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We consider an exactly solvable merging problem under mass and momentum conservation 
conditions in a statically homogeneous system of galaxies. Rather simple analytic expressions are 
obtained for the asymptotes for large masses, momenta, and times. These solutions are valid for a 
constant merging coefficient. If this coefficient is not constant, it is possible to formulate a self- 
similar combination of variables which describes the propagation of a stationary front towards 
larger masses. The distribution asymptotes obtained in this manner take in the simplest case the 
form of the Schechter functions used to describe the observation data, with parameters 
determined by the scales and by the action time of the "source" that simulates the initial galaxy 
distribution. We consider also the asymptote of the initial distribution, with account taken of the 
cosmological expansion. The possible connection between the mass and momentum distributions 
and the activity of galaxies is discussed briefly. 

1. INTRODUCTION 

A problem closely related to the origin of galaxies [ 1 ] is 
that of the activity of galactic cores [2],  which leads to the 
phenomenon of Seyfert galaxies, radiogalaxies, quasars, and 
their dependence on the activity scale. 

Most researchers agree that the direct cause of the ac- 
tivity is accretion of matter on a central compact object in 
the galactic core. One of the causes of appreciable accretion 
to the center is tidal interaction and, ultimately, merging of 
galaxies. In the latter case the main cause of the accretion 
can be the cancelation of the angular momentum of the disk 
component following the merging of gas-rich spiral systems. 
This circumstance was noted long ago by T ~ o m r e , ~  and also 
in a number of recent papers (see, e.g., Refs. 4 and 5).  Kom- 
berg6 cited arguments favoring the idea that quasars are the 
second generation resulting from merging of thicker and less 
massive objects. The advances in optical astronomy, which 
made it possible to observe galaxies surrounding the nearest 
quasars (their cores) have directly confirmed a similar point 
of view. According to the data in Hutchings's review7 about 
30% of the galaxies belonging to quasars are in a state of 
interaction (collision) with the galaxy. The images of the 
brightest IR sources from the IRAS catalog also demon- 
strate a substantial peculiarity of all the objects (amounting 
to about 30% of the total list), namely double tails, double 
cores, rings, and jets, all of which attest to a merging phase." 

Additional arguments are the dependence of the mor- 
phology of the galaxies on the density of their surroundings, 
which influences in particular the luminosity function, i.e., 
the distribution of the galaxies in luminosity, and ultimately 
in m a s 9  

The inevitability (or possibility) of a merging phase 
arises also in theoretical models of galaxy f~rmat ion , ' . '~  for 
example in the theory of entropy perturbations. 

Long ago, in the context of the solution of coagulation 
equations that describe merging of "particles," " their mass 
distribution was examined both analytically123'3 and nu- 
meri~al ly. '~ . '~  We consider below the statistical conse- 
quences of merging processes that lead to formation of com- 
patible galaxy-mass and angular momentum distributions. 

One can attempt to compare them with the observed lumi- 
nosity functions for galaxies of various morphological 
 type^.'^-'^ It is important, however, that by using compati- 
ble distribution functions it is possible to formulate an activ- 
ity problem1' in the context of kinetics (see the last section 
of this paper). 

Galaxy-collision dynamics is a complicated problem 
still far from solution. Of importance to us is that analysis2' 
shows that inelastic galaxy collisions as well as collisions in 
which the total mass and angular momentum are preserved 
may be perfectly acceptable premises, which we shall adopt 
hereafter. In addition, the spheroidal subsystem, which has 
both large size and large mass (including the hidden one) 
should be responsible for the merging. Although the merg- 
ing probability depends, of course, on the relative orienta- 
tion of the proper ("spin") angular momenta, this depen- 
dence will likewise be neglected for relatively low velocities 
(for only then is mixing possible). We ignore also the role of 
the orbital momentum (which, generally speaking, can be 
substantial, see Ref. 21) of the pair of colliding galaxies. 
Some justification for this neglect may be the relative small- 
ness of the impact parameter (the momentum lever-arm) in 
collisions that lead to mergings. 

This allows us to formulate in closed form the problem, 
solvable under the above assumptions, of deriving the kinetic 
equation (KE) that describes mergings with allowance for 
angular-momentum and mass conservation. 

2. KINETIC EQUATION DESCRIBING THE MERGING WITH 
MASSES AND ANGULAR MOMENTA CONSERVED 

Consider, for the distribution function f(M,S;t), a KE 
that generalizes the Smoluchowski coagulation equation" 
for the case when the "particles" (in our case, galaxies) that 
collide and merge have a conserved mass M and a conserved 
angular momentum S (classical "spin"). This KE has the 
form 
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The transition probability US,S, contains here all the del- 
ta-functions that express the conservation laws for merging: 

--2UF (p, q; t) F (0,O; t) +D (p, q; t) . 

By definition, 
we omit the arguments of the coefficient U: 

and use the abbreviated notation where n ( t )  is the "density" of the galaxies. We have for it 
from (2.8) the equation 

an(t)/dt=-Un2(t)fD(0, 0; t ) ,  (2.10) while the arrows in (2.1 ) denote two successive cyclic per- 
mutations of the three subscripts M, MI, M,, and S, S,, S,. 
The first term corresponds to arrival of the particles in the 
phase-space element near M S (Fig. la) ,  and the second and 
third to departure from it (Figs. lb,c). We consider first a 
constant merging coefficient 

which makes it convenient to rewrite the KEfor the quantity 

in the form 

d X ( p ' q i  t, + UX2(p,q; 1 )  =UA2(p,q; t), 
d  t 

where the right-hand side is connected with the source: Physical arguments favoring this far-reaching assumption 
are given in the Introduction and in the Appendix. (We shall 
forego (2.5) partially in Sec. 8.) The KE (2.1 ) can be solved 
exactly under condition (2.5) also in the presence of a source 
(cf. Ref. 22). 

We take a Laplace transform with respect to mass and a 
Fourier transform with respect to spin (henceforth simply 
"Fourier" for short) : 

00 

UA2(p, q; t )  =D(O. 0: t)-D(p, q; t) .  (2.13) 

The condition (2.5) permits thus the Smoluchowski gener- 
alized KE to be reduced to a Riccati equation for the pq 
transform of the distribution function and obtain exact solu- 
tions in a number of interesting cases, which we shall write 
down and analyze below. These solutions are still quite com- 
plicated and we shall therefore consider their asymptotes for 
sufficiently large masses, angular momenta, and times. 

3. STATIONARY SOLUTION 
The equation for F takes the form Consider a steady-state source and introduce the nota- 

tion 

= d~~ exp (- pM - iqS) [UdrAflfi - J - J J 1. We rewrite the equation for the density in the form 

(2.7) 
where 

Its solution is 

Redesignating the integration variables in the second and 
third terms: MttM, and M-MI, we transform the expres- 
sion in the square brackets in the integral of (2.7) into We solve similarly the solution of KE (2.12), where 

A = A(p,q) is independent oft: 

J dMi dMz dS, dSZUf1f2{exp[-p(Mi+M2) -iq(Si+S2) I 
- exp (-pM2-iqS,) - exp (-pMi-iqS,) ). 

Using the condition (2.5) and adding the source D, we ob- 
tain a KE in Riccati form: X O = X ( P ,  q; 01, X,=A(p, q).  

We obtain from this the stationary solution by letting t-. oo : 

Inversion yields a stationary distribution in mass and angu- 
lar momentum: 

FIG. 1. The asymptote for large M and S corresponds to a con- 
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tribution of small p and Iql to the integral in (3.6). For an 
isotropic source we assume 

meaning a finite rate of injection of mass and squared angu- 
lar momentum, and hence localization of the source at 
masses and angular momenta that are small compared with 
M and S. Note that asp, lql- cu we have D(p,q) -0 and, 
according to (3.5 ), F, (p,q) - 0. This ensures convergence 
of (3.6) and analyticity of the solution. 

Using (3.7), we rewrite (3.5) in the form 

F- (p, q) I,, ,+o=n--(a~+bqZ)'", (3.8) 

The inequalities (3.9) follow from D(M,S) > 0: 

D,, = - JdM d S D  ( M ,  S )  , 
P 

Inversion of (3.8) in terms ofp is determined by the branch- 
ing point, after which the inversion in terms of q reduces to 
calculation of a Gaussian integral. We obtain ultimately 

I a' 1 
f ( M , S )  l&I*-=--- 

a-rrn 16nZ bY,M3ex~ ( - - - ) (3.11) 

We see that, as a consequence of the assumed isotropy, the 
distribution contains the angular momentum as part of the 
combination S2/M. For constant S, the distribution as a 
function of M first increases exponentially at small masses, 
reaches a maximum at M-S2 (in the corresponding mass 
and angular-momentum units governed by the source), and 
falls off as a power law ( a M -  ) for large M. The distribu- 
tion in the angular momenta, however, is monotonic at fixed 
mass [constant for small masses and decreases exponentially 
forS2)M (see Fig. 2 ) ] .  

Integrating (3.12) over the angular momenta we obtain 
a mass function 

corresponding to a distribution with a constant flux over the 
spectrum (distribution for a constant source localized in the 
small-mass region). 

Integrating (3.1 1) over the masses, we obtain the as- 
ymptote of the distribution function in the angular mo- 
menta: 

1 a V W  
=-- 

a s '  I b'I2 
J e X ( - - - )  =--- (3.13) 

16n2 6" , 4 6  M xZ S 4  ' 

4. STATIONARY SOLUTION (ANISOTROPIC SOURCE) 

We see that owing to the rapid decrease of the distribu- 
tion with increase of S [cf. (3.11 ) 1 there is no angular mo- 
mentum spread over the spectrum in the isotropic case. We 
forego the isotropy assumption, but for simplicity we consid- 
er initially in place of ( 3.8 ) an expansion in the form 

FIG. 2. Mass distribution at fixed angular momentum (3 .11 )  in terms of 
the dimensionless variables M = M /M ,  and S = S 2/4S :. 

and retain only the term linear i np  and both the linear and 
quadratic terms in q, in view of the difference between their 
symmetries. The expansion coefficients a and c are propor- 
tional to the mass and momentum fluxes J and Js : 

the coefficient b has here the same meaning as before, but it 
must be remembered that for c # 0 we must, generally speak- 
ing, use for the expansion in q the more accurate q, q, rather 
than q2. Introducing quantities having the dimensions of 
mass, M, and angular momentas, andS2, and describing % the 
source by 

Ua--M,D(O, 0 ) ,  Ub=SZ2D(O, 0 ) ,  Uc=S,D(O, 0 ) ,  

(4.2') 

we obtain the distribution asymptote of interest to us in the 
form 

f ( M ,  S ,  I M + m  
S - r m  

- (1lUM3) '"  M ''= 1 M,  S S ,  M - lGnZ (k) -exp[--( - - - - ) ' ]  
s," 4 J f  S ,  S, M o  

In fact, the branching point that determines the form of the 
function now is 

6 ic 
p (q)  = - - q' - q a a 

Drawing the cut and displacing the contour, we obtain the 
integral with respect top: 
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after which the integration over q is easy. Using 
cx 

dq 1 J 2n)i ~ X P  (iqsr-a(')= -5 dp  p exp (-arq'+iq~l),  4niS' _ _ 
where S' = S - cM /a, we arrive at (4.3). 

If the source is anisotropic, a maximum appears not 
only in the dependence on the mass for a fixed angular mo- 
mentum, as in the isotropic variant, but also to a maximum 
with respect to S and at constant M. The equations for the 
lines of the maxima in the (M,S) plane take for SIIS, the 
form 

(the angular momenta are measured here in units of S, and 
the masses in units of M,). 

The observed nonmonotonicity in the distribution of 
spiral galaxies of a selected morphological type is possibly of 
the same nature. 

5. EVOLUTION OF INITIAL DISTRIBUTION 

We consider now the problem in a different formula- 
tion, without a source but with an initial distribution as- 
sumed here to be unimodal in the masses (with a characteris- 
tic scale M) and having a certain anisotropy of 3 and a 
distribution width (S2)1'2. This means that we assume, for 
example, that the formation of this initial distribution (the 

In the pole approximation we obtain for the distribution 
function 

Referring S,Sk to the principal axes with principal values - 
S f  (j = 1,2,3), we factorize the integral (5.6) and obtain 
upon integration 

- 
In the simpler case of an isotropic quadratic form S,Sj 
= pa,, which is perfectly sufficient for our purposes, we 
obtain 

(s- S M / Z ~ ) ~  $1 
-- 

2 M 
onsetbf the first generation of galaxies) was of considerably 
shorter duration than the considered evolution through In particular, in the isotropic case 3 = 0 at fixed S + O  the 

merging. mass distribution has with respect to M a maximum that 

The solution of the initial problem in the absence of a decreases in magnitude and shifts towards larger masses 

source takes for the Fourier transform of the distribution the when T is increased. 

form [see (3.4) as X ,  -01 Integrating over the angular momenta, we obtain the 
known nonstationary mass distribution" that describes the 

where 

and X,  is expressed in terms of the initial distribution 
F,(p,q) =F(p,q;t = 0): 

Bearing in mind the calculation of the asymptote for large M 
and S, we expand F, in powers of small p and Iq I : 

The form of the expansion (5.3) suggests that the initial 
distribution is localized enough to make finite its total mass, 
the angular momentum and its square, and the product of 
the mass by the angular momentum. Initial conditions of 
another type are considered in Sec. 7. 

Introducing the dimensionless time r = n,Ut ("num- 
ber of mergings") and 

we separate in F(p,q;t) the pole singularity that determines 
the form of the solution for long times: 

evolution of the initial perturbation in the absence of a 
source: 

We obtain now the distribution in the angular momenta, 
integrating over the mass: 

We used in the calculation the integral23 

In the isotropic case = 0 we obtain from (5.10) 
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an expression that can be easily derived independently by 
considering the isotropic solution. Expression (5.10) is 
quite complicated, and it is expedient to consider in its place 
the angle-averaged distribution 

We have used the fact that 

Various limiting cases can be easily expressed. A maximum 
with respect to T is evident. 

6. ALLOWANCE FOR COSMOLOGICAL EXPANSION 

Following Silk and White,24 we introduce a symbol for 
the number of particles in the volume R 3( t )  of the proper 
reference frame 

f =fR3 ( t ) ,  2 = u R - ~ ( ~ ) ) .  (6.1) 

Recognizing that the mass and the angular momentum are 
conserved in the comoving volume, we obtain for the quanti- 
ties with the carets a Smoluchowski equation of the usual 
form (2.1 ). Now U in Eq. (6.1 ) is likewise a function of the 
time. Assume that the temporal variable in U differs from 
the others: 

where u i s  no longer time-dependent. The KE takes then the 
form24 

where we must put U- in I,,, Cj;) of (2.1 ) . Introducing 

we go over to?('(i) =?(t(?) ). Equation (6.3 ) for? leads to the 
conservation laws 

Using the solution (5.8) of the problem with initial con- 
ditions in the absence of a source at 3 = const, we obtain a 
solution of the KE (6.3) with the following final substitution 
in (5.8) 

where 

and return to the initial functionj 

M (s--~M/w) i i ~  
xesp - - -1. (6.6) [ M(T-7.) 2 M 

The function ~ ( t )  is determined both by the expansion of 
R ( t )  in accordance with (6.1 ) , and by the time dependence 
of the probability U- (uv) determined by the expansion, for 
example, on account of the change of the average velocity 
(see the Appendix). The most interesting is the power-law 
dependence R 3(t)/R 3(t0) K (t/ t0)*, where A = 2 corre- 
sponds to the Einstein-de Sitter solution, A = 3 to an empty 
universe, etc. It is also natural to choose ~ ( t )  in power-law 
form, ~ ( t )  K t p ,  where the superscript y describes the time 
dependence of (ov) during expansion. In this case 

and the number of mergings per unit time increases with 
decrease o f t  under the realistic condition A >y. 

The problem with a source (constant or with a power- 
law dependence of the expansion) can be treated in the same 
manner. We shall draw from this only the (rather 01,vious) 
qualitative conclusion that the merging probability, which 
can be quite high during the galaxy-formation epoch and 
then decrease rapidly upon expansion, can again increase, 
albeit not to the same degree, as a result of the galaxy "clus- 
tering" that results from gravitational instability and corre- 
lates with the activity. It is in fact the activity which reveals 
the manifestations of these secondary mergings. 

7. DISTRIBUTION EVOLVING AFTER TURNING-ON A 
CONSTANT SOURCE 

We assume that a source of constant mass and angular 
momentum is turned on under the initial conditions Xo = 0 
and no = 0 at t = 0. The solution for the Fourier transform is 
[see (3.4)] 

The argumentsp and q of the quantities X in (7.1 ) are omit- 
ted for brevity. 

We consider first the integral with respect top: 

Asp - w we have D(p,q) - 0, and the expression in the curly 
brackets tends to zero, thus ensuring stability. We assume 
that D(p,q) has no branching points. Equation (7.3)' re- 
duces then to a sum of residues tanh x at the points x, 
= ia/2 + id, I = 0,1, ... . The equation for the coordinates 

of the poles in thep-plane 
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reduces to 

and for fixed I it can have in principle several roots. Smallp 
and q assume a role for large times 7% 1 and for M +  co and 
S+ a,: 

For the locations of the poles p, (q) we obtain 

It follows that the distribution is 

According to (5.6) and (5.7 ) the integral over q is equal to 

mum with respect to S is (3: M /M, ) 'I2. Comparing it with 
the location of the maximum, we see that the latter is quite 
peaked at S /S : > M,/M. The distributions in M and in S 
are then quite rigidly related. In the opposite case the mo- 
mentum flux is small and the relation between the distribu- 
tions is weaker. 

Let us see now what happens after turning off a source 
that operated for a time t, long enough to cause enough 
collisions ( r* = n , Ut* % 1 ) to establish the stationary in- 
termediate asymptote (4.3). We confine ourselves first to 
the distribution in mass. A relaxation front corresponding to 
M-M,? passes then in the direction of the larger masses 
when the time after shutoff is such that r = n, Ut<r,. In 
fact, from (2.1 ) and (4.3) follows an estimate for thk time of 
relaxation due to mergings: 

l/trel (M) -MUf(M) -Un,(M,/M)"'. (7.11) 

After a time t, the part of the spectrum for which t > t,,, ( M )  
relaxes, i.e., 

The spectrum remains practically unperturbed if M >  M1r2. 
The asymptotes of the solution for M)M,r2  and 

M < M l r 2  and at 1 <T<T, can be easily found by using the 
solution of the initial problem (5.1 ) : 

We confine ourselves below, however, to isotropic S i S k ,  
= m, . The right-hand side of (7.9) becomes then 

1 M , "  1 Mi BI ' -- exp[ - -(s-S, -) ] . 
( 2 r c ) ~ ' ~  ) (s:)x 2 MST MI 

We obtain ultimately for the solution of interest to  us 

The sum over I in this integral is the derivative of a Weier- 
strass elliptic function.23 Its asymptotes in terms of the pa- 
rameter M /M1r2 are easily obtained. For M /M,? % l it suf- 
fices to retain in the sum only the terms with I = 0. For 
M/M,?< 1 (for "long" times), on the contrary, contribu- 
tions are made by many terms, and the sum reduces to an 
integral and turns out to be proportional to (M,.T'/M)~'~. 
Equation (7.10) becomes then the stationary distribution 
(4.3). 

A transition takes place thus, at M / M l r 2 -  1, from the 
stationary distribution that managed to set in for smaller 
masses, to an exponentially small number of large-mass gal- 
axies. It is remarkable that only a transition to a stationary 
mass distribution takes place, without affecting the angular 
momentum. 

A maximum (with respect to both Mand  S) is obvious- 
ly present at S = S I M / M l  at S ,  #O. The width of the maxi- 

(7.13) 
where X"' (p,q = 0)  is the Laplace transform of the distri- 
bution that sets in by the instant the source is turned off. 
,-&cording to the foregoing, if M, < M  it suffices to retain in 
~ ' ( ~ ~ 0 )  the linear term in the expansion over p, and then, 
accorhng to (7.1) and (7.6), 

l+X'o' ( p ,  q=O) Ut= l+(pMl) '"t  th[ ( p M , ) ' " r , ] .  (7.14) 

The nonlinear, in contrast to the preceding, dependence of 
the denominator of (7.13) o n p  is connected with the addi- 
tional scale Mr: of the initial distribution that is an example 
of a delocalized initial condition. This distribution contains 
an intermediate power-law asymptote corresponding for- 
mally to an infinite initial mass (the square root term of the 
expansion inp) .  The mass corresponding to the exact condi- 
tion is of course finite. 

It is convenient to express the roots of the denominator 
of (7.13 ), which determine the poles, in terms of the quanti- 
ty x given by 

We see that the roots form a set x, ( I  = 0,1, ...), where 
n-1 < X, < n-I + 77/2. For r* /T < 1 we have x ,  =. (T, /T) ' I2, 
x, =.TI + r* /rn-I; for r*  /r) 1 we have x, =. .rrl + n-/2 
- TIT* (711 + n-/2). In final analysis we have (the contribu- 

tion of the residues) : - 

Let 1, correspond to the root x,. , for which the argument of 
the exponential in (7.16) is closest to unity: x:,M/M,TZ, 
- 1. Then 
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The sum over I in (7.16), accurate to exponentially small 
terms, can be terminated with I,, leaving only ( T , / T ) ~  in 
the denominators of (7.16), by virtue of (7.17), after which 
the summation can be extended to infinity. Ultimately T 

drops out from this part of the spectrum, 

(the sum here is the derivative of a Weierstrass function), 
corresponding to the unperturbed spectrum part due to the 
source. 

We consider now smaller masses - the region that had 
relaxed prior to turning off the source: 

We now define I, <I, such that x:, =. (T, / T ) ~ .  The sum over 
I can then be taken first from 0 to I, + k, where k is chosen 
such that xt, + , & (T, /r12 but xt, + , M /MI? < 1, and from 
I, + k + 1 to I,. In the first sum the exponential can be re- 
placed by unity, and in the second we need retain in the 
denominator only x:, after which the summation can be ex- 
tended to infinity. This enables us to express the sum in 
terms of an analytic Weierstrass function, and the principal 
term of the asymptote takes, if (7.19) is satisfied, the form 

We see that after the relaxation the slope becomes less steep 
because the small-mass contribution is decreased. The mo- 
tion of the front is particularly clearly seen on the plot of 
Mf(M,t), which has at M-M,? a maximum at which the 
square-root increase Mf(M,t) a changes to a square- 
root decrease Mf (M,t ) a M - . The relaxation front 
moves along the stationary part of the spectrum towards 
larger M. The relaxed part decreases with increase of T at 
fixed M (Fig. 3). 

Returning to the distributions in mass and in angular 
momentum, we note that under our assumptions the depen- 
dence on S, just as above [see (7.10) and others], is mani- 
fested by an additional factor that is independent of time. 
When the source is turned off, the distributions in mass and 
angular momentum are obtained from (7.16), (7.18), and 
(7.20) by multiplying by 

If the distribution part that is unperturbed by relaxation 
(at M&Mlr2 )  is to remain unperturbed after the source is 
shut off, it is therefore necessary that the number of colli- 
sions that have formed this distribution (7, ) be consider- 
ably larger than the number of collisions produced after the 
shutoff (7, & 7). 

This condition can be met relatively easily in an expand- 
ing universe, since the collision probability decreases rapidly 
with the expansion. 

FIG. 3. 

8. SELF-SIMILAR VARIABLES FOR A MASS-DEPENDENT 
COAGULATION COEFFICIENT 

In the general case when the merging coefficient de- 
pends on M (and S) it is impossible2' to obtain exact solu- 
tions of the nonlinear KE for the coagulation. Important 
information can be obtained, however, by separating the 
self-similar variables, particularly those describing the mo- 
tion of a nonstationary front. 

We begin with the case U = const and confine ourselves 
to the distribution in mass. Joining together the asymptotes 
of the solution (7.10) obtained above, we get 

This equation can be regarded as an interpolation formula 
corresponding to correct asymptotes of the exact solution of 
the KE. It coincides with the Schechter functionz8 used to 
describe the distributions, in the galaxy luminosity, of the 
fields and of the clusters. This luminosity is usually written 
in the form (we convert from luminosity to masses) 

f (M) -cp* (MJM.)  esp (-MIM.). (8.2) 

Comparing, we obtain the parameters of the Schechter func- 
tion 

It can thus be assumed that the power law in (8.2) cor- 
responds to a stationary spectrum, while the exponential de- 
crease corresponds to a nonstationary coagulation front. 
This attempt to interpret the Schechter function presup- 
poses that during the "action" time of the source (i.e., dur- 
ing the period of separation of the Jeans masses 6p/p - 1 and 
of their fragmentation) the number of collisions with merg- 
ing was substantially larger than after the source is "turned 
off." 

We note also that the physical meaning of the solution 
used in (8.1 ) differs substantially from the variant of Ref. 
24, where the Schechter function corresponds to a self-simi- 
lar asymptote of the initial coagulation problem at 
U -  MI + M2 (Ref. 26). 

The superscript a = - 3/2 is in quite fair agreement 
with the observed values,29330 but a detailed evaluation 
seems premature. 

We confine ourselves hereafter to the case when a con- 
stant source is turned on, and regard the merging probability 
as a homogeneous function, of degree u,  of the mass: 
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U h h I l k l I l  i "b iZ=~ ' iUdr8 i \ l , a iZ ,  (8.4) 

or in abbreviated form U = VM" (this must not be taken 
literally). We shall neglect the dependence on the angular 
momenta, which can be substantial for mergings. The values 
of u depend on the interaction mechanism and on the distri- 
bution in velocity, and are given in Ref. 3 1 and in the Appen- 
dix. 

The stationary distribution corresponding to a constant 
mass flux Jover the spectrum can be easily constructed from 
dimensionality considerations and from the definition of the 
flux: 

f,,, (M) = (J/V)'"M-'" + 3 '12 .  (8.5 

thereby determining the exponent a (corresponding to the 
Lushnikov-Smirnov spectrum" ) in the Schechter function: 

The dimensionless combination containing the time 

defines the self-similar variable 7 (Ref. 22), with the aid of 
which we obtain in the self-similar asymptotic region an iso- 
tropic solution that describes the nonstationary front: 

This makes it possible to set the quantity 7''" - "' in corre- 
spondence with the argument M/M, of the Schechter func- 
tion, whence 

The quantity q7 * in (8.2) makes it also possible to determine 
J/V. 

Note the different character of the solutions for u < 1 
and u > 1 (cf. Ref. 32). For u < 1 a self-similar distribution 
with a mass flux can be interpreted as motion of the front 
(8.9) towards large masses, while behind the front a station- 
ary distribution (8.5) is established. For the case u = 0, 
which admits of an exact solution, this can be seen directly 
from the asymptote (7.10) (see also Ref. 22). The integral 
that determines the total mass diverges in the region of large 
masses like M' ' - u"2 (on a stationary distribution), i.e., the 
analog of the "energy containing" region for the turbulent 
spectrum, meaning the "mass-containing" region is located 
at u < 1 on the large-mass side ( M -  co ). 

For u > 1, on the contrary, the total mass diverges as 
M- 0. The self-similar substitution (8.7) can in this case not 
be interpreted as the motion of the front of a stationary dis- 
tribution. As noted in Ref. 32, in the corresponding weak- 
turbulence situation the stationary distribution is formed 
"explosively" for all M, as is confirmed by the computations 
of Zakharov and Musher for a model problem. 

9. ACTIVITY INDUCED BY MERGING 

The extinction of the angular momentum on merging 
may be the most important reason why part of the matter of 
the disk-subsystem colliding galaxies drops out to the center 
of the combined system. A few preliminary remarks are in 
order. 

To estimate the disk-mass "defect" Am produced upon 
merging, we shall assume that the disk has a smaller mass m 
than the spheroidal subsystem, that their radii R are equal, 
and the angular momentum S = mRR is contained in the 
disk system rotating with average angular velocity R. Using 
the condition that the disk is in equilibrium 

which leads to R = (Gp) 'I2, wherep = M /R (we omit co- 
efficients of order unity), we obtain for the angular momen- 
tum 

The power 2/3 reflects the ratio of the dimensionalities of 
the disk and spheroidal subsystems. 

It is natural to define the mass defect Am as 

where m is the disk mass after merging, from which we ob- 
tain in our model (at constant density, a = S/S) 

It appears that a small fraction E of this disk-mass defect falls 
to the center within a time tact, thereby determining the ac- 
cretion rate &Am = &Am/taCt. 

The analysis of the preceding section allows us to find 
the probability (per unit time) of obtaining after the colli- 
sion an active galaxy with a defect Am: 

where 

S~~=6[Am-(m,+m,-m) 1, mi=m(Mi, S,). 

Writing out only the arrival term under the assumption that 
the activity time is significantly shorter than the interval 
between collisions (a generalization is obvious), and in 
(9.5) one has in mind a short time scale connected with the 
activity scale. To describe this, we must introduce into the 
equation a term that describes the activity damping: 

af ( M ,  S; Am) 1 
=I--f(M,S;Am). 

at  t ac t  

The activity time is apparently longer than the free-fall time 
(Gp) - '" (the galaxy-collision time) and is independent of 
Am. (The time responsible for the fine structure of the activ- 
ity is considerably shorter and is determined by the effective 
density in the vicinity of the central compact object; in the 
case of formation of an accretion disk it is determined by its 
lifetime.) The temporal argument inJ; which corresponds to 
evolution due to collisions, is in the present analysis a param- 
eter and has been left out of (9.5) and (9.6). 

If f(M,S) are known, we can estimate the number of 
active galaxies of a given activity level determined by Am, by 
considering the "stationary" solution of (9.6): 
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According to (9.5) and (9.2) we have 

f ( 1 ,  S; Am) = t.., dM' dSff ( M ,  S') f ( M - M ' ,  S-St) U6,., 

where 

P" S' + IS-S'I S 6,,=6 Am - ------ -- f. ( c P ) ' l l [  (MI); (Jf-&ff)v* -F I}' 

The integrals of (9.8) contain the mass and angular-momen- 
tum distributions obtained in the preceding sections. Ac- 
count must be taken here, of course, of the "clustering" ef- 
fect, which increases the merging probability in view of the 
increase of the concentrations n (thus, quasars are encoun- 
tered predominantly in galaxy groups, while radiogalaxies 
are encountered in centers of rich clusters26 ). 

As to the quantity E indicative of the mass-defect frac- 
tion falling to the center, it includes in all probability an 
exceedingly small parameter - the ratio of the scales of the 
central compact object and of the entire galaxy." 

APPENDIX 

The merging probability US,6, is proportional to 
U = (uv), where the angle brackets denote averaging over 
the momenta p, u is the cross section, and v is the relative 
velocity: 

Here r = R ,  + R,, and q, is a factor that takes into account 
the dependence of the merging probability on the relative 
velocity in frontal c~llision.~'  

We assume here the "elastic" variant of this quite unre- 
liably determined quantity. It follows for a homogeneity de- 
gree Ua VM" that 

The exponent a (not to be confused with the Schechter expo- 
nent) is connected here with the velocity distribution used in 
the averaging,31 viz., a = 1 for a collisionless distribution 
and a = 1/2 for a Maxwellian one. The exponent 0 de- 
scribes the change of the radius as a function of the mass: 
R a @. A t 0  = 1/3 the value 6 = 0 corresponds to u > 1 for 
gravitational collisions and u < 1 for contact collisions. At 
6 = 1/2 (i.e., the decrease of the merging probability in fron- 
tal collision is inversely proportional to the velocity) we 
have u = 1 for contact collisions for all a. For f = 0 and 
a = 1/2 even a small compression with increase of mass 
( 0  = 1/4) leads to u = 0 for contact collisions. On the other 
hand if 6 s  1 for a = 1 the exponent u vanishes at B = 1, i.e., 
in the situation R a M which is realized in large scales of 

mass and density changes.*' In this case, however, the value 
of u is quite sensitive to the difference between and unity. 

According to (9.2), the morphologic type should ap- 
parently correspond toS  / M  k ,  where k = (3  + 0)/2, so that 
at p = const we have k = 5/3 (see Refs. 20 and 34). 

"Of course, difficulties are encountered in this approach too, see the 
corresponding discussion and citations in Ref. 4. 

2' Solutions of the initial problem have been obtained for particular 
caSeS.25-27,1 1 

3'The complicated hierarchy of the processes that lead to falling of a 
fraction of the masses to a center, and a numerical analysis of this prob- 
lem, are treated in a brief review by Hernquist3bnd in the literature 
cited therein. 

4 '  Equation (A 1 ) contains, generally speaking, also dimensionless factors 
made up of the ratios of the masses, radii, and velocities, which do not 
influence the degree of homogeneity but are of importance for the 
asymptotes. 
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