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The joint dynamics ofbaryon and nondissipative matter is considered. The conditions for the 
onset of a nondissipative gravitational singularity (NGS) are elucidated. It is shown that energy 
emission and the action of a gravitational field at an NGS center enhance the spherical baryon- 
matter contraction that leads ultimately to formation ofa massive black hole. The black hole 
subsequently increases rapidly by absorbing both the baryon and the nondissipative matter. 

The Friedmann model of a homogeneous and isotropic 
universe is valid only for scales on the order of the horizon 
radius. Small deviations from the homogeneous state are en- 
larged by the action of universal gravitation forces. The dy- 
namics of these perturbations over scales substantially 
smaller than the horizon radius determines the formation of 
galaxies, of galactic clusters, etc. The principal role is played 
in this process by the hidden matter, which is nondissipative, 
i.e., it interacts only via gravitational forces.' 

A linear relativistic theory that describes the initial 
growth of small fluctuations in an expanding universe was 
developed by E. M. Lifshitz.' We have previously investigat- 
ed3,4 the nonlinear stage of the gravitational instability of 
nondissipative matter. We have shown that an individual 
growing perturbation can undergo an appreciable three-di- 
mensional contraction that leads to formation of a nondissi- 
pative gravitational instability (NGS)-a self-trapped clus- 
ter of matter that has at the center r -0  a power-law 
singularity of density p a r - a and a gravitational potential 
VI such that 

The theory referred to was developed only for nondissi- 
pative matter. Simultaneously with the nondissipative con- 
traction, however, ordinary baryon matter is also com- 
pressed in the course of NGS formation. It is this which leads 
ultimately to galaxy formation. The presence of a singularity 
of the gravitational potential at the center of an NGS should 
determine in this case the formation of the galaxy center (or 
of the cluster center). 

The present paper is in fact devoted to the formation of 
the center. We shall show that energy emission and the ac- 
tion of gravitational forces produce at the NGS center an 
enhanced baryon-matter spherical contraction that leads ul- 
timately to formation of a massive black hole. 

The black hole rapidly increases subsequently by ab- 
sorbing both baryon and nondissipative matter. 

1. NONDlSSlPATlVE GRAVITATIONAL SINGULARITY 

We consider the joint dynamics of nondissipative and 
baryon matter in an expanding universe. We are interested, 
as b e f ~ r e , ~ . ~  in scales much smaller than the horizon radius, 
when the dynamics of the matter can be described in the 
Newtonian approximation. We recognize, in addition, that 
we are interested only in the nonlinear stage corresponding 
to not too early instants of time (z( lo),  long after the radi- 
ation was separated from the matters5 The system of hydro- 
dynamic equations describing under these conditions the 

process ofjoint dynamics of nondissipative and baryon mat- 
ter is 

d T 
(1)  

- + (VV)  TS2/ ,T(VV) =L, P=nT,  a t 

Herep, and U are the density and velocity of nondissipative 
matter, p, V, and Tare the density, velocity, and tempera- 
ture of the baryon matter, L is the loss of its energy to radi- 
ation, P is its pressure, and n is the density of the baryon 
particles. Lastly, Y is the gravitational-field potential; we 
use for simplicity a system of units in which 4rG = 1 ( G  is 
the gravitational constant). 

We recognize that the average density of the nondissi- 
pative matter exceeds that of the baryon matter by almost 
two orders. The system ( 1 ) can therefore be expanded in the 
parameter p/pd 4 1. In first-order approximation in this pa- 
rameter, the nondissipative matter moves freely 

d U  
- + v (p,U) =o, - + (UV)  U+VY=O. 

d t .)t 12)  

while the baryon matter moves in a specified gravitational 
potential Y determined by the motion (2)  of the nondissipa- 
tive matter: 

The dynamics (2)  of the contraction of nondissipative 
matter was considered earlier in Ref. 3. There the develop- 
ment of the arbitrary initial inhomogeneity prior to the onset 
of the singularity was investigated in the zerangular-mo- 
mentum approximation. We need here a more accurate solu- 
tion, to which the present section is devoted. 

We consider thus the dynamics of nondissipative mat- 
ter in the vicinity of the minimum of the initial potential Y. 
As shown in Ref. 4, the problem reduces in this case to a 
solution of Eqs. (2)  with initial conditions 
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V (0,  r) =0, p (r, 0 )  =po (1-g2), E2=x2/a2 

+y2/b2+z2/c2, (4)  

where a, b, and c are the semi-axes of the initial ellipsoidal 
distribution. We rewrite the system (2)  in the form 

{ div F=p, d i v ~ = 0 ,  (5 

For convenience, the gradient V Y  of the potential is repre- 
sented here is a force difference F - F. In the spherically 
symmetric case we have F = 0. We obtain now for the sys- 
tem (5) a solution that does not differ greatly from the case 
of spherical symmetry when the force P#o. The velocities 
induced by the force @, as with be shown below, remain small 
up to the onset of the singularity. Neglecting in first approxi- 
mation the force k and introducing the notation 

we obtain from the system ( 5 )  

Equations (6)  were considered earlier, and their solu- 
tions under initial conditions (4)  were obtained in Ref. 3. It 
is shown there that after a time of the order of the Jeans time 

a density singularity p = f is produced at the point 
f=O. 

We take now into account the presence of the force F. 
Using the solutions of the system (6) ,  we write for the veloc- 
ity V 

V=rU (t, t) /E+u (7)  

Substituting ( 7 )  in (5)  and retaining only the terms 
linear in the deviation from nonsphericity, we get 

= rot [$ uu I- rot F', 
d l  

where 

@=rot u, rot F=- [ rv  (Big) 1. 

The solution of the linear equation (8)  with initial condi- 
tions (4)  can be expressed in terms of the solution of the 
system (6) ,  which takes the simple form 

The solution of the equation for the density perturba- 
tion, however, shows that the deviations from the solution 
(6) can appear only in second order in the nonsphericity 
parameter [r X Vf 1. The corrections to the radial velocity U 
and to the potential are of the same order. As t+to the 
resultant solution has a singularity at the point { = 0: 

where a is the major semi-axis of the initial ellipsoid; the 
deviation of the latter from sphericity are described by the 
quantities (a  - b)/a = and (a  - c)/a = E ~ .  

The velocity u, determines the angular momentum of 
the gas relative to the inhomogeneity center. We see that in 
the nonspherical case the velocity u, differs from zero, and 
has at t = to a singularity of the same order as that of the 
radial velocity V,; u, is always smaller than V, because of 
the small deviation of the initial distribution from spherical: 

2 2 E =  (E l  + E 2  -E1E2)1'2(<1. 
We shall investigate hereafter the singularities in which 

self-capture of the matter is possible. Just such a singularity 
appears when the velocity u, is neglected in the three-dimen- 
sional problem, since the capture condition 

is satisfied at each point: 
With increase of u,, i.e., of E, the capture becomes 

weaker, and it can be shown that it becomes altogether im- 
possible as E +  1. No gravitational singularity is produced at 
the center, but two diverging caustics appear with stable 
caustical singularities of the form p cc ( x  - x, ) -'I2. This 
structure agrees fully with that considered in Ya. B. Zel'do- 
vich's papers6 and with V. I. Arnol'ds general theory of sin- 
gularities.7 On the other hand, the onset of a three-dimen- 
sional pointlike singularity was not investigated in these 
references. Note that in an approximation linear in E the 
boundary defining the region of existence of a three-dimen- 
sional singularity is specified by the condition E < E,, where 
E, = 6/(7 + 85'12) = 0.3669. After the onset of the primary 
singularity, multistream flows are produced in the capture 
region and their dynamics is described by a kinetic equation 
with a self-consistent gravitational field3 

3 f d f - - + v v ~ - Y Y - = o ,  A Y  =I jdv. 
d t  dV 

(11) 

If the nonsphericity is weak, we can confine ourselves in 
( 1 1 ) to a dynamics averaged over the angular variables of 
the distributions. We obtain then from ( 11 ), in the variables 
m (angular momentum) and V,. (radial velocity) : 

where we have introduced the energy 
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Equation ( 12) is solved in the adiabatic approximation in 
full analogy with Ref. 3. The adiabatic approximation can be 
used because the period of the oscillations of the captured 
fluxes in the potential well is much shorter than the time of 
variation, determined by the caustic-surface motion, of the 
well itself. 

In the approximation considered the function f depends 
only on the squared angular momentum m2 and on the adia- 
batic invariant I: 

'mar(E1 

I=2"' j [E-Y (r,,  t )  - --T "' 1" dr,. 
r m f n ( E )  2r1 

The form of the function f is determined by the condi- 
tion on the boundary of the capture region (on the caustic), 
and is expressed in terms of the adiabatic invariant 

The energy E in ( 13) and ( 14) is measured from the 
caustic. Here, according to the hydrodynamic solution, we 
have 

16/  1 mz=m2ro , E (r,) =E, E (r,)  ='/ ,Y ,rgB1~+o(~),  

m,2=0,0881p,e2, p,=p0at2/'. (15) 

From the condition that the flux be continuous on the 
caustic we have 

Starting from ( 14), ( 15), and ( 16) and taking the an- 
gular-momentum conservation law into account, we obtain 
the distribution function 

where 

Substituting (17) in (13) and (12) we get 

As I ,?j tends to zero, Eqs. ( 18) go over exactly into Eqs. 
(48) of Ref. 3, which were obtained in the absence of angular 
momentum. In this limit, the field potential is 

Y =- (3/2Co ln ( ro  ( t )  / r )  ) ' I * ,  (19) 

where ro(t) is the location of the caustic that separates the 
regions of single-stream and multistream flows, and Co is a 
normalization constant determined in Ref. 3. 

An analysis of the system ( 18), perfectly similar to the 
earlier one in Ref. 3, shows that in the radial region 

there exists a power-law solution of the system ( 18) in the 
form 

Outside the region indicated in (20), the angular momenta 
are unimportant, so that the solution ( 19) is valid. The po- 
tential-well depthx0(t) in (20) is obtained from the require- 
ment that the potential be continuous at the point r = r, : 

xo ( t )  =Y (312Co In ( r ,  ( t )  / r e )  ) +. 

With logarithmic accuracy, we have 

Relations ( 19), (20), and (2 1 ) describe, in the adiaba- 
tic approximation, the onset of a nondissipative gravitation- 
al singularity in the presence of an angular momentum. The 
dependence of the density near the singularity on the radius 
is shown in Fig. 1. The dashed plot in Fig. 1 shows the den- 
sity corresponding to ( 19) (upper curve) and to (20) (low- 
er curve). It can be seen that the difference between these 
curves is small. Thus, in the power-law form r - " we get for 
the value r, = lop2 assumed in the figure, the values 
a = 1.87 and a = 1.72 for the upper and lower curves, re- 
spectively. Both curves agree satisfactorily with the ob- 
served distribution of nondissipative matter in galaxies, and 
also of galaxies in  cluster^.^^^ 

2. DYNAMICS OF BARYON GAS IN NGS 

We consider now baryon matter. In first order the pa- 
r a m e t e r ~ / ~ ,  it moves in a specified gravitational field that is 
determined by the motion (3)  of the nondissipative matter. 
Radiation plays here an important part. Indeed, in the ab- 
sence of radiation the gravitational contraction would be ac- 
companied by intense heating of the gas, Tap2I3, and it can 
be seen from (20) that T- at the singularity point. It is 
clear, however, that the heating alters the conditions of mo- 
tion of the baryon gas, so that the dynamics of the gas and the 

FIG. 1. Logarithm of density of a nondissipative gas in a stirred state vs 
the logarithm of the distance r,  = lop2 .  Curves I and 2 correspond to 
Eqs. ( 19) and (20). Both curves can be extrapolated by using the power 
l a w r "  ( I -a=  1.87, 2-a = 1.72). 
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character of the resultant density distribution are deter- 
mined to a considerable degree by the balance between the 
adiabatic heating and the energy loss to radiation. It is im- 
portant that the energy loss depends substantially on the gas 
composition and on the degree of its ionization. Therefore 
Eqs. (3) should be supplemented by relations that determine 
the changes of the chemical composition and the ionization 
in the course of the dynamics of the baryon gas. 

It is known that the baryon gas in an expanding uni- 
verse consists at z(10 of molecular hydrogen and helium 
(25%). Under these conditions, at temperatures T = 1O2- 
lo3 K energy is lost by radiation in the molecular-hydrogen 
lines, while electron deceleration loss becomes substantial at 
higher temperatures T >  3. lo3 K. The main reaction that 
leads to fusion of the H, molecules as well as to their decay 
takes under the above conditions the form'' 

The equations that describe the behavior of the gas in 
accordance with the chain of Eqs. (22) are" 

dx/dt+ (VV)x=nC[-yixZ+y2 (X-x) /n] ,  

dh,ldt+ (VV)h,=n(p,x-p,h,), (23) 
dh,/dt+ ( V V )  h,=n(p,h,-p,h,) 

Here x = n ( e -  )/n is the degree of ionization of the matter, 
h, = n(HP)/n is the density of the negative hydrogen ions, 
and h, = n(H,)/n is the density of the H, molecules. The 
reaction constants P,, P3, P,, y,, y,, and C are known. In 
particular, their dependences on the density and tempera- 
ture are given in Ref. 10. The values of these parameters will 
be given in the next section. 

The first equation of the system (23) takes into account 
both recombination and ionization processes. This equation 
was written under the assumption that the degree of ioniza- 
tion is low, and we shall corroborate this assumption below. 
The second equation describes creation of H- ions by adhe- 
sion, as well as their annihilation by collisions with neutral 
hydrogen atoms. The third equation of (23) describes pro- 
duction of H, and of its decay by collisions. 

The function L that determines the system energy loss 
through radiation has the form 

The first term of (24) describes the loss in the molecu- 
lar-hydrogen lines" and the second the deceleration 
losses. ' 

Equations (3)  and (23) describe together with (24) the 
nonlinear dynamics of dissipative baryon matter under the 
conditions of interest to us. We formulate now the initial 
conditions of the problem. Assuming that the nonlinear con- 
traction of nondissipative matter starts at z< 10, we obtain 
the temperature To and the density no for a given red shift z, 
from the relations 

Here n(0 j  = 5.10W7 cmP3 and T(0) = 2.10-2 K are the 
density and temperature of the gas at z = 0, determined from 
the temperature of the relict radiation in our epoch. The 
value ofz, in (25 ) is - 3-5. In the derivation of (25 ) we used 
the proximity of the cosmological parameter to unity, and 
also neglected the interaction of the gas with the rad ia t i~n .~  

The initial data for the degree of ionization should in- 
clude the degree of ionization x, remaining after the hydro- 
gen-recombination epoch. The value of this parameter was 
calculated earlier by a number of  worker^.^^'^ According to 
their results 

We assume the densities h, and h, at t = to to be zero." 
Estimates show that during the period after the recombina- 
tion of the hydrogen, the fusion of H, molecules is not very 
effective under the conditions of an expanding universe. 

We proceed now to determine the initial distribution of 
the baryon matter in space. This distribution is a result of a 
prolonged joint evolution of small perturbations of the bar- 
yon and nondissipative matter. The joint evolution of the 
perturbations have been considered earlier by a number of 
 worker^.'^,'^ For our purposes it is important that the spatial 
distributions of the baryons and of dark matter are similar in 
the region of scales corresponding to the maximum of the 
spectrum of the fluctuations of nondissipative matter.I3 

The set of equations (3) ,  (23 ) , and (24) with the initial 
conditions (6)  and (7)  permit thus an analysis of the dy- 
namics of a baryon gas in a potential V produced by nondis- 
sipative matter. 

We consider next the behavior of baryon matter in the 
region of a nondissipative gravitational singularity. The lat- 
ter, as shown above, evolves as a result of nonlinear dynam- 
ics of nondissipative matter near a individual initial mini- 
mum of the gravitational potential. At an instant t = to 
during contraction of nondissipative matter, a primary sin- 
gularity of the velocity, density, and potential (10) is pro- 
duced. Prior to the onset of the singularity, the distributions 
of densityp, of the velocity U, and of the potential Y have, in 
the vicinity of the minimum of the potential and at small E 

the form 
p=Z/s ( l - t / to ) -2 ,  U=-2/3r/  (1 - t / tO) ,  

VY =' lgr( l - t l tp)  -I. (27) 

Baryon matter also is compressed similarly, until the heating 
begins to influence its dynamics substantially. 

3. INFLUENCE OF ENERGY LOSSES IN MOLECULAR- 
HYDROGEN LINES 

Since the initial gas temperature To and the degree of 
ionization x, are not large, during the period of the initial 
contraction the principle role is played by adiabatic heating 
of the gas and by radiation in molecular-hydrogen lines. This 
process is described by the system of equations (3),  (23), 
and (24) with initial conditions (25) and (26). We shall 
consider the dynamics (27) of a baryon gas in the vicinity of 
the minimum of the potential produced by nondissipative 
matter, and the period (10) of formation of the primary 
NGS. It follows from (27) that the characteristic time of gas 
compression is of the order of to. Estimates of the character- 
istic times of the reactions show that equilibrium sets in most 
rapidly between the electrons and the H- ions,'' so that 
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Substituting (27) and (28) in (23) in the region of the 
minimum of the potential, we obtain the following equa- 
tions: 

dx vx 
-=-- 
d t  ( I - T I  2~2T-03B'*C7 

7 in (29) is the dimensionless time, i.e., T = t /to. Expres- 
sions for the reaction rates Y, , vh , v,  and their dependences 
on the temperature and density in the considered range of 
the parameters (25) and (26) were taken from Ref. 10. The 
dimensionless quantities v, , v, , Y ,  are equal then to 

v,=0.11 ( I + z , ) - ~ ,  v~=l.61~10-i'  ( I + z ~ ) - ~ ,  

v,=4.6. loR.  

The temperature Tin the system (29) was made dimen- 
sionless for lo3 K-reduced to the dimensionless form 
T-  T/10%, where lo3 K is the characteristic temperature 
at which the losses in the lines are most substantial. From 
conditions (25) and (26) it follows that the losses are unim- 
portant for some time after the start of the contraction. Dur- 
ing this time the gas is heated adiabatically and its tempera- 
ture increases with time as follows: 

where To is the gas temperature at the instant corresponding 
to the red shift z, [see Eq. (25) 1 .  

The variations of the degree of ionization and the H,- 
molecule density are given by 

Using (30) and ( 3  1 ), it is easy to calculate the tempera- 
tures at which the rate of adiabatic heating becomes equal to 
the rate of energy loss. Substituting (31 ) in (29) we obtain 

Here T* is the temperature at which the loss in the lines 
becomes significant. It is evidently very high. Recognizing 
that z,- 3-5 [see (25) ] we find thus that T * - lo5 K. This is 
too high, and Eqs. (29) and (3  1 ) are no longer valid at such 
high energies: the ionization losses become decisive much 
earlier. It follows thus from (30) and (32) that radiations in 
the H, lines can actually not halt the temperature rise due to 
the adiabatic heating of the contracting binary gas. 

It should be noted that in preceding studies1' of con- 
traction of a baryon gas by its intrinsic gravitation (without 
allowance for nondissipative matter), the process due to en- 
ergy loss in the H, lines turns out to be quite significant. The 
cause of the difference is that in our case the contraction of 
the baryon gas is due to the action of the gravitational field 
produced by nondissipative dark matter. This contraction is 
significantly stronger and ensures in fact the more intense 
heating of the baryons. 

4. GROWTH OF BARYON-MATTER DENSITY IN THE VICINITY 
OF A SINGULARITY 

By the instant when the gas temperature reaches several 
thousand degrees, the ionization degree increases notice- 
ably, so that the main energy loss is now due to deceleration 
processes. Under these conditions the radiation in the lines 
and the molecule formation can be neglected. We obtain 
then from the system (3)  and (23) 

For future convenience, we have made the following 
variables dimensionless: 

t+t/ t l ,  tl=ro/T"2, 

v 4  v/vo. x-+x/x,, ,  

where Vo is the characteristic rate of gas accumulation and 
x, is the typical electron density. Here and hereafter the time 
tis measured from the instant to of the singularity." It will be 
shown below that xo< 1. The parameter A = V,/T 'I2, where - 
T = Eo/ln [ (y2/y1) (a/A) '1 is the characteristic value ofthe 
temperature. The definition of the numerical coefficient a 
can be easily understood by comparing (24) with (35). The 
constants y,, y,, Eo were taken from Ref. 10: in dimension- 
less form their values for our numerical estimates are 

y1=2.84 107(T/ l  I C )  -I", 

~2=6.86. lo2' (TI1 I F ) ,  

Eo=l58 000/T [ K ] .  

The system (33)-(36) is written in a spherically sym- 
metric form, inasmuch as in the region of the maximum den- 
sity the gas experiences a threefold contraction prior to the 
formation of the singularity [see (27) 1, whereas after the 
singularity is formed the potential takes rapidly a spherically 
symmetric stationary form (20) [see Ref. 31. 

Owing to the stationary character of the potential Y, 
one can expect the rate of mass growth in the vicinity of the 
singularity to be small compared with the speed of sound, 
i.e., A < 1. 

We expand (36) in powers of the parameter x& /Z 1. In 
the zeroth approximation we get 

Substituting this expression in (35) we get 
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It can be seen from (36) and (37) that the rate of energy 
emission has a strong exponential dependence on the gas 
temperature. Using this fact, we obtain as the first approxi- 
mation (with logarithmic accuracy) 

T = l .  (38) 

Substituting (38) in (33), we arrive at the following system 
of equations: 

, We seek the solution of the second equation of (39) in 
the form of a series in the parameter A: 

V=V,,+AVi+. . . 

In the zeroth approximation we get 

where A , ( t )  varies slowly with time. It can be seen from the 
solution (40) that the baryon matter has a Boltzmann distri- 
bution and its bulk is concentrated in the vicinity of a radius 
r, that is small compared with the main scale a of the NGS: 

To calculate the radius r, in which the incoming baryon 
gas accumulates, we must know the temperature T. Substi- 
tuting the parameters in (38), we get 

T-4000-5000 K, xo= lo-'. (42) 

The constant A,, can be obtained by integrating the first 
equation of the system (39), but for the analysis that follows 
it is more convenient to calculate directly the mass-change 
ratedM/dt in the vicinity ofthe NGS. From (39), recogniz- 
ing that in the region r<r, the gas pressure is insignificant, 
and using the solutions ( 10) and (20), we obtain 

Here M,,, is the total mass of the substance (including the 
dark matter) in the scale of a, and t, = ( 4 ~ G p , ) - " ~  is the 
time of free fall of the matter to the center. 

The solution (40) and (43) exists for a limited time. As 
the density of the baryon matter increases, a substantial role 
in the center of the NGS is assumed by photon scattering by 
electrons, and at the instant when the photon mean free path 
for Thomson scattering becomes comparable with the scale 
r,, a "protostar" is produced-the radiation comes only 
from its surface, and Eqs. (33)-(39) are no longer valid. 
The mass accumulating at the NGS center by the instant of 
protostar formation is shown in Fig. 2 as a function of the 
scale of the initial density distribution. At the present time 
the scale a corresponds to a, = a (  1 + z,), wherez,-2-3. It 
can be seen that for a scale a of order 1 Mpc the mass of the 
produced protostar can amount to lo3-lo5 Ma. The dashed 
line in the figure is the limit of a below which the theory 
considered is not valid. The line corresponds to the mini- 
mum contraction needed to heat the gas to a temperature 
4000 K. An important role is apparently assumed near this 
boundary by the cooling of the gas through radiation in the 
H, lines. 

FIG. 2. Mass ofa protostar produced in an NGS center vs the scale a of the 
initial distribution. The dashed line shows the limit of applicability of the 
considered theory. 

The question of the stability of a protostar was consid- 
ered earlier in the approximation of homogeneous self-con- 
traction of substance in the absence of nondissipative matter 
(see Refs. 10 and 14). Under our condition the proton star 
formation is due to accumulation of gas in the inhomogen- 
eous external field of the NGS. The time of gasdynamic ac- 
cumulation ofmatter in an NGS field is shorter than the time 
of evolution of the Jeans instability, and this contributes to 
stabilization of the process. The question of the stability of a 
protostar calls therefore for a separate investigation. 

The further evolution of the protostar depends on its 
mass. For masses of order 10"1O5 Ma.  The evolution is 
extremely rapid (practically within the Jeans time), and the 
result is a black hole. l5 Once produced, the black hole begins 
to grow by influx of both baryon and nondissipative matter. 
The question of the rate of influx of matter into a black hole 
under NGS conditions calls for a separate investigation. As a 
rough estimate we can use relation (43). This relation shows 
that the flux of matter begins to grow rapidly with time and 
by instant t /t, - 0 . 1 ~ ' ' ~  it reaches 1-10 Ma annually. Ab- 
sorption of just this amount of matter by a black hole is well 
known to be able to ensure the observed radiation intensity 
of galactic centers and quasars. 

The authors are grateful to V. L. Ginzburg for a helpful 
discussion and for interest in the work. 
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