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It is shown that in tunneling motion in a dielectric crystal the viscous ("ohmic") regime of 
dissipation arises only when two-phonon (many-phonon) interactions are taken into account. 
One-phonon interactions in any order lead only to polaron narrowing of the band. It is found that 
two-phonon interactions lead to an exponential decrease of the coherent-transition amplitude 
even for T( 8, and give rise to a transition from coherent quantum diffusion to sub-barrier 
incoherent diffusion. The latter, however, does not involve stimulated phonon transitions. In an 
analysis of crystals of lower dimensionality it is shown that the role of one-phonon processes in the 
kinetics is restored only in the cased = 1 under the additional condition that the "transport 
effect" is absent. The analysis is based on a direct determination of the overlap integral of the 
phonon wave functions that form during the finite time for which the particle can be found in an 
individual elementary cell. The special role of two-phonon processes in the determination of the 
effective action in the technique of functional integration is traced independently. 

1. INTRODUCTION 

The range of phenomena that has become known as 
"tunneling with dissipation" has been widely discussed re- 
cently (see, e.g., Refs. 1 and 2). We have in mind sub-barrier 
tunneling in conditions of interaction of the particle, or more 
complex object, with excitations of the medium. The Hamil- 
tonian of the problem usually has the form 

H=H,+H,,+Hi,, (R) , HR=MRZ/2+U (R) , (1.1) 

where H, is the Hamiltonian of the particle in the fixed 
potential relief U(R), He, is the Hamiltonian of the excita- 
tions of the medium, and Hint (R)  is the interaction of the 
particle with the excitations. 

In the case of interaction with phonons Hint is chosen in 
the form 

corresponding to one-phonon interaction (here, bB and b sf 
are phonon annihilation and creation operators). Important 
in the analysis of the problem is the assumption that the 
spectral function, of the form 

approaches a constant value as w -0, i.e., 

With this condition the extremum of the action constructed 
for the Hamiltonian ( 1.1 ) leads to the classical equation of 
motion of the particle in the form of Newton's equation with 
friction. I f 2  At first glance, such a "viscous" ("ohmic") re- 
gime of motion of a slow particle, especially when we go over 
to a crystal, appears natural. In addition, if we turn to ( 1.3) 
it is easy to understand that the result ( 1.4) requires a special 
assumption concerning the dependence of the density of 

states of the phonon spectrum on the frequency for w -0. We 
note that in the case of interaction with conduction electrons 
in a metal the finiteness of the density of states at E = E, 

automatically ensures the validity of the relation ( 1.4) for 
the appropriately defined functionf,, (w ). The same is true 
for the problem of tunneling in a Josephson junction, where 
the role of the particle coordinate in ( 1.1 ) is played by the 
phase of the superconducting wave function (see, e.g., Refs. 
1-4). However, by considering the tunneling motion of a 
particle in a crystal of dimensionality d, it is not difficult to 
convince oneself that the frequency dependence of the func- 
tion ( 1.3) as w - 0 in the general case has the form5 

f (a) a o d - ' + ( z ) .  (1.5) 

The extra 2 in the power exponent appears whenever c, (R,  ) 
and cB (R,) in the field of a phonon with wave vector q differ 
only by the phase factor exp(iq.Ri ), which predetermines 
the appearance of a "transport effect". It follows from ( 1.5) 
that the limit ( 1.4) is valid only in a one-dimensional crystal 
in the absence of the transport effect. In all other cases, one- 
phonon interaction does not lead to tunneling motion in the 
viscous regime, which is usually identified with the phenom- 
enon of tunneling with dissipation. Therefore, in particular, 
analysis of tunneling motion in a three-dimensional crystal 
by the technique of functional integration with the use of the 
relation ( 1.4) has a doubly artificial character, leaving open 
both the question of the mechanism responsible for tunnel- 
ing with dissipation and the character of the dependence on 
the temperature Tand on the dimensionality d of the crystal. 

The breakdown of the viscous regime of tunneling in a 
crystal makes it necessary, in the general case, to go beyond 
the framework of the one-phonon interaction. For this the 
Hamiltonian (1.1) should be supplemented, at least, by a 
term corresponding to the two-phonon interaction 

Because of the small scale of the displacement of the atoms in 
the crystal at low temperatures, allowance for the many- 
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phonon interaction in ( 1.1 ) in the form ( 1.6) is sufficient. 
As will be shown below, the viscous regime of tunneling is 
then restored and it is the two-phonon interaction that turns 
out to be decisive for the quantum diffusion of particles in a 
regular crystal. We stress that we are speaking specifically of 
the interaction (1.6), and not of a two-phonon process that 
appears in second order with ( 1.2). 

We remark that, even in an early stage of the study of 
quantum diffusion of particles in a crystal using the formal- 
ism of the kinetic equation for the density the 
important role of two-phonon processes was revealed. At the 
same time, there was no general approach permitting the 
determination of the amplitude of the tunneling transition 
between neighboring unit cells while simultaneously allow- 
ing for the one-phonon and two-phonon interactions, or, 
correspondingly, the determination of the coherent and in- 
coherent diffusion and also the band regime of motion in the 
crystal. As is shown in the present paper, the solution of this 
problem can be found by means of a method based on the 
direct determination of the overlap integral of the wave func- 
tions of the medium that are formed during the finite time r 
for which the particle is in an individual unit cell - a method 
that has been applied previously to the interaction with con- 
duction electrons9310 and to the one-phonon intera~tion.~ 
The analysis performed below is devoted primarily to this 
method. Independently, we shall examine how the effective 
action in the functional-integration technique is changed 
when ( 1.6) is taken into account, and how, at the same time, 
an infrared divergence appears in the action. 

It should be noted that the question of how the role of 
two-phonon processes is worked out and how the results of 
Refs. 6 and 7 are regained can already be extracted, in part, 
from Kondo's paper11 devoted to the diffusion of a ,u+ 
muon in a metal. 

2. THE ADIABATIC APPROXIMATION 

As the starting point we shall consider the problem of 
sub-barrier tunneling between wells in which the lowest level 
of one is shifted by an amount f from the lowest level of the 
other. Let the tunneling-transition amplitude A, (more pre- 
cisely, the amplitude A, renormalized on account of the in- 
teraction with phonons) and the bias be small in compari- 
son with the spacing w, to the next level and also in 
comparison with the characteristic frequency 8, of the 
phonon spectrum of the crystal: 

In addition, we assume that T&w, and consider transitions 
only along the lowest level. In these conditions the tunneling 
particle spends a long time 7% 19 6 ' in an individual well. 
During this time, a many-particle wave function q:'(R,x), 
incorporating all virtual excitations with w > r -  ' , has time 
to be formed; here, x are the collective coordinates of the 
medium and i = 1,2 labels the well. 

The excitations of the medium can be divided into 
"fast" excitations, with frequencies w > w,, and "slow" exci- 
tations, with w < w,. For barriers of ordinary shape the char- 
acteristic inverse (imaginary) time of the motion under the 
barrier has the same scale as w,, and, for simplicity, we shall 
not distinguish these two characteristics. It is not difficult to 
show that the fast excitations adapt to the motion of the 

particle both in a well and under the barrier, leading to re- 
normalization of the potential relief and, to a small extent, of 
the mass Mof the particle. The slow excitations, on the con- 
rary, do not follow the particle, and the part corresponding 

to them in the wave function q:' is concentrated toward the 
center of the potential well. We note that in the case of the 
interaction of the tunneling particle with the electron sub- 
system this separation of the excitations has been traced ex- 
plicitly in Ref. 9. Specifically, the interaction with the slow 
excitations predetermines the appearance of the polaron ef- 
fect and the diffusion kinetics at low temperatures. Note that 
in both the limiting cases w,) 8, and a, 9 OD, which display 
qualitatively the entire physical picture, the actual division 
of the frequency intervals is simplified. In the former case, 
only slow excitations are present, and there is no preliminary 
renormalization of the potential relief. In the latter case, on 
the other hand, practically the entire spectrum takes part in 
the renormalization. Here the polaron effect in the three- 
and two-dimensional cases is small, and, when conditions 
(2.1 ) and w,, Tare fulfilled, the kinetics is determined by 
the phonons with frequencies w 4 w,. Only in the one-dimen- 
sional case in the absence of the transport effect (see Ref. 5, 
and also below) do the results depend on the position of the 
boundary between the slow and the fast excitations. But this 
dependence is weak (logarithmic), and some degree of arbi- 
trariness in the fixing of the boundary does not affect the 
qualitative results (cf. the discussion in Ref. 2). Henceforth, 
when considering the interaction with slow excitations, we 
shall use for the upper boundary of the spectrum the nota- 
tion w, = (a,, 8, ),,, . 

We single out in the renormalized potential relief an 
individual well U"' (R),  extending its edges in the usual 
way. If we denote by H k' the Hamiltonian of a particle in 
such a well, the general Hamiltonian of the one-well problem 
can be written in the form 

H'=H,'"+ H,,,+V"' (R, X )  , 

where V'" (R,x) is the interaction of the particle with the 
slow phonon excitations. We denote by H ' (R)  the difference 
between the true potential relief and the chosen "no-decay" 
well U"' ( R ) .  Then for the matrix element of the transition 
from one well to the other we have 

~ ~ , v = ~ y v ~ 2 )  (R, x) 1 H r  (R) 1 Y?' (Rj X) )- (2.3) 

Knowledge of the matrix elements (2.3), both nondiagonal 
and diagonal in the state v of the medium, fully determines, 
under the condition (2.1 ), the problem of tunneling with 
interaction with the medium. This also applies to the prob- 
lem of a coherent transition with the formation of a band 
(v' = Y )  if we are concerned with a crystal. 

The fact that only the interaction with the slow excita- 
tions appears in (2.9) means that it is possible to seek the 
eigenstates of this Hamiltonian in the adiabatic approxima- 
tion 

yv(i) (R, x) =(po( i )  (R, x) (Dv(') (x) , (2.4) 

where the wave functions p and @t" are solutions of the 
equations 
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(for simplicity we temporarily omit the index i )  . We expand 
the energy E,(x) in powers of the displacement of the atoms 
from their equilibrium position: 

where x5 are the normal phonon coordinates. 
Up to now, in the determination of the restructuring of 

the phonon wave function @, (x)  only one-phonon pro- 
cesses [the first term in (2.6) ] have been taken into account. 
However, as pointed out in the Introduction, the inclusion of 
two-phonon processes is fundamental for the description of 
quantum diffusion in crystals and, in general, for the deter- 
mination of time correlation functions. At the same time, the 
inclusion of higher-order terms in (2.6) will not introduce 
any qualitative changes. Below, we shall confine ourselves to 
the first two terms in the expansion (2.6). 

3. CONSTRUCTION OFTHE SITE WAVE FUNCTION 

In accordance with (2.5) and (2.6) the wave function 
@, (x) is an eigenfunction of a Hamiltonian having, in sec- 
ond quantization, the form [cf. (1.2) and (1.6)] 

Using the shift operator for normal oscillators, we can write 
out directly a unitary transformation that eliminates the 
one-phonon processes from the Hamiltonian (3.1 ): 

Here, +,, (x) is an unperturbed state of the phonon subsys- 
tem and b B+ = b - A5 /w5 are the creation operators of 
the shifted normal oscillators. By direct substitution it is 
easy to convince oneself that the coefficients A,  should satis- 
fy the equation 

which is easily solved if the coefficients Ba5 can be repre-' 
sented in the form of a product aB, Bp (here a = + 1 ) . 

We now consider the restructuring of the wave function 
on account of two-phonon processes in perturbation theory. 
The coefficients of the expansion of @, (x)  in the basis of the 
functions (3.2) are equal to 

Correspondingly, the total admixture of states in the initial 
state Y is characterized by the quantity 

Processes involving the direct creation or absorption of 
two phonons make a contribution to (3.6) equal to 

where N, are the occupation numbers in the state Y. The 
expression under the summation symbol in (3.7) has a sin- 
gularity at w, = wp = 0 (since N, a l/w, ), which, how- 
ever, is removed when one takes into account the frequency 
dependence of the vertex BaB a (a, wp ) "* and of the den- 
sity of statesg(o) o: wd - in three-dimensional ( d  = 3) and 
two-dimensional (d = 2) crystals (we shall return specially 
to the one-dimensional ease later). 

The situation is completely different with two-phonon 
processes of the scattering type, corresponding to terms of 
the form b ,t b5 in (3.1). In this case, 

This expression has nonremovable singularity even at 
w, = wp #O.  At low temperatures the contribution to (3.8) 
from the region Iw, - w5 I 2 Tis found to be proportional to 
( T /OD ) 4  1 and can be neglected. The region of frequencies 
laa - w5 I < T leads to a divergence of (3.8) that can be 
removed only be certain physical causes that introduce, ef- 
fectively, a correction Sw,, . If we formally assume that the 
particle lives in an individual well for an infinite time, then in 
a macroscopic system we have Sw,,, aOD/N, i.e., on the 
order of the smallest spacing between the energy levels. In 
fact, the lifetime r in the well is finite, though very large 
(T) l/OD ). In the time T an admixture of states with ener- 
gies w < T- does not have time to be formed. In (3.8) this 
corresponds effectively to the absence of terms with 
(w, - ws ( < l / r  in the sum, and, thus, we now have 
So,,, a 1 / ~ .  This is easily traced directly if we consider the 
evolution of the wave function a, (x)  over a finite time T. 

For this it is sufficient to make use of time-dependent pertur- 
bation theory: 

m 

where 

If the lifetime in an individual well is long enough, when 
rT% 1, the integral in (3.9) is built up over frequencies 
w < T, and in the argument of the 6-function we can set 
w = 0. Then 

The parameter y" can be arbitrarily large even when, in the 
usual sense, the two-phonon interaction is assumed to be 
weak: 
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and the temperature is assumed to be low. 
Thus, the restructuring of the wave function as a result 

of the scattering processes in (3.1 ) is, in the general case, 
always strong, irrespective of the scale of the two-phonon 
interaction. 

When higher orders of perturbation theory are taken 
into account the pattern of the restructuring of the wave 
function is qualitatively completely preserved. This can also 
be seen from the general solution, which can be obtained for 
T g  0,  without making assumptions about the quantity BaB 
(see the Appendix). Effectively, everything reduces to a re- 
normalization of the two-phonon interaction vertices, which 
corresponds physically to a change of the local interaction 
between the particle and the lattice. 

To make the account as clear as possible, we shall as- 
sume henceforth that the inequality (3.12) is fulfilled. In 
this case y ' g  1, and in the determination of the wave func- 
tion we shall take into account only the scattering processes 
in (3.1 ) . For the same reason, it is possible simply to set 
A ,  = c, in (3.4) and to make no distinction between the 
operators 6 ,  and ha. Then the general expression for a, (x)  
can be represented in the form 

where 

and T, is the time-ordering operator. 
Processes involving the creation or absorption of inde- 

pendent pair modes of excitation (b  2 ba ) primarily deter- 
mine (3.14). Rescattering processes, on the other hand, lead 
to a contribution that is small in the parameter (3.12). To 
convince ourselves of this, we consider the amplitude for 
creation of a mode b 2 bp in second order with an intermedi- 
ate rescattering: 

In view of the condition (3.12), this expression is small in 
comparison with (3.5). But if two independent modes are 
created in second order, their contribution to the formation 
of the wave function is characterized by the quantity ( y" )2. 

We rewrite (3.15) in the form 

where the prime on the sum means that the summation is 
performed only over pair modes with different indices 
(a&.  If we neglect rescattering processes, an arbitrary 
term in the series expansion of the matrix (3.14) will contain 
only commuting factors VaB (t). This makes it possible in 
(3.14) to remove the time-ordering operator and perform 
the time integration directly in the argument of the exponen- 
tial. Here, the noncommutativity of the operators Vap ( t )  for 

one and the same mode (a& at different times reduces to a 
phase factor - is AEdt, where AE is the shift of the energy 
when the interaction is switched on. This phase factor can- 
cels exactly the phase factor that was in fact omitted when 
we went over to (3.14). 

If we take into account from the outset that the particle 
spends a large but finite time  in an individual well, in a self- 
consistent approach we should substitute into (3.14) an in- 
teraction in the form V(t) = Vexp ( T / r )  : 

4. QUANTUM DIFFUSION IN A THREE-DIMENSIONAL 
CRYSTAL 

When (2.4) is taken into account, the transition matrix 
element (2.3 ) takes the form 

M,.,=(@:' ( x )  I J ( x )  I @I1' ( x )  ), 
~ ( z )  =((po(') (R ,  X )  IHt ( R )  I (PO") (R, X )  ). (4.1) 

The expression (4.1 ) reflects the dependence of the transi- 
tion amplitude on the extremal restructuring of the local 
potential relief when the motion of atoms of the crystal is 
taken into account. Here, both the relaxation of the sur- 
rounding atoms and the phenomenon of fluctuational prep- 
aration of the barrier1' (an analogous result in the frame- 
work of the functional-integration technique was discussed 
in Ref. 13) turn out to be important. If we make use of the 
results of Ref. 12, we can show that for T 4 0 ,  in the first 
nonvanishing approximation in the parameter (3.12) 

A o = ( $ i 2 )  ( x )  1 J(x)  1 $:If ( x )  ( 2 )  1 ( x )  

The amplitude A, for T g 0 ,  depends only weakly on the 
temperature. Then, taking (3.13) into account, we have 

[Here we have restored the well label omitted in ( 3.13 ) . ] 
Taking into account the commutativity of individual 

modes in (3.2) and (3.16) and the fact thaQn the a~proxi- 
mation under conside~tion the operators S,  and S, c o m ~  
mute, the definition of A reduces simply to the definition ofS 
from (3.13) with c, and BaB replaced by 

The amplitude A, of the coherent transition between 
the wells is determined by the matrix element (4.1) with 
Y' = Y:  

d e t ~ m i n e  (4.5) Te make use of the relationship between 
A and S,  (3.2) and S, (3.16). Expanding each term of the 
product in these operators in a series in powers of the argu- 
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ment of the exponential and retaining in each case the first 
three terms of the expansion (this corresponds to macro- 
scopic accuracy), after transformations we find 

The first exponential determines the usual polaron effect for 
purely one-phonon interaction. As is well known, the argu- 
ment q5( T )  of the polaron exponential remains finite as T+O 
and varies on a scale of temperatures of the order of a,. The 
second factor already involves the role of two-phonon pro- 
cesses: ? is determined by the expressions (3.9) and ( 3. lo), 
if in the latter we make the replacement B-+Z (4.4). Again 
assuming rT) 1, we find 

It can be seen from this expression that the two-phonon in- 
teraction leads to an exponential decrease of the coherent 
transition amplitude, with an exponent proportional to the 
lifetime of the particle in the well. If we assume that the 
motion of the particle has a band (in the two-well case, co- 
herent) character, then r = (CA, ) - l ,  where the numerical 
coefficient 5. depends on the type of lattice. Substituting this 
expression into (4.7), we obtain a self-consistent equation 
for A,. It is easy to see that for R > R, = 25. /e$ the coher- 
ent amplitude A, = 0, corresponding to complete suppres- 
sion of the band (coherent) motion. For Lo &OD, this occurs 
for 5 & T& OD, Indeed, from (3.10) we have 

where the 2 in the brackets corresponds to the case when the 
two wells are identical and B") and B") in (4.4) differ only 
by a phase factor. 

Thus, the two-phonon interaction leads to narrowing, 
and, as a consequence, to the disappearance of the coherent 
band in that region of temperatures in which the one-phonon 
polaron effect practically does not change. For sufficiently 
small KO the result obtained has a universal character. It is 
analogous to the result found earlier for the case of tunneling 
in the presence of interaction with electrons." This circum- 
stance is not accidental. In both cases it is associated with an 
infrared divergence of the reconstructed wave function of 
the excitations of the medium [see (3.8) 1, which, in the case 
of phonons, arises on account of scattering terms that are 
necessarily absent in the one-phonon interaction. We re- 
mark that for T&OD we certainly have Rph &Re' and the 
phonon destruction of the band occurs at a higher tempera- 
ture. 

The nature of the destruction of the coherent band be- 
comes clear if we take into account that phonon fluctuations 
with a total energy of the order of r - ' lead to relative fluctu- 
ations of the phase in neighboring cells. A consequence of 
this is the attenuation of the nondiagonal elements of the 
density matrix defined in the site representation. As was 
shown in Ref. 6, we have p,, a exp( - Rt), where the fre- 
quency R coincides with that found above. It is this distinc- 
tive loss of phase memory that causes the dynamical destruc- 
tion of the coherence. 

We shall make one remark. Since what replaces the co- 
herent regime is an incoherent tunneling regime, for R > R, 
the lifetime of a particle in a unit cell remains finite, though 
very large (see below). Correspondingly, it is also the case 

for R > R, that A, is not identically equal to zero, but van- 
ishes with exponential accuracy. 

Thus, for n % L o  the tunneling motion of the particle 
acquires an incoherent character. In this case, the site repre- 
sentation is adequate-for the problem. An analogous situa- 
tion obtains for {)Ao and arbitrary a. In both cases the 
probability of a transition from well to well can be represent- 
ed in the following form: 

+ - 
where p, is the equilibrium density matrix^ of th%phonons. 
Using the same expansion of the operators S, and S2 as in the 
calculation of (4.5), we have 

+ - 

Here,x(t) = x , ( t )  +xz( t ) ,  with 

The expression for x2 does not in fact have a singularity as 
laa - a8 I +0, because of the time dependence of the sum- 
mand. The characteristic time scale is now dictated by the 
quantity R - ' (or 6- ' ) . The smallest values of the differ- 
ence (a, -as( [those that are important in (4.12)] are 
determined by a quantity of the order of (R,g),,, . But, as is 
clear physically and will be shown below, the lifetime of a 
particle in a unit cell satisfies T )  (a - ' ,c- ' )mi, .  Therefore, 
in the integration the term 1/? in the denominator plays no 
role. A simple transformation brings x2( t )  to the form 

This makes it possible to represent the expression forx ( t )  in 
the convenient form 

Here, 

f ( o )  =A (o )  i -52 ( a )  /2nT, 

A (o )  = ( u - ~ a ) ,  
a 20a 
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Generally speaking, the two-phonon term in (4.14) is small 
in comparison with the one-phonon term. However, the time 
behavior of the asymptotic form o fx ( t )  at large t s  1/T for 
d = 3 is determined specifically by the two-phonon term, as 
dictated by its singular behavior in (4.13) at small w & T. In 
this region of frequencies we can certainly omit o in the 
argument of the S-function in (4.16). Then 

[This expression differs from (3.10) for w = 0 only in the 
replacement (4.4) of B by B.1 Rewriting the expression in 
the square brackets in (4.13) in the form 

and, in the integral (4. lo) ,  making the change of variables 
t-t - i/2T with a subsequent displacement of the integra- 
tion contour onto the real axis, we obtain 

In the calculation of the two-phonon contribution, in the 
integral over the frequencies we rewrite the numerator in the 
form 

(ch (w /2T)  - 1 )  + (I-cos ot) . (4.18) 

Now neither term separately gives a divergence as w -. 0. The 
one-phonon contribution also has no divergence, since A (w ) 
behaves like (1.5). Then, omitting from in the argument of 
the exponential the time-independent term, we have 

P dm [ A (a )  ch ( ~ 1 2 ~ )  + - (ch ( o l 2 ~ )  -I)] . '=! s h ( w / 2 ~ )  2nT 

The second term in the square brackets is small in compari- 
son with the first, which determines the usual polaron effect 
renormalizing the tunneling amplitude A, (4.7). It can be 
seen that the quantity q5 remains finite as w -0. 

The frequency integral of the remaining terms in (4.17) 
converges rapidly, and we can replace the upper limit of the 
integration by co . The two-phonon contribution can then be 
integrated explicitly. As a result, we find 

+- 
52 

I-2&eac"" 5 d t  cos i t  exp{- -In ch (nTt )  +q ( t )  }, 
0 

n T  

d o  cos o t  v ( t ) = 2 J w A ( W )  sh (0 /2T)  ' 
0 

The expression obtained contains all phonon interaction 
channels in the case of incoherent tunneling of particles. We 
begin our analysis with the symmetric case 6 = 0. It is easy to 

convince oneself that for T& OD we have q ( t )  & 1. In this 
case the probability (4.20) does not diverge, and remains 
finite only by virtue of the two-phonon interaction. Since we 
have 0 4 T, and the integral is built up over times t- 1/a,  
for which cosh(?rTt) ) 1, we can represent the argument of 
the exponential in (4.20) immediately in the form 
- a t  + v. This asymptotic behavior reflects the tunneling 

process in the regime of ohmic dissipation. This links with 
the fact that the function f(w) satisfies the criterion (1.4) 
only by virtue of two-phonon scattering. The important 
point is that allowance for only one-phonon processes, in any 
order in the interaction constant c, (which, in the approxi- 
mation under consideration, is - K i  ), does not give rise to 
ohmic dissipation. 

It should be specially emphasized that allowance for 
two-phonon processes in tunneling, by removing the diver- 
gence in (4.20), makes it possible to avoid the procedure of 
replacing expv by expv - 1 and simultaneously taking the 
coherent band motion into account together with (4.20) 
(see Refs. 14 and 15). In fact, from the results obtained 
above it follows that the expression (4.20) for the incoherent 
regime of motion is valid only when the coherent amplitude 
vanishes. In other words, we can say that the regimes of 
coherent and incoherent tunneling are exchanged. 

The leading term in the incoherent-transition probabili- 
ty (4.20) arises even in zeroth order in @: 

I t  corresponds to diffusive motion of the particle in the crys- 
tal, with diffusion coefficient 

za2 do" D--- 
3 Q '  

where z is the number of equivalent sites at a distance a in the 
nearest coordination sphere in a cubic crystal. The expres- 
sion (4.23) was first obtained in Refs. 6 and 7. 

If we now make use of (4.22) and substitute 
T = (Z W) - ' into the expression (4.7), for A, we obtain 

From this it can be seen immediately that for the 
coherent channel becomes negligibly small in comparison 
with the incoherent channel. 

In Refs. 6 and 7, in the framework of the solution of the 
kinetic equation for the density matrix, it was found that in 
the consideration of macroscopic diffusion (small concen- 
tration gradient) the expression (4.23) also remains valid 
for fl < A , ,  under the condition A, < T; in other words, it 
also remains valid for coherent band motion in a compara- 
tively wide range of temperatures [see (4.8) for R] .  

The next term in the expansion in v ( t )  in the integrand 
of (4.20) determines the probability of a transition with the 
emission or absorption of one phonon: 

If the transition occurs between two crystallographically in- 
equivalent isoenergetic positions, the A (w) = g(w/eD ) 2 ,  
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and the expression ( 4 . 24 )  has the finite value 

This result was first obtained in the paper of Teichler and 
Seeger.16 However, comparing ( 4 . 25 )  with ( 4 . 22 )  we see 
that at low temperatures the one-phonon transitions are al- 
ways negligibly small in comparison with W'O'. If, however, 
the transition occurs between crystallographically equiva- 
lent positions and A ( w )  a ( d o D  ) 4  holds, the one-phonon 
processes vanish practically entirely. It is easy to verify that 
the next terms of the expansion in ( t ) ,  which determine 
transitions of higher order in the one-phonon interaction, 
also lead to negligibly small corrections to W'O' . Thus, when 
the phase correlation is dynamically destroyed, the band dif- 
fusion ( 4 . 22 ) ,  ( 4 . 23 )  governs quantum diffusion in a crystal 
at low temperatures. An important point is that the dynami- 
cal breaking itself is induced specifically by the two-phonon 
processes, and it is these that determine the ohmic dissipa- 
tion in tunneling. 

Now let 6 #O. Returning to the original expression 
( 4 . 20 ) ,  for W ' O '  we find 

If we take into account that R 4 T, we have 

This result coincides with that found in Refs. 8  and 17 using 
the kinetic equation for the density matrix. For 6 < R all the 
preceding results remain unchanged. But for 6 %  R we have 
W'O' a /{ ,, and in this case one-phonon processes can be- 
come important. In fact, under these conditions, 

Comparing this expression with (4 .26 ' ) ,  we see that for large 
biases, when we have 

one-phonon processes, and hence induced tunneling transi- 
tions, begin to play the leading role. 

It is not difficult to convince oneself that the next terms 
of the expansion in again lead to small corrections, this 
time in relation to W'" or, in the general case, in relation to 
the sum WO' + W"' . It is this sum that determines in all 
cases the probability of a tunneling transition in the presence 
of interaction with phonons. With high accuracy, it can be 
written in the form 

We have already noted that for 6 = 0  and T%ao the 
result ( 4 . 23 )  remains valid for w < a 0  as well. For T <  a, it 
becomes necessary to solve the corresponding kinetic equa- 
tion in the momentum representation. It is interesting that 
the answer for the diffusion coefficient in this case has the 
same form ( 4 . 23 ) ,  but with fl a T 7  (see Ref. 18) .  

5. CRYSTALS OF DIMENSIONALITY d=2 AND d= 1 

When crystals of lower dimensionality are considered, 
the principle of the construction of the site wave functions of 
the phonon system remains entirely the same. If we are con- 
sidering transitions between crystallographically equivalent 
positions, and the transport effect thereby remains present in 
the spectral function ( 1.5) ,  all the general results obtained 
for the cased = 3  remain unchanged. A new situation arises 
only when there is no transport effect. Below, we confine 
ourselves to examining precisely this case. 

We start from an analysis of the case d = 2. It is easily 
established that in this case the decisive channel in the re- 
structuring of the site wave function on account of two- 
phonon processes is again the ~cattering channel. Therefore, 
the expression for the matrix S, in the form ( 3 . 16 )  remains 
valid, and at the same time the expressions ( 4 . 6 )  for the 
coherent amplitude and ( 4 . 10 )  for the transition probabili- 
ty, with the function ~ ( t )  in the form ( 4 . 13 ) - (4 .16 ) ,  also 
remain valid. However, in determining A, we now come up 
against the fact that the formal calculation of the one- 
phonon polaron effect #(  T )  [the first term in the function 
(4 .19)  1 leads to a logarithmic divergence at T # O .  This di- 
vergence is removed only when the finiteness of the lifetime .r 
of the particle in a unit cell is taken into account. In fact, we 
ought to have introduced from the outset a cutoff associated 
with the finite value of T in our consideration of one-phonon 
processes as well, but in the cased = 3  there was no need for 
this. Formally, as in the case of the two-phonon interaction, 
this is equivalent to the replacement w ,  - w ,  + i / r .  Taking 
this into account, and introducing in explicit form 
A ( w )  =g '2 'w /OD,  instead of ( 4 . 7 )  we have, in the limit 
TTB 1, 

A,=A, exp (-@ (0) ) exp {-'/zQ.t- (g"'T/On)ln (TT) 1, 

Thus, in the case d = 2  the dynamical destruction of the 
band is enhanced on account of the one-phonon interaction 
although the decisive role in this destruction is still played by 
two-phonon processes. 

When examining the incoherent tunneling we can use 
the expression ( 4 . 1 7 ) ,  which is valid in the general case, 
introducing the identical transformation ( 4 . 1 8 )  for the one- 
phonon contribution as well. Calculating the time-indepen- 
dent term in the argument of the exponential in ( 4 . 1 7 ) ,  we 
obtain 2 # ( 0 ) .  The second term, however, gives rise to a 
somewhat modified expression for V I  in ( 4 . 20 )  : 

d o  l-cos ot r ( t )  -2 1-A (.I . 
o m  

In contrast to the case d = 3,  at large times @ ( t )  increases 
logarithmically: 

T (t) =4g(2)(T/BD)ln(Tr), (TTBI) ,  ( 5 . 4 )  

and, generally speaking, it is not a correct operation to ex- 
pand exp( - @ ( t )  ) in a series in the integrand of ( 4 . 2 0 ) .  
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We now calculate the transition probability (4.20) for 
{ = 0, using the asymptotic form found for v(t) (the inte- 
gral is built up over large times TT) 1 ) 

For T/0, ) 1 the result obtained differs little from that 
found for the case d = 3. This circumstance is connected 
with the fact that the main contribution to the integral comes 
from times t- l / n ,  at which v ( t )  is small. For 6 #O the 
characteristic times can only become smaller, and, there- 
fore, we can expand exp( - T ( t )  ) in a series from the out- 
set. If we return to the original expression (5.3), it is easy to 
see that the answer will coincide with the general expression 
(4.28), whereA(w) and 52 should be taken in the form corre- 
sponding to d = 2. 

In the case d = 1, the pattern is radically altered. Now, 
the phonon function of the system undergoes an anomalous- 
ly strong rearrangement on account of the one-phonon inter- 
action. To see this, as in Sec. 3 we make use of perturbation 
theory and calculate the correction to the wave function of 
the initial state, replacing H ::Ph' by H i:/h) in (3.5) and 
(3.6): 

[ A ( @ )  = g ( ' )  = const]. The expression given is written in 
the limit Tr ) l .  The quantities y' (3.7) and y" (3.1 1 ) found 
earlier, which characterize the restructuring on account of 
two-phonon processes, take in the case d = 1, in the same 
limit Tr ) 1, the values 

In the one-dimensional case under consideration, 

Comparing the expression (5.6) with (5.7), (5.8), we see 
that for T< 0, the most important role in the restructuring 
of the wave function is played by one-phonon processes. The 
character of the dependence of y on the lifetime r in a unit 
cell is the same as in the case of two-phonon processes. But 
precisely this circumstance played a decisive role in the ap- 
pearance of ohmic dissipation in the presence of tunneling. 
Thus it is now the one-phonon interaction that is responsible 
for this tunneling regime. The general expression for the 
spectral function in formula (4.13) in the case under consi- 
deration takes the form 

f (o) =QT/2nT, C L = ~ Z T ~ ( ~ ) + Q  (5.9) 

and satisfies the criterion ( 1.4) even at T = 0. At low tem- 
peratures the two-phonon contribution to f ( w )  is small, and 
for all kinetic problems we can confine ourselves to consider- 
ing one-phonon processes. Thus, the role of the one-phonon 
interaction in tunneling for d = 1 turns out to be exactly the 
same as the role of two-phonon scattering for d = 3 and 
d = 2. This makes it possible to make use of the results of the 
previous sections for the purely two-phonon interaction. 

Calculating the coherent transition amplitude (4.5) in 
the one-dimensional case, we find 

Here the function Y ( z )  is the logarithmic derivative of the 
r-function. In the limit T-0 this expression is transformed 
to the form 

Substituting T = (2Ac ) - ' and solving the resulting self- 
consistent equation, we have 

This result is well known in the theory of tunneling with 
dissipation (see, e.g., Ref. 2 and the references therein). For 
TT> 1, 

A,=&, ( T )  e-xn~T,  

(here y is the Euler constant). Dynamical destruction of the 
band now sets in at the simple level T) A,. This result was 
first obtained in Ref. 10 in connection with an analysis of 
coherent tunneling in a metal, in which the constancy of the 
density of states at the Fermi level causes the condition ( 1.4) 
to be satisfied for the interaction with the electrons. For 
( T,l) ,,, )Ac the transition probability in the incoherent 
regime is determined by the expression (4.26) with f l  re- 
placed by 52,. This result was first found in Refs. 19 and 20, 
and, for the case of interaction with electrons, in Ref. 9. 

6. THE EFFECTIVE ACTION 

It is of interest to trace how the special role of two- 
phonon processes is manifested in the analysis of tunneling 
motion in the functional-integration technique. With this 
aim, we determine the effective action for the problem under 
consideration, taking into account in the Hamiltonian ( 1.1 ) 
both the one-phonon interaction ( 1.2) and the two-phonon 
interaction ( 1.6). We consider the partition function Z = Sp 
exp( - H / T )  of the system [Sp=Tr] . In this expression we 
go over to a mixed representation, introducing functional 
integration only over the particle variables: 

+ 1 / 2 T  

It follows immediately from this that the effective action for 
the particle can be written in the form 

S.,,= J ~ T L R ' - l n  ( T ,  exp {- ~ T H ~ , , ~  ( R  ( T )  ) } ) . 
- 1 / Z T  - 1 / 2 T  Ph 
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We assume for simplicity, as in Sec. 3, that the two-phonon 
interaction vertex in ( 1.6) is small and the relation (3.12) is 
fulfilled. In this case, all the arguments that were used in the 
calculation of the S-matrix (3.14) remain valid. Again ne- 
glecting rescattering of individual excitation modes, i.e., 
considering two-phonon excitations with noncoinciding 
pairs of indices that commute with each other, we can repre- 
sent the exponential in (6.2) in the form of a product of 
exponentials pertaining to different one-phonon and two- 
phonon modes. Expanding then each of the exponentials to 
the second-order terms and gathering the result back into 
the argument of the exponential, we find 

Here a = a, + a,, with 

In the absence of the two-phonon interaction the result ob- 
tained is well known (see Ref. 21 ). 

We shall extract in (6.3) the adiabatic renormalization 
of the potential relief, by making the identical replacement 
(see, e.g., Ref. 1 ) 

and analogously for the product BUD (R)B -, - (R'). The 
first terms in these transformations lead to the replacement 
of U(R) by the renormalized potential E(R) .  Here, a is 
replaced by a function &, which differs from (6.4), (6.5) by 
the replacement of the product of coefficients by the square 
of the modulus of their difference. 

A special role in the problem under consideration is 
played by trajectories connecting the minima R, and R, of 
the potential. We shall calculate the contribution made to 
the action by the simplest one-instanton trajectory. The 
principal contribution to S,, is associated with the region of 
R(T) = R,, R(r '  = R, and, vice versa, R(T) = R,, 
R(T') = R,, and also with the narrow transitional regions 
I AT, I, I AT, 1 -w; I .  In the former case the corresponding 
contribution to the action has the form 

do  (ch ( o / 2 T )  - 1 )  
o sh ( o l 2 T )  a ( o ,  Rg, %I. 

The expression for a(w, R,, R,) coincides with the defini- 
tion of the spectral function f(w) (4.14)-(4.16). From this 
it follows immediately that the infrared singularity in the 
action, which is essential for tunneling with dissipation, will 
be connected, in the cases d = 2 and d = 3, with the two- 
phonon processes only. This means that, in the functional- 
integration technique too, it is essential to use a Hamiltonian 
that takes the two-phonon interaction into account. 

7. CONCLUDING REMARKS 

The results obtained in the paper show that tunneling 
motion in a crystal in the presence of interaction with phon- 
ons has a viscous (or ohmic) character only because of the 
two-phonon (many-phonon) interaction. The only excep- 
tion to this rule is a one-dimensional crystal in which neigh- 
boring positions that are equivalent in energy are crystallo- 
graphically inequivalent. In all other cases, quantum 
diffusion in a crystal is determined specifically by the two- 
phonon processes. This applies both to the coherent band 
motion and to the distinctive dynamical destruction of the 
coherent transport and the purely incoherent motion that 
arises as a consequence of this with increase of temperature. 
The role of the one-phonon interaction, however large it may 
be in relation to the two-phonon interaction, reduces at low 
temperatures merely to a finite renormalization of the band. 
It should be specially emphasized that many-phonon pro- 
cesses associated with allowance for the one-phonon interac- 
tion in higher orders lead neither to a viscous regime of tun- 
neling nor to appreciable corrections in the corresponding 
kinetic coefficients. 

Thus, when considering tunneling with dissipation in 
real crystals it is necessary to take the two-phonon interac- 
tion into account in the Hamiltonian of the system from the 
outset. 

APPENDIX 

We consider the problem of the construction of the 
wave function of a phonon system described by a Hamilto- 
nian of the form 

We seek <P, in the form of an expansion in states of the 
unperturbed Hamiltonian H,: 

In the region of lgw temperatures the problem of construct- 
ing the operator s,, can be solved exactly in the parameter 
T /OD < 1. The following circumstance plays a decisive role. 
By virtue of the small density of phonon states at w 4 O D ,  all 
virtual processes of rescattering of phonons are important 
only in the region of high frequencies w a 0,, i.e., in a region 
in which the initial wave function <Po,, contains practically 
no phonons. A 

The operator S can be represented in a form which ex- 
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plicitly contains the amplitudes of the expansion of a, in 
states that differ from a,, by the creation (annihilation) of 
two phonons or by the rescattering of one phonon: 

where R is a normalization factor. In this expression it is 
assumed that the annihilation operators in the argument of 
the exponential act only on states with nonzero occupation 
numbers in a,,. This circumstance is indicated by the sym- 
bol v on the summation symbol in (A3). It is easy to see that 
all the operators in (A3) can be regarded as independent and 
mutually commuting, to within terms a (T/OD )3. For ex- 
ample, the result of commutation of the first and third terms 
gives 

The expression in curly brackets is equal in order of magni- 
tude to r]'( T /OD ) 3, and so can be discarded in comparison 
with the first term in (A3). 

To the indicated accuracy, we can represent the expo- 
nential (A3) in the form of a product 

That (A2) and (A3) are the solution of the problem is veri- 
fied directly by substituting a,, into the Schrodinger equa- 
tion: 

(Ho+H,nt) ( D v = E v ( D v ,  

h h 

Since the operators,, (l ikes 2') independently creates and 
annihilates excitations, by simple but rather cumbersome 
calculations it is possible to obtain an explicit expression for 
the coefficients ?lap and the state energy E, (in the calcula- 
tions it is convenient to transform the operator Sin the right- 
hand side of (A6) by means of the well known relation 
exp(cb + ) (b)exp( - cb + ) =b - c: 

We note that the relations obtained do not contain occupa- 
tion numbers. As already noted above, this is connected with 
the fact that for virtual excitations the region of frequencies 
w < TgBD is unimportant. The equations obtained can be 
regarded as ordinary perturbation-theory equations for the 
coefficients of the expansion (A2) : 

A final state that differs from a,, by two phonons can be 
obtained by direct creation of them in a,,, rescattering of 
the first or second phonon, and also absorption of an excess 
pair of phonons from a state with two pairs of phonons. The 
sequence of terms in (A8) corresponds to this. The fact that 
the four-phonon amplitude decomposes into a product of 
pair amplitudes is true with macroscopic accuracy. 

For the case when the function Bap can be represented 
in the form 

Ba~=oBgBa, o--F 1, (A91 

the solution of (A8) is found directly: vaD = BaD7~ar]p; 

The latter equation is conveniently transformed to a form 
linear in r](w). For this, we substitute in the right-hand side 
of (A1 1 ) the function r] (up ) expressed in terms of the same 
equation: 

Now, having regrouped the terms, we again express the sums 
over a in terms of Eq. (A1 1 ) . As a result, we find 

The equation obtained is well known in the theory of 
singular integral equations, and admits an exact solution in 
q ~ a d r a t u r e s . ~ ~  We shall not do this here, however, since by 
means of (A1 1 ) and (A1 3) it is easy to establish the general 
properties of the solution and the value ~(0). In fact, it fol- 
lows immediately from (A1 1 ) that r](u) is a monotonic 
function of the frequency, increasing or decreasing, depend- 
ingon thesignofu. Form =0, Eqs. ( A l l )  and (A13) give 
the system 
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IB l 2  lB612 (1+2u~)q (0) =f+uz - - ~ q  (a,), D--z -, 
b afl 6 

from which it follows that 

Taking into account the definition of the quantity D and 
the fact that the sum is built up over frequencies wo cc 8,, 
from the second equation (A14) we obtain the approximate 
estimate 

Thus solving Eq. ( 13) makes it possible to obtain the 
operator S, explicitly. On the other hand, as can be seen from 
(A1 5) and (A 16), the difference from perturbation theory 
reduces only to a quantitative renormalization of the solu- 
tion. 
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