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A theoretical investigation is reported of the problem of electrical contacts with low-dimensional 
systems. In contrast to the conventional contacts with macroscopic samples, the contacts under 
consideration represent junctions between electron systems of different dimensions. The 
difference between the energy spectra and the densities of states on the two sides of a contact and 
the specific nature of the screening of the contact electric field in a two-dimensional (or one- 
dimensional) electron gas give rise to qualitatively new contact phenomena. A solution is given of 
the problem of the distribution of the potential and carrier density in contact layers of different 
low-dimensional systems (such as a quantum well, a heterostructure with modulated doping, an 
inversion layer in a metal-insulator-semiconductor structure, or a quantum filament) both in the 
absence and presence of a quantizing magnetic field. A slow fall of the potential (hyperbolic in the 
two-dimensional case and logarithmic in the one-dimensional case) results in divergence of the 
capacitance of depletion layers in ideal structures. In the case of real contacts this divergence is 
suppressed if we allow for such factors as the finite dimensions of the contact region in a two- 
dimensional (one-dimensional) electron gas, the influence of a metal gate in a metal-insulator- 
semiconductor structure, etc. The current-voltage characteristics of such junctions are calculated 
allowing for quantum-mechanical reflection of electrons from the interface between electron 
systems of different dimensions. The specific features of formation of ohmic contacts with 
different low-dimensional systems are also discussed. 

1. INTRODUCTION 

Investigations and device applications of transport ef- 
fects in low-dimensional systems require formation of elec- 
trical contacts with a two-dimensional or a one-dimensional 
electron gas. This can be done in a variety of ways. In the 
case of metal-insulator-semiconductor (MIS) structures 
the role of contacts is played by heavily doped source and 
drain regions. Metal contacts in heterostructures are usually 
formed by alloying or by evaporation. However, in all cases 
the contact region is sufficiently large that it can be consid- 
ered as a bulk metal or a heavily doped semiconductor. 
Therefore, in contrast to a conventional contact with a mac- 
roscopic sample, a contact with a two- or one-dimensional 
electron gas is a junction between electron systems of differ- 
ent dimensions. The properties of such contacts have a num- 
ber of qualitative distinguishing features which we shall con- 
sider below (some of the results are published in a 
preliminary form in Ref. 1 ) . 

These distinguishing features are associated, firstly, 
with the difference between the electron energy spectra on 
both sides of the contact and, secondly, with the specific 
nature of screening in low-dimensional systems. The first 
difference has the effect that the contacts in question are 
usually characterized by a higher resistivity and are strongly 
nonohmic. In fact, the Fermi level in a low-dimensional re- 
gion is located higher, because of the size quantization ener- 
gy E, , than in a three-dimensional contact, even if the latter 
is heavily doped, so that a contact depletion layer is formed 
(provided the contact does not have a much lower work 
function than the low-dimensional material). We shall con- 
sider the properties of such a depletion layer in the next sec- 
tion. 

2. CONTACT WITH A QUANTUM WELL 

We shall consider a contact between a bulk degenerate 
sample and a region containing a two-dimensional electron 
gas (2DEG) of density n,. The analysis is simplest in the 
case when the 2DEG is not spatially separated from the posi- 
tive charge compensating it. This situation occurs in thin 
films or in bulk-doped quantum wells. The distributions of 
the charge and potential in such a system are shown schema- 
tically in Fig. 1. These distributions can be found by solving 
the Laplace equation A p  = 0 in the space surrounding a film 
and for a symmetric position of a bulk contact and identical 
permittivities K in the regions z < 0 and z > 0. It is sufficient 
to consider only the first quandrant where x, z > 0. 

We shall begin with the case of relatively weak band 
bending when the contact potential eV is less than the Fermi 
energy E, = d2n,/m* of the 2DEG (m is the effective 
mass of an electron). If we ignore the change in the potential 
across the film thickness, we find that the local density n ,  of 
the degenerate 2DEG is related linearly to the potential": 

This leads to the following conditions: 

The Laplace equation with such boundary conditions is 
readily solved and in the case of the potential in a film we 
obtain 
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miaxis u > 0 , 0  < v < .rr in the uv plane where the nature of the 
boundary conditions is now the same on both sides of the 
semiaxis: 

FIG. 1. Schematic representation of a contact between a two-dimensional 
electron gas (2DEG) and a three-dimensional gas (3DEG) ( a ) ,  distribu- 
tion of the surface potential ( b ) ,  and qualitative behavior of the potential 
energy of an electron as well as bending of the energy bands in a 2DEG 
( c ) .  The shaded regions are filled with electrons. 

Here, si and ci are the integral sine and cosine; a, = x2/ 
m*e2 is the effective Bohr radius playing the role of the 
screening length in a degenerate 2DEG (Ref. 2).  In spite of 
the presence of sines and cosines, the function (3 )  is mono- 
tonic and has the following asymptotic forms: 

It should be noted that a hyperbolic law similar to Eq. (5) ,  
demonstrates a fall in the charge density on a metal electrode 
as we move away from the 2DEG plane. 

The problem becomes more complex when the band 
bending is strong. If we use 1 to denote the coordinate of 
such a point in the film at which ep(1,O) = - E,, then Eq. 
( 2 )  is valid only for x > 1, whereas for x < 1 there is total 
depletion and the boundary condition becomes 

3 rp 
-(x, 0) =-2nen,,/x. 
d z  

(6)  

Since the boundary condition changes at the int x = I, 
the boundary condition changes it is convenient to solve the 
problem by the conformal transformation 

which transforms the first quadrant in the xz plane to a se- 

a v nel erp u - (u ,O)=, -n , , - sh- ,  
dv X E p  2 

8~ nel v -(O, v ) = - n d O s i n - .  
au X 2  

It is not possible to obtain a general analytic solution. How- 
ever, for eV>EF (which we see later implies that Iga ,  ), it is 
quite easy to calculate the distribution of the potential in a 
film subject to the condition 1 - x>a,, i.e., sufficiently far 
from the point x = I. For z = 0 and z > I (i.e., for v = 0 and 
u > 0 )  we have to assume p z O .  The problem is then readily 
solved and transformation back to the coordinates x, z gives 

2 V (1'-x2) '" Zen,, 1- (12-x2) Ih 

cp ( x , 0 )  = - - arctg -- x ln 
n x X I+ (12-x2)"*. 

The thickness of the depletion layer I has been assumed 
so far to be an independent parameter. In fact, it is clear that 
it must be expressed in terms of Vand n,o. This relationship 
is easiest to find directly from Eq. ( 1 1 ). We can readily see 
that the field in a film dp(x,O)/dx has no singularities and 
x = I only if 

We can see that in the 2DEG case the depletion region thick- 
ness is proportional to the contact potential and not to the 
root of this potential, as in the three-dimensional case. 

The approach we have adopted (which is an analog of 
the Schottky approximation) is unsuitable for an analysis of 
the potential in the range x 2 I. The solution subject to the 
exact boundary conditions of (8)-(10) is readily obtained 
for x > I  ( ~ $ 1 ) .  It is identical with Eq. (5 ) .  

The slow fall of the potential and of the charge density 
described by Eq. ( 5 )  is not specific to purely two-dimension- 
al systems, but is a general law which applies (apart from a 
coefficient) also to films with a three-dimensional dispersion 
law or to a 2DEG in a quantizing magnetic field (see Sec. 5) .  
It is related to the fact that the distribution of charges in the 
contact always has the geometry of a two-dimensional dipole 
characterized by a potential of the l /x type at large dis- 
tances. 

In the case of a contact layer with the above distribution 
of the charge and potential, the specific capacitance (per 
unit length) is 

where L is the distance under which the hyperbolic asymp- 
tote of the potential ( 5 )  is valid (see below). In the three- 
dimensional case the capacitance described by Eq. ( 13) has 
the following features compared with the capacitance of a 
depletion layer:. 

1 ) the capacitance is practically independent of the vol- 
tage across a contact because, in accordance with Eq. ( 12), 
the thickness of the depletion layer is proportional to V; 
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2) the capacitances of the total depletion layer x <  I 
[first term in Eq. ( 13) 1 and of the "tail" of the potential 
region x > I [second term in Eq. ( 13 ) ] are connected in par- 
allel and represent two regions of the same capacitor plate 
(the second plate is a metal contact); 

3 )  the main charge in the contact region is concentrated 
not in the total depletion layer. but in the slowly decreasing 
tail. 

We shall now consider the problem of the characteristic 
cutoff length L. Such complications of the above very simple 
model as an allowance for the finite thickness of the film or 
for the nonequipotential nature of the contact material do 
not alter the asymptotic form (5)  of the potential, i.e., they 
do not suppress the divergence of the capacitance. The ca- 
pacitance becomes finite only if we allow for the finite di- 
mensions of the contact region or of the 2DEG itself. The 
smallest of these dimensions plays the role of the characteris- 
tic length L in Eq. ( 13). 

3. CONTACT WITH AN INVERSION LAYER IN A METAL- 
INSULATOR-SEMICONDUCTOR STRUCTURE 

We shall now consider a different semiconductor struc- 
ture with a 2DEG in the form of an inversion layer of an MIS 
field-effect transistor. This situation differs from the case of 
a quantum well discussed in Sec. 2 by the following two fea- 
tures: 

1) the energy of a quantum level E,  and the 2DEG 
density n, are mutually related; 

2) the positive charge which compensates the charge of 
the 2DEG is concentrated in the metal electrode, which is at 
a distance d from the 2DEG. 

The first circumstance has the effect that the contact 
potential Vat the interface between a channel and drain or 
source regions is low and a total depletion layer is not 
formed. In fact, if a heavily doped contact is made of the 
same material as the region where the 2DEG is located, the 
contact potential is related entirely to the energy shift El  in 
the 2DEG. However, in such a contact depletion laver the 
value of n, is small and, consequently, the surface field gov- 
erning the quantization energy El  and the contact potential 
is also weak. 

Let us estimate Vin a channel of an MIS structure near 
a strongly degenerate three-dimensional contact character- 
ized by the Fermi level E; (Fig. 2) .  In our estimates we shall 
represent the channel by the simplest triangular well with an 
electric field F = 47~en, / x .  In such a well we have 

E ,  *4.68 ( ~ ~ e ~ f i ~ n , ~ / x ~ r n ' )  ' I * .  

Then, the contact density n ,  (0)  in the 2DEG is described by 
a self-consistent equation 

The solution of this equation is followed by determination of 
the contact potential from 

We can easily see that the asymptotic solutions of Eq. 
(14) are 

0.1% (m*)  '" (e,')"ine2fi, eF1<E,, 
n8 (0 )  { 

m'epr/nfi2, ~ p '  >EQI 

Ad Metal 

* 
2 DEG 

a 

FIG. 2. Model of a contact with a 2DEG in an MIS structure (a, the 
heavily doped drain or source region is shown shaded) and qualitative 
behavior of the potential energy of an electron in the ZDEG planeallowing 
for an inhomogeneity of the channel ( b ) .  

where EB is the effective Bohr energy. In any case, right up 
to the contact itself there are electrons in an inversion layer 
and the electric field of the gate does not penetrate into the 
bulk of the semiconductor. A calculation of the contact ef- 
fects in the 2DEG can be reduced to the solution of the La- 
place equation only in the insulator occupying the region 
O<z<d and characterized by a permittivity Z. If a heavily 
doped electrode with a potential - V occupies the region 
defined by x < 0 and z < 0, and the 2DEG can be represented 
by the half-plane z = 0 and x > 0, the boundary conditions to 
the Laplace equation become 

cp (x, d )  =4nen,,d/%, (17) 

(5, is the effective Bohr radius in the case when the permit- 
tivity is &). 

We shall assume dsii , .  Then, the potential in the 
ZDEG in the range xsii ,  is 

exp (-nnxld) 
cp(x,o)=-- ' d2+ (nnZB/ l )2  . 

2 ",=I 

In the range ii, g x  gd ,  this expression reduces to the famil- 
iar Eq. (5),  whereas for x > d the screening by the gate cuts 
off sharply the potential: 

cp ( x ,  0 )  =- ( VZB/2d) exp (-xxld).  (19) 

The specific capacitance of the contact is 

We can calculate it ignoring the finite nature of the dimen- 
sions of the contact, which are as a rule much greater than d 
(by analogy with Sec. 2),  because the gate provides a much 
more effective screening of the contact field. 

The expressions in this section can be used also to de- 
scribe contact phenomena in single heterostructures with 
modulated doping, where the role of d is played by the total 
thickness of the undoped region (spacer) and of the deple- 
tion region in a wide-gap semiconductor. The only differ- 
ence is that the contact regions in heterostructures (usually 
alloyed metallic) may have a different work function from 
that of a semiconductor containing a 2DEG. Depending on 
the value of the work function, the contact may (as in Sec. 2)  
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or may not include a total depletion layer. As pointed out 
already, such a depletion layer should not occur in the MIS 
structure considered above. This accounts for the absence of 
direct experimental evidence that the contacts are nonohmic 
in conventional silicon MIS structures. 

4. FLOW OF A CURRENT ACROSS A CONTACT 

If the interface between a 2DEG and a three-dimen- 
sional region is relatively abrupt compared with the electron 
wavelength A, it follows that an electron incident on the in- 
terface may suffer quantum-mechanical reflection. We shall 
calculate the reflection coefficient R ignoring the band bend- 
ing in the 2DEG calculated in Sec. 2, which is permissible if 
the condition A 4  I is satisfied. The general formulation of the 
problem was discussed in Ref. 3. The results of a numerical 
calculation for a 2DEG bounded by a parabolic potential are 
also given in Ref. 3. We calculated R using a more realistic 
model of a rectangular quantum well of width a and with 
infinitely high walls located at z = + a/2 and x > 0. 

We now consider an electron which belongs to the first 
level of a 2DEG and is incident from the region x > 0 on the 
interface x = 0. We assume that the energy of this electron E 
(without allowance for motion along they axis) satisfies the 
condition E, < E < E,, where En = ~ ~ + i ~ n ~ / 2 m * a ~  is the en- 
ergy of the nth level. Then, the complete wave function to the 
right of the interface (located in the 2DEG) is of the form 

[2me (E-E,) 1'"s 
$+ = c o s l E ) [  e x p ( -  i 

A 

( [2m0 (E,.+,-E) ] ' b ~  
xexp - a .  

f i  

To the left of the interface the electron gas will be regarded as 
free and we can write down the wave function in the form 

= ( 2 m * ~ ) ' ~ ~ / h  

R ( k )  cos (kz )  
0 

X exp [ - i i 2ZE - - k.)li1 x] d k  

where B(k)  and C(k)  are defined in the Appendix. It is also 
shown in the Appendix that matching of Eqs. (21 ) and (22) 
at x = 0 give rise to the following system of equations for the 
unknown values of R and A,, : 

where 6 = E / E ,  , 

The solution of the above system provides comprehen- 
sive information on the nature of the transport of electrons 
across an interface between two- and three-dimensional sys- 
tems. We limit ourselves only to calculation of the coefficient 
R at low values of the kinetic energy of an electron: { - 1 ( 1. 
Under these conditions we can assume g=11 throughout the 
system represented by Eqs. (23) and (24) (including the 
coefficients a andp),  but with the exception of the left-hand 
side of the first equation. It immediately becomes clear that 
both A ,  and 1 - R are proportional to (6 - 1 ) 'I2, i.e., to the 
square root of the kinetic energy of a two-dimensional elec- 
tron (this behavior of R was first pointed out in Ref. 3). A 
numerical calculation shows that 

R=1- (2.68-1.361) (g - I ) '" .  

Consequently, the probability of the passage of an electron 
across the interface is 

We now calculate the current-voltage characteristic of 
the investigated contact. In the diode approximation when 
cF < eV=e( V, - U) ( V,, is the equilibrium contact poten- 
tial and Uis the applied external voltage) the current density 
per unit length of the contact is 

.-eV0 x e x p  (+) [ erp ($) - I ]  

Here, A * = em*/27?fi3 is the effective Richardson constant 
for thermionic emission. We recall that according to the 
above analysis, the condition for rigorous quantitative valid- 
ity of Eq. (28) is ensured by the requirement 1$A, i.e., 

xfi T 
-(,)"">I. 
eZ  EF 

It is interesting to note that the current density of Eq. 
(28), calculated per unit area of the transverse cross section 
of a film, agrees (apart from a numerical factor) with the 
current density in a conventional three-dimensional 
Schottky diode. This result is far from trivial. A different 
density of states in a 2DEG alters the power exponent of the 
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temperature which occurs in the preexponential factor 
( T3l2 instead of T2) ,  but this is compensated by the factor 

related to the square-root dependence of Won the ener- 
gy. In the case of a 2DEG with a smooth boundary, where 
W=: 1, such universality of the current-voltage characteris- 
tic may not apply. 

Since the contact potential (eVo) occurring in Eq. (28) 
depends on the size quantization energy E , ,  we can expect 
the resistance of the monotypic contacts (which may be de- 
termined from the frequency characteristics of a contact) 
with quantum wells of different width a and their current- 
voltage characteristics differ considerably. 

5. CONTACT IN A QUANTIZING MAGNETIC FIELD 

Let us now consider how a quantizing magnetic field H, 
parallel to the z axis, affects the distribution of the potential 
in the contact described in Sec. 2, i.e., we shall solve the 
problem of the screening of the contact potential in a zero- 
dimensional electron gas. We assume that in the interior of a 
2DEG the Fermi level coincides at T = 0 with the N th Lan- 
dau level characterized by an occupancy v ( 0  < v < 1 ) . For 
the time being we assume that the depletion-inducing con- 
tact potential eV does not exceed the separation between the 
Landau levels fiw, =eW/m*c. Then, a film can be divided 
arbitrarily into two parts. In the contact part 0 < x  < lH (I, 
will be defined later), the potential p(x,O) varies smoothly 
from V to zero.The N th Landau level is then emptied and the 
film carries an uncompensated positive charge with a con- 
stant surfacedensity uo = ve2H/& (without allowance for 
the spin splitting). Beginning from the point x = I, the po-' 
tential p(x,O) vanishes, but the charge in the film is still 
generally different from zero, because under the conditions 
of a purely discrete energy spectrum the relationship 
between the electron density and the Fermi level is multiva- 
lued. 

If we bear this point in mind, we find that a calculation 
of the potential in a film requires solution of the Laplace 
equation in the first quadrant (Sec. 2)  subject to the follow- 
ing boundary conditions at z = 0: 

This was precisely the problem solved in Sec. 2 in the 
limiting case when e V ~ E , .  Therefore, the distribution of the 
potential in the film in the case when x < I, is described by 
Eq. ( 1 1 ) where en, is replaced with uo, and by analogy with 
Eq. ( 12) we have 

Since the quantity v is periodic in H - ', the thickness of 
the depletion layer I, is an oscillatory function of the mag- 
netic field intensity. 

When we have the complete solution p(x,z), we can 
readily find also the law governing the change in the surface 
charge on a film u(x)  = - (x/2~)dp(x,O)/az in the region 
where x > 1 . We can easily show that 

o (x) = - arctg 
JI 

It follows from the comments in Sec. 2, that the asymptote 
form u(x)  for the case when x s l ,  corresponds to the de- 
pendence ( 5 )  and that the calculations of the capacitance 
leading to Eq. ( 13) are retained only to the extent represent- 
ed by the replacement of I with I,. 

The results obtained can be generalized to the case of a 
stronger band bending e V >  fiw, . The qualitative nature of 
the charge and potential distributions in a film are shown for 
this case in Fig. 3. In the limit e V s h , ,  the distribution 
approaches a dependence calculated in Sec. 2 in the absence 
of a magnetic field. 

6. CONTACT WITH A QUANTUM FILAMENT 

Another interesting example of a contact with a low- 
dimensional system is that between a three-dimensional hea- 
vily doped semiconductor or metal (z < 0)  and a quantized 
semiconductor filament, which occupies the region z > 0, 
p<a  in a cylindrical coordinate system. We assume that far 
from the contact the filament potential is p ( p  = a,z) = 0. 
Near the contact we have p(a,z) #O and the charge per unit 
length of the filament is ev(z). In contrast to the two-dimen- 
sional case discussed in Sec. 2 and characterized by a con- 
stant density of states, we now have a relationship between 
v(z) and p(a,z) which is no longer linear. However, we shall 
consider only the case of weak band bending (eV<&, ) when 
the dependence v[p(a,z) ] can be linearized and written in 
the form 

Y (q  (a, z) ) =Y (z) =-yvoeq (a, z) /er, (32 

where vo is the equilibrium linear electron density and y is a 
numerical coefficient equal to 1/2 in the purely one-dimen- 
sional case when only one quantum level is filled. 

In this situation the distribution of the potential around 
a filament is deduced from the solution of the Laplace equa- 
tion subject to the boundary conditions 

aq (a, z) lap=r,-'cp (a, z) , (34) 

where p,,, = xa~,/2e~yv, is the one-dimensional screening 
length. The final expression for the potential is 

FIG. 3. Distribution of the surface charge along the coordinate in a con- 
tact subjected to a strong magnetic field ( a )  and qualitative behavior of 
the potential energy of an electron in the 2DEG plane (b).  
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where K, (x) are Bessel functions with an imaginary argu- 
ment. 

In the one-dimensional case under discussion the con- 
tact field is screened even less than in a 2DEG and the poten- 
tial along the filament falls very slowly: 

We can easily show that the surface charge density on the 
z = 0 plane at large distances from the filament decreases as 
[pln ( p /a )  ] - '. Under these conditions Eq. ( 13 ) for the ca- 
pacitance of an ideal contact diverges and in reality is gov- 
erned by the geometric factors to an even greater extent than 
a contact with a 2DEG. These factors may be the length of 
the quantum filament and the dimensions of the metal elec- 
trode. Even when only one of these dimensions has a finite 
value L, we find that the contact capacitance becomes 

In contrast to Eq. ( 13), the quantity C is not the specific 
capacitance of the contact but the total. 

We have thus demonstrated that the contacts with low- 
dimensional electron systems have a number of basically 
new features due to the specific nature of the energy spec- 
trum and the processes of screening in systems of this kind 
(this applies also in the presence of a quantizing magnetic 
field). Naturally some effects and some types of low-dimen- 
sional structures are not discussed above. For example, these 
structures include a contact between two- and one-dimen- 
sional systems, a contact between two different two-dimen- 
sional systems (at the boundaries of which a quasione-di- 
mensional channel may appear), etc. The effects 
encountered in such structures and the possibility of their 
experimental realization should be one of the objects of the 
present study. 

APPENDIX 

The conditions for matching the wave functions (21) 
and (22) at x = 0 are 

m 
n (2n + I )  z 

( l - R ) c o s ( " ) + ' ~ n c o s [  a 1, I Z I < - ~  a (am'yn B ( k )  oos (kz)  dk + 5 C ( k )  cos (kz )  dk = 7i=1 

* ( 2 m * ~ ) ' f z / h  

(A1 

m 
li2k2 - S ( - E )  C ( k ) c o s  (kz )  d k .  

( 2 m * ~ ? l * l h  

Multiplying Eq. ( A l )  by cos(k 'x) and integrating z from 0 
to W ,  we have 

CQ 

B ( k )  , k c  (2m'E)"/h, (A31 
C ( k ) ,  k> (2m'E)"lR. 

The values of B ( k )  and C ( k )  obtained in this way are substi- 
tuted in Eq. (A2). Multiplying the result successively by 
COS(~TZ/U), COS(~TZ/U),  etc. and integrating from z to 0 and 
then to CO, we obtain a system composed of Eqs. (23) and 
(24). 
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