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A phenomenological approach is used to discuss the successive phases of a crystal corresponding 
to various values of the wave vector for normal coordinates belonging to one optical branch of the 
crystal's phonon spectrum. A phase diagram is constructed in terms of the variables which 
determine the minimum of the branch. The effect of an external excitation on the diagram is 
clarified. A comparison is made with experiment for a specific crystal. 

INTRODUCTION 

In 1964, Dzyaloshinskii' noted that a system with a 
structure characterized by a wave vector q has a thermody- 
namic potential @ which is not a smooth function of q: in 
fact, @(q)  is discontinuous for any value of q (more precise- 
ly), the value of @ at any point in q-space with rational co- 
ordinates differs by a finite but usually very small amount 
from its value at a point arbitrarily close to it which also has 
rational coordinates). Therefore, when such a crystal has an 
incommensurate phase, the variation with temperature Tof 
the structural period of this phase is discontinuous. Al- 
though the discontinuities are negligibly small near the point 
To of transition from the original phase to the incommensu- 
rate phase, they can attain considerable values at tempera- 
tures far from To. 

A structure which behaves in this way is said to exhibit a 
"Devil's staircase." Structures of this type have been investi- 
gated repeatedly in the context of microscopic models (see 
the review Ref. 2 and the literature cited therein); however, 
the goal of this work is to carry out such an investigation by 
means of a phenomenological approach. In particular, this 
approach, which is in the spirit of Landau's theory, allows us 
to interpret a variety of experiments on structural phase 
transitions in certain crystals which exhibit a complicated 
succession of phases with the participation of an incommen- 
surate phase. 

ENERGY OFTHE NORMALOSCILLATIONS OF A CRYSTAL 

For definiteness, we will discuss structural phase transi- 
tions of displacement type. We will consider one optical 
branch of the normal oscillations of the crystal, and for sim- 
plicity we restrict ourselves to one direction of the wave vec- 
tor q, =q, assuming that this branch is doubly degenerate, 
i.e., the normal oscillations with q and - q have the same 
frequency. Let us compare the energy of the normal oscilla- 
tions belonging to this branch at various points of the Bril- 
louin zone. The elastic energy has the form ap2, wherep is 
the amplitude of the normal oscillations: =pcosp, 
f =psinp. The (doubled) elastic coefficient a is a contin- 
uous function of q. Usually this function a ( q )  is represented 
in terms of a branch of the normal oscillations of the crystal: 
a a m2; here w is the eigenfrequency, i.e., the frequency of 
oscillation when attenuation is neglected. The crystal is un- 
derstood to be infinite, i.e., q takes on a continuous sequence 
of values from - 1/2 to 1/2 (q is conveniently measured in 
units of c* = 237/c, where c is the period of the crystal along 
the z axis). Furthermore, the coefficients of the anharmonic 

terms in the energy, which are proportional to higher powers 
ofp2, e.g., the term Dp4, are also continuous functions of q. 
However, along with these terms there also exist anhar- 
monic terms of the form a~p2%os21p (or a;plcoslp; here we 
will discuss only the first case) which differ from zero only at 
certain points of the Brillouin zone: those with rational val- 
ues of q = q, =m/l, where m and I are integers. In other 
words, the coefficient a;, as well as the coefficients of higher- 
order terms in p of the form D ;p2/+ 2 ~ ~ ~ 2 1 p , 8  ;p41~~~221p,  
etc., are nonzero only at discrete values q = q, . 

Let us discuss a specific portion of the Brillouin zone, 
e.g., from q, = 1/3 to q, = 1/2 (see Fig. 1 ), and expand the 
coefficient a in a power series in (q - b), where b is the 
coordinate of the soft mode responsible for the minimum of 
the branch a (q) : 

a=a+6 (q -b )  '. ( 1 )  

In fact, this implies that the soft optical branch is approxi- 
mated in the neighborhood of its minimum by a parabola; 
obviously,this approximation becomes more precise as the 
portion of the Brillouin zone we choose to study becomes 
narrower. In principle, the expansion ( 1 ) can also be used 
for the entire branch as long as the branch has no fixed maxi- 
mum (extremum) at any point of the Brillouin zone, i.e., 
there exists a Lifshits invariant for 7, 6 at any point. This 
condition is fulfilled for those branches whose coordinates 7, 
6 at the center of the Brillouin zone (i.e., for q = 0)  trans- 
form as two-dimensional representations of the point groups 
D,, D,, D,, when q is directed along thez axis ( x ,  y transform 
as two-dimensional representations of these groups) The 
presence of a fixed maximum at one of the limits of the cho- 
sen interval of values of q requires a somewhat altered ap- 
proach, which will not be discussed here. We will assume 
that the remaining coefficients 6 ,  a; and others do not de- 

FIG. 1. A segment of an optical branch of the normal-mode spectrum of 
the crystal. Along the axes; q is the wave vector along the z-axis in units of 
c* = 2?r/c, a is the elasticity coefficient (4); a,b are the coordinates of the 
soft mode corresponding to the minimum of the branch. 
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pend on q. This implies, in particular, that a; is the same for 
q, = m/l with the same I and different m within the interval 
of q values under discussion. 

THERMODYNAMIC POTENTIAL 

As we are interested in the possible transitions from the 
original phase of the crystal, we will write down the thermo- 
dynamic potentials for various values of q and compare 
them. If q has the rational value q, = m/l, then according to 
( 1 ) the coefficient a acquires the value 

and the thermodynamic potential can be written in the form 

Here we have included the two isotropic invariants and the 
single anisotropic, i.e., p-dependent, invariant which are 
lowest order inp. We may limit ourselves to these invariants 
if the coefficient satisfies p > 0 and is not too small, and if we 
neglect the possibility that along with the commensurate 
phases C, , ,C,, for which sin 21p = 0 there also can occur a 
phase C,, for which sin 21p # O  (see Ref. 3).  It is obvious 
that the potential (3)  describes a transition to a commensur- 
ate phase (C, ) which is characterized by wave vectors q, . 

If I is large,or I- w (irrational values of q),then 

where a is taken from ( 1 ). This potential describes the tran- 
sition to an incommensurate (I) phase; on the basis of what 
we said earlier, we will understand this term to include not 
only phases with irrational values of q but also phases with 
values of q, = m/l for which I is sufficiently large. 

EQUILIBRIUM VALUES OF THE THERMODYNAMIC 
POTENTIAL 

It is obvious from ( 1) that the minimum of @(4) is 
realized for q = b; consequently, by varying @ with respect 
top, we obtain 

The phase transition from the original (C,) phase to the I 
phase comes about for a = 0. 

We will seek a minimum of @, given by ( 3 ) ,  (2) in the 
weak-anisotropy approximation (see Ref. 4), i.e., when the 
anisotropic invariant in (3)  is small compared to the iso- 
tropic one pp4. This reduces to the condition 

Here a, is the value of a, at the C,-I phase transition point, 
determined from (2)  by setting a = 0; a, is the value of a, at 
the I-C, phase transition point determined from (9 ); andp, 

is the value ofp when a = a,. 
Varying @I with respect to p as in (3) ,  we obtain 

C,,, C12: sin 2lcp=0, cos 2lcp=*l, (7 )  

which corresponds to two C,-phases: C,, , which is stable 
for a; > 0, and C,, , which is stable for a; < 0. Varying @, in 
(3)  with respect top in the weak-anisotropy approximation, 
i.e., when condition (6)  holds, we obtain 

BOUNDARY BETWEEN DIFFERENT PHASES 

Setting the potentials (5) and (8) equal to each other, 
we find the following equation for the boundary between the 
I and C, phases: 

Setting the potentials (8)  equal for the two different com- 
mensurate phases C, and C,, corresponding to q, and q,, we 
find the following equation for the boundary between these 
two phases: 

In deriving (9)  and ( lo) ,  we have used condition (6), i.e., 
the condition of weak anisotropy. In this approximation we 
must replace a, and a, in (9)  and ( 10) with a, i.e., we will 
neglect S(q, - b) compared to a. Actually, it is clear from 
(9)  and (6)  that S(q, - b)2/a - E , ,  and consequently the 
ratio is small; this estimate is especially good in the case of 
(10). 

PHASE DIAGRAM 

In Fig. 2 we show the phase diagram in the ab-plane 
(see Fig. 1 ) . The remaining quantities S, D, a; are assumed 
fixed. We choose the dimensionless variables X, Y,: 

FIG. 2. Phase diagram in the XY, plane ( 1 1  ). For definiteness, it is as- 
sumed that all 6, = E and consequently that Y, = Y. Only the commen- 
surate phases with q, = 1/3, 3/8, 2 / 5 ,  3/7, and 1/2 are discussed. We 
show the boundary for the phases I = 3 for E,  # O  with a dotted line. The 
inset shows a segment of the diagram with E,#O (for details see text). 
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In place of a, defined in (6)  it is convenient to use E, defined 
in ( 1 I ) ,  which in contrast to a, does not depend on q. As a 
characteristic value of Q we can take the width of the interval 
of values of q under investigation (see Fig. 1): 
Q = 1/2 - 1/3 = 1/6. If Qis not too large, then el < 1 while 
al still remains 1. Let us note that, generally speaking, the 
larger I is, the more nearly valid are the conditions E,  < 1 in 
(6)  and E, 41, since a,, = S(ql - b)2 is an anomalously 
small quantity. Actually, for any value of b there is a nearby 
rational value q, = m/l with sufficiently small I. For the 
special value I = 2, the parameter a, does not enter into the 
definition of E,:E, = a;/20; therefore, it is necessary to in- 
clude the special requirement that the ratio a;/P be small in 
order to fulfil the weak-anisotropy condition used here. 

In Fig. 2, we have chosen only the values q, = 1/3, 
q, = 3/8, q, = 2/5, q, = 4/7, q, = 1/2 from the set of all 
commensurate values of q. All the boundaries between the I 
phase with the C, phases were constructed by using Eqs. 
(9),  ( 10). In the dimensionless variables X, Y, of ( l l ) ,  
which were used in Fig. 2, these equations have the corre- 
sponding form 

For definiteness we have assumed that the E, are the same for 
different 1 and, consequently, Y, = Y. It is clear from Fig. 2 
that the regions in which the C,-phases with I = 8 and I = 7 
exist are very narrow. The regions of existence of C,-phases 
with still larger I (even if we assume that all the E, are the 
same) are so narrow that they would appear on Fig. 2 as 
simple vertical lines. These lines would have to be drawn for 
any rational q,, which obviously is impracticable on the 
scales of Fig. 2. We should also recall that fluctuations can 
wash out the small discontinuities. 

Let us emphasize that the phase diagram shown in Fig. 
2 is very sensitive to the choice of values of the E,. This is 
connected with the fact that higher powers of E, enter into 
Eqs. (9) ,  (10) for the boundaries between the phases 
(E:- ' a a; ). Thus, e.g., if e, increases by only a factor of two, 
the region in which the C,-phase with I = 7 exists in Fig. 2 is 
broadened so much that for Y> 1/2 it will occupy all the 
interval of X values from 0 to 1, i.e., b from 1/3 to 1/2. This 
happens because the boundary between the C, -phases with 
I = 3 and I = 7 moves sharply to the left as Yincreases, while 
the boundary between the C,-phases with 1 = 7 and 1 = 2 
moves sharply to the right. 

We note that since a and b are functions of temperature 
T, pressurep, and composition x of the crystal, a phase dia- 
gram similar to the one shown in Fig. 2 can be constructed 
using these other variables, e.g., T and p. 

SINGLE-HARMONIC APPROXIMATION 

In writing down the thermodynamic potentials (3),  
(4),  we tacitly assumed that only one harmonic of q (or q, ) 

is present, thereby neglecting the higher harmonics nq (or 
nq, ). From this it is clear that we have in fact used a single- 
harmonic approximation.For the case of weak anisotropy, 
we also can obtain an analytic solution which includes high- 
er harmonics of the order parameter in the I-phase by ex- 
pressing it in terms of elliptic functions (see Ref. 4).This 
solution will differ significantly from the single-harmonic 
case in the immediate vicinity of the I-Cl phase diagram.' 
This difference is most apparent in the character of the tran- 
sition itself: it will be a continuous (i.e., lock-in) transition, 
in contrast to the usual first-order transition in the single- 
harmonic approximation. The difference also manifests it- 
self in the anomalous thermodynamic quantities, e.g., cer- 
tain susceptibilities will diverge at the lock-in transition 
point, in contrast to the absence of significant anomalies in 
the single-harmonic approximation (see Ref. 4).  However, 
this difference is not apparent in the phase diagram shown in 
Fig. 2. Thus, the value - a, will be larger by a factor of 
(3?/8) "(I- " than that predicted in Eq. (6) ;  however, this 
factor differs little from 1. The difference is the phase dia- 
grams remains insignificant even when external forces act on 
the crystal. 

THE INFLUENCE OF EXTERNAL FORCES 

Let us discuss the influence of external forces on the 
crystal. These forces could be the components of the electric 
field intensity vector E, or the mechanical stress tensor a,D 
(and also the magnetic field intensity vector Ha if we are 
interested in the magnetic structure and corresponding 
phase transitions). The forces of fundamental interest are 
those which enter linearly into the potential. Let us now 
write the thermodynamic potential (3)  in the form 

cD~=ap~+pp~-a~ 'p~ '  cos 2lcp+a,E,p' cos lcp 
+a2E2pL sin I C ~ - E , ~ / ~ X , - E , ~ / ~ X ~ ,  (12) 

whereE, and E2 are external forces which transform accord- 
ing to the point symmetry group of the original phase of the 
crystal. E, also enters into (12) linearly, in the form 
a , ~ , ~ ~ ~ s i n 2 1 ~ ;  however, the effect of E, is of little interest 
and therefore will not be discussed here. The generalized 
coordinates PI and P, corresponding to the generalized 
forces E l  and E, are determined from ( 12) by using the rela- 
tions (P,,, = - d@/dE,,, ) . If E ,,, are the components of 
E, and aaD, then PI,, are the corresponding components of 
the polarization vector Pa or the strain tensor U,/,. 

The coefficients tc,, x, are continuous functions of q, 
just as a ,  p are. The coefficients a, ,  a,, like a;, have nonzero 
values only for the discrete values q = q, = m/l. For the po- 
tential under discussion here, there will be three different 
values of El,, ,PI,, ; for I odd and m odd, for I odd and m even, 
and for I even and m odd. In other words, for these three 
cases E,, P, and E,, P, transform according to different irre- 
ducible representations of the symmetry groups of the origi- 
nal crystal phase. Strictly speaking, E l ,  E,, a, ,  a ,  ought to be 
furnished with indices I and m; this is not done in order to 
avoid overly-awkward expressions. Only those terms in ( 12) 
which are quadratic in E,,, should be included in the ther- 
modynamic potential (4) .  

We will be interested in the effect of external forces E ,  
and E, on the phase diagram shown in Fig. 2. For a given I, 
depending on the sign of the coefficient a; the commensur- 
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ate C, , or C,, phase is realized in Fig. 2, if a; > 0, then we can 
refer to the external force El as the "native field", since the 
quantity PI  conjugate to El has spontaneous values when the 
phase C,, is realized. The external force E, we may refer to 
as the "foreign field", since it is conjugate to the quantity P2 
which has spontaneous values in the phase C,,, and which is 
not realized for a; > 0. If a; < 0, then all these statements 
should be reversed. 

EFFECT OF El ON THE PHASE DIAGRAM 

For definiteness, we will assume that a; > 0 and discuss 
the influence of its field El ,  setting E, = 0. Varying @ given 
by ( 12) with respect to p, we obtain 

Cl i :  sin lrp=O, cos IT=-alEi l la iE1l ,  
@1=a ,p2+~p4-a l 'p2 ' -  IalEl I p 1 - E i 2 / 2 ~ i ,  

C12: cos lip=a1Ei/4al'p', 
(13) 

@ l = a l p 2 + P p 4 + a l ' p 2 ~  ( a l E l ) 2 / 8 a l ' - E 1 2 / 2 ~ l ,  

which corresponds to the same equation (7)  for the C, 
phases with El = 0. 

We will seek the equilibrium values of @, in (13) as- 
suming that the anisotropy induced by the external force is 
weak, i.e., where the anisotropic term, which is -a ,Egl  in 
( 12), is small compared to the isotropic term pp4 [compare 
(6) l :  

Here a,, a,, , p,, are values determined in the same way as in 
(6), but under the condition a; GO. The case I = 2 is omitted 
from this discussion. 

Varying @, ( 13) with respect top, in the weak-anisot- 
ropy approximation, i.e., under the conditions ( 6 )  and ( 14), 
we obtain 

The phase C,, is stable only for values of a; < 0. 
Setting the potential ( 15) equal to the potential of the I 

phase, where now we should add the term - E :/2x, we 
obtain for the boundary between the C, , and I phases 

For those q, = m/l for which the field El does not enter into 
the potential, Eq. (9)  remains applicable. 

For the boundary between the C, phase (a ,  #0)  and the 
C, phase (a ,  = 0)  we obtain correspondingly the equation 
[compare ( 10) ] 

In (16), (17),justasin (9)  and (lO),wecanreplacea,and 
a, by a, neglecting S(q, - bI2 compared to a. 

In the dimensional variables ( 1 1 ) , equations ( 16), ( 17) 
takes the following form 

- ( A ~ - X ) Z + Y : - '  + x l ~ l ( l - a ) ' a  = 0, 

Here we have introduced E,, , which in contrast to E,, ( 14) 
does not depend on q, [compare E ,  (6)  and E,  ( 11 ) 1, and 
also x , ,  which is convenient for abbreviating the written ex- 
pressions. 

In Fig. 2 a dotted curve is used to represent the boun- 
daries ( 18) for q, = 1/3, and q, = 3/8, 2/5, 1/2, i.e., un- 
der the condition that El corresponds to off I and odd m. The 
effect of El on the boundary of the C, , phase for 9, = 3/7 is 
extremely weak, and the corrections are so small that on the 
scale of Fig. 2 it is difficult to show them.The value x, = 0.04 
was taken in Fig. 2 (for the reason this value was chosen; see 
below for the field E,). 

The distinctive feature of the diagram in Fig. 2 is the 
appearance of a boundary of first-order phase transitions in 
the presence of the field El (due to the term - E g 3  in the 
potential) between the phases C, and C, , (the curve ML in 
Fig. 2 ) .  At the point L three phase transition lines meet: Co-I 
(a = 0),  I-C3, and C,-C3. This last boundary is given by the 
equation (1 = 3 ) 

which is reduced to dimensionless variables ( 1 1 ) as were the 
equations for the other boundaries. In deriving (19), the 
field El is not assumed to be small. The condition for ( 19) to 
be applicable is the inequality &E, ,  = ~ : x :  1, which is 
well fulfilled under the condition (6) .  The coordinates of the 
points M and L are determined from the conditions X = 0 
for M and Y = 0 for L, and consequently [see ( 19) 1, 

We note that Eq. ( 16) is inapplicable in the vicinity of the L 
point, since the anisotropy induced by the field El here is not 
small, so only the condition ( 6 )  can be used; however, the 
corresponding equation is so involved that there is no advan- 
tage to presenting it here. 

EFFECT OF E2 ON THE PHASE DIAGRAM 

Let us assume, as before, that a; > 0, and discuss the 
effect of the "foreign" field E2 setting El = 0. The effect of 
this field will be qualitatively different from the effect of the 
"native" field E l ,  and a new phase C,, appears on the phase 
diagram of Fig. 2 (see the inset). 

1247 Sov. Phys. JETP 69 (6), December 1989 D. G. Sannikov 1247 



Varying a,, (12) with respect to p, we obtain 

C,,: sin IT=-a2E2/4al'p1, 

C,,: cos zcp=o, 

sin ZT=--~~E,/I~~E,I,  

Note that (21) is obtained from (13) if we interchange 
a;* - a;,sin Ipttcos Ip, 1432, as we should expect from 
the form of the potential ( 12). 

Varying @,, given by (21 ), with respect to p in the 
weak-anisotropy approximation with E, < 1 [Eq. ( 11) ] and 

< 1 [Eq. ( 18) 1, where it is necessary to exchange a ,E ,  
and a,E, just as in ( 14) for E,,, we obtain 

It is obvious that with the same replacement 
a;++ - a; , l t t2 ,  the second expression (22) is transformed 
into (15). 

Setting the potential (22) for the C, , phase equal to the 
potential I-phase, we obtain the equation 

Setting the potentials (22) for the C,, phase the C, 
phase (a, = 0 )  equal, we obtain the equation 

Setting the potentials (21 ) for the C,, phase equal to 
the potential of the C,, phase, we obtain the equation (the 
line NK in Fig. 2) 

Setting the potential (22) for the C,, phase equal to the 
potential for the Iphase, we obtain the equation (the line LK 
in Fig. 2) 

This equation is inapplicable in the vicinity of the point L, 

where the field E, cannot be assumed to be small. The corre- 
sponding expressions for the line LK are complicated and 
therefore will not be presented here. 

The line ML in Fig. 2 is determined by Eq. (19), in 
which we must replace a,E, by a,E2. Analogously, the co- 
ordinates of the points Mand L are also determined by using 
Eq. (20). The coordinates of the points Nand K are 

The point K lies at the intersection of three lines, and its 
coordinates (27) satisfy all three equations (23), (25), and 
(26) for I = 3 to within the neglected terms in E,. 

In the inset the value x, = 0.04 is assumed, just as in 
Fig. 2 itself. For this value of x, the field E, is more than 
twice as small as the critical field at which the point K is 
reached for the crystal K2Se0,. For K,SeO, we have 
b = 1/3 - A, where A = 0.07/3 (Ref. 5); the corresponding 
point is marked in Fig. 2 with an arrow (obviously we must 
locate this point to the left of the coordinate origin b = 1/3; 
however, Fig. 2 is almost mirror-symmetric with respect to 
this origin in its vicinity). We further note that for K2Se0, 
we have E~ = 0.02, E~ = 1/7. 

COMPARISON WITH EXPERIMENT 

As we have already noted, there exist many crystals in 
which a succession of several phase transitions is observed 
with the participation of an incommensurate phase. We will 
discuss only one example-that of crystals denoted by the 
chemical formula [N(CH, ),I MCl,, i.e., metallic tetra- 
methylammonium tetrachlorides, where the metal M can be 
Zn, Co, Fe, Mn, etc., and H can be replaced by D (see, e.g., 
the review Ref. 6 ) .  For such compounds the T, p phase dia- 
grams have been obtained experimentally, and a universal, 
i.e., reduced diagram has been con~tructed.~.' This diagram 
is in qualitative agreement with the diagram show in Fig. 2, 
with commensurate phase corresponding to q, = 1/3, 2/5, 
3/7, 1/2 chosen from the interval of values of q, discussed 
above. By choosing specific values of E, and the simplest, 
linear, dependence of a and b on T and p, qualitative agree- 
ment between the experimental and theoretical diagrams 
can be achieved; however, this requires a special discussion 
which is unnecessary here. Instead, we present only the re- 
sults of a group-theoretic discussion. 

According to the experimental data, the symmetric 
space groups which are observed on the universal phase dia- 
gram6 are the following. The original phase is D i:. If we 
pick the x,y,z coordinate system used in the majority of ex- 
perimental papers, the symmetry group in international no- 
tation is Pmcn. The incommensurability axis is the z-axis. 
The commensurate phases are: P 112,/n (C:, ) with 
q, = 1/3; P2,2,2, ( D : )  with q, = 3/7; P2,cn (Ci , )  with 
q, = 2/5; and P2,/c11 ( C : ,  ) with q, = 1/2. The commen- 
surate phase with q, = 0 has the symmetry group P 12,/ 
cl  ( C : ,  ). A transition occurs to a phase with this symmetry 
from the original phase Pmcn according to the representa- 
tion B,, of the point group D,, . Therefore, we will discuss 
that branch of the normal modes of the crystal which in- 
cludes a mode which transforms according to the represen- 
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tation B,, at the center of the Brillouin zone. Let us con- 
struct the irreducible representations with the star + q, for 
the normal coordinates of this branch in the original phase 
Pmcn of the crystal. The two-dimensional representation 
and the thermodynamic potential corresponding to it have 
the form (12). For q, = m/l with odd 1 and m (the values 
taken from the interval between 1/3 and 1/2 under discus- 
sion are q, = 1/3, 3/7, and also 5/11, 5/13, 7/15, etc.), E l  
and E2 transform according to the representations A .  (xyz) 
and B,, (xy) of the point group D,, respectively, where we 
indicate in brackets the components of the tensors of lowest 
rank which transform according to these representations. 
For q, with odd I and even m (q, = 2/5, and also 4/9,4/11, 
6/13, etc. ), E, and E, transform according to the representa- 
tions B,, (xy) and B,, (x ) ,  respectively. For q, with even I 
and odd m (q, = 3/8, 1/2), and also 5/12, 5/14,7/16, etc., 
El and E2 transform according to the representations 
B,, (y) and B,, (yz) respectively. Note that in all cases E, 
transforms according to the representation B,, (2). 

The symmetry groups of the commensurate phases are 
givenasfollows: C,: P2,2,2, (D:), C2:P112,/n (C:,) for1 
andmodd;CI:P12,/cl (C;,), C2:P2,cn (Cz,) forlodd,m 
even; C,: Pc2,n (Ci , ) ,  C2: P2, /cl l  (C:,) forleven,modd. 
From a comparison with the experimental symmetry groups 
of the commensurate phases it follows that the coefficients 
a: must be < 0 for I = 3,5,2 and > 0 for I = 7. Let us note the 
symmetry groups of the C, phase in the three cases under 
discussion are respectively P 112,/n (c,,), P 1c1 (cS2) ,  and 

Pc l l  (CS2); not one of these has been seen in experiment. 
There is still another phase on the.experimenta1 phase 

diagram with q, = 1/3, whose symmetry group P2,2,2, 
( D :  ) corresponds to values of the coefficient a; > 0, and 
also the previously mentioned phase with q, = 0. In order to 
fully describe this diagram it is necessary to include the de- 
pendence of the coefficient a; on temperature, and also to 
add to Fig. 2 a discussion of all the values of q, in the Bril- 
louin zone, which requires, as we noted above, certain modi- 
fications of the approach. Let us emphasize one more time 
the agreement between the theoretical and experimental 
phase diagram and symmetry groups of the commensurate 
phases which correspond to one optical branch of the normal 
mode spectra of crystals of the compounds discussed above. 
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