion in mesomolecules ddp and dtp", etc. 

"These calculations were performed by A. M. Badalyan and S. G. Pozd- 
nyakov, to whom the authors express their sincere appreciation. 

4'  The calculation was performed following the program used in Ref. 30. 
5,  Because of the highly unwieldy formulas, its description here would be 

inappropriate (compare with the recurrence relations given in Ref. 16 
for a simpler case). We only note that the computation time rapidly 
increases ( cc k ') with increasing number of coefficients in (6.7) and for 
k = 10 reaches - 1 h on the computer CYBER-172. 

" Compare with the Glauber coherent states la) for the harmonic oscilla- 
t ~ r , ~ ~ . ~ '  for which ApAq = 1/2 for arbitrary a. 
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