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We investigate theoretically the effect of spatial dispersion (i.e., the exchange interaction) on the 
dispersion relation for surface waves in a ferromagnetic insulator. We study surface magnetic 
polaritons caused by the interaction of electromagnetic waves with Damon-Eshbach waves. 

1. The magnetic permeability tensor pik = p,k (w,k) 
contains all the essential information about the high-fre- 
quency properties of magnets; the specific form of this tensor 
is in turn determined by the equation of motion of the mag- 
netic moment' (or of the magnetic sublattices in the case of 
ferrites and antiferromagnets). The temporal dispersion of 
the magnetic permeability (i.e., its dependence on the fre- 
quency w is a consequence of the precession of the magnetic 
moments,while the spatial dispersion (i.e., the dependence 
on wave vector k )  is a consequence of the propagation of 
spin waves in the magnets. The characteristic frequencies 
are the precession frequency wo = gH, (where Ho is the 
magnetic field within the magnet, which can also include the 
anisotropy field) and the frequency w, = 4rgM (where M 
is the magnetic moment per unit volume), which essentially 
plays the role of an oscillator strength (see below). The 
characteristic length for the spatial dispersion is 
l/k,,, = (J//3M)"2 a, where a is the interatomic spacing, 
Psg+i is the Bohr magneton, and J i s  the exchange integral, 
which is the same order of magnitude as the Curie tempera- 
ture T,. As a rule we have J)PM- 1 K. 

In order for spatial dispersion to be neglected, a condi- 
tion must be fulfilled which is more rigorous than the usual 
condition for macroscopic fields, i.e., ak < 1 (see Ref. 2). 
Namely, the inequality 

must be satisfied. Neglect of dissipative processes implies 
that the magnetic permeability tensor is Hermitian 
(pik = pki * ) and ensures that the inequality , 

holds, where y, is the logarithmic attenuation rate of the 
waves caused by dissipation. 

For the simplest assumptions about the structure of the 
ferromagnet (i.e., free precession of the magnetic moment 
M around the magnetic field H) and neglecting spatial dis- 
persion along with dissipative processes, we have 

Inclusion of spatial dispersion corresponds to the replace- 
ment 

The waves we are interested in propagate along the sur- 
facey = 0 of the ferromagnet, which occupies the half-space 
y > 0. We introduce the two-dimensional wave vector k of 
the surface waves: 

The dependence on the coordinate y is determined in the 
process of solving the problem (see below). 

2. It is well-known that temporal dispersion of the 
magnetic susceptibility leads to the existence of peculiar 
quasistatic oscillations (the Walker modes3), whose disper- 
sion relation can be obtained by solving the linearized spa- 
tially-inhomogeneous problem within the magnet: 

rot h=O, div b=O, b i = p i k ( o )  hk, (5) 

and outside the magnet: 

rot h=O, div h=O, (5') 

h and b are the time-varying components of the magnetic 
field and magnetic induction. Of course, Eqs. (5 ) and (5') 
must be supplemented by corresponding boundary condi- 
tions, i.e., taking into account continuity of the tangential 
components of the vector h and the normal component of the 
vector b at the boundary of the magnet. 

According to ( 5 ) ,  (5'), and ( 3 ) ,  a peculiar nonrecipro- 
cal surface wave (see Damon and Eshbach, Ref. 4) propa- 
gates along the positive direction of the z-axis (k, >O) 
whose frequency is 

the penetration depth y -  ' both into the bulk of the magnet 
(y > 0 )  and into the vacuum (y < 0) is 2 7 ~  times smaller than 
the wavelength along the z-axis ( y = k) . The absence of dis- 
persion (i.e., w does not depend on k)  shows that in this 
approximation the Damon-Eshbach (DE) wave carries no 
energy: its group velocity satisfies u,, = dw/dk = 0. 

There exist several mechanisms for making the Walker 
modes dispersive: retardation (i.e., finiteness of the velocity 
of light c converts the magnetostatic waves into magnetic 
polaritons; see Ref. 5); interference between magnetostatic 
waves propagating along the two sides of a magnetic film 
(see Ref. 1, ch. 111, $ 11) ), and, finally, spatial dispersion of 
the magnetic susceptibility due, as we mentioned above, to 
spin waves. Of course, under real conditions all these mecha- 
nisms play a role. However, because they are described by 
parameters whose magnitudes differ considerably from one 
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another, we can choose conditions which, when fulfilled, 
cause one of the dispersion mechanisms to dominate. In this 
paper, we will be interested principally in the role of spatial 
dispersion (see 5 3 ) . 

3. Let us first discuss the propagation (along the z- 
axis) of a surface magnetic polariton. In addition to its in- 
trinsic interest, this discussion allows us to establish the con- 
ditions for applicability of the expressions derived in Sec. 4, 
which describe quasistatic waves. 

The geometry of the problem was described above. The 
nonzero components of the magnetic and electric fields de- 
pend on coordinates in the following way: 

According to the Maxwell equations and Eqs. ( 3 ) ,  

The frequencies w,, w, are small compared to atomic 
frequencies. Therefore in the case of a ferromagnetic insula- 
tor the dielectric permeability E is naturally taken to be the 
static dielectric permeability (in this case we have E > 1). 

From the Maxwell equations and natural boundary 
conditions (continuity of the tangential components of the 
magnetic and electric fields, i.e., h, and ex ) we determine the 
dependence of the wave frequency w on wave vector k. The 

dispersion relation of the magnetostatic surface polariton 
has the form 

The presence in Eq. (9)  of a term containing the wave vector 
k to the first power indicates that the wave is nonreciprocal 
[that is, w( - k)  #w (k )  1 .  This is a consequence of two 
facts: first of all, there is a vector [H,, yo] in the problem, 
where yo is the normal to the sample surface, which breaks 
the equivalence of the two directions along the z-axis; sec- 
ondly, there is no invariance under the interchange t -  - t, 
because such an interchange reverses the signs of the mag- 
netic field H and magnetic moment M. 

We will not write down the solution to Eq. (9),  because 
of its complexity. Schematically, the function w = w(k) 
looks as shown in Fig. 1 (compare Ref. 5) .  Let us note cer- 
tain features of this function. 

Let k > 0. The curve w = w (k )  is monotonic and lies in 
the interval between the frequencies [wo(oo + w, ) ] 'IZ and 
w,, given in ( 6 ) ;  

O M Z  (k -  k,, ) 
[ ( O O + O M )  0 0 I t b  + , Otk- kg ,Kkp, ,  

2 ~ 0 0 [ 0 0 / ( 6 ) 0 + 0 M )  ] I h  k g r 2  

o ~ E - o M o D ~ ~  ( I + E ) / ~ C ~ ~ ~ ,  ~ B o D E I c  

where 

ckg, = ( o O + O M )  ( 0 0 / 0 M ) ' ~ .  

For k = kg, the penetration depth y-  ' of the surface wave 
into the ferromagnet reduces to zero, since 

y = [ kZ- ( m 2 / c 2 )  Per E ITb+'" 

as the frequency w approaches [oo(oo  + w, ) ] I /* from 
above. 

The divergence of y implies that the macroscopic ap- 
proach is inapplicable; however, it can be salvaged if we take 
into account the spatial dispersion of the magnetic suscepti- 
bility (see Sec. 5 ) .  

For k < 0 the curve w = w ( k )  is also monotonic. The 

I limiting frequencies (points w, and w, in Fig. 1 ) are those 
I 
I I values of frequency for which yo (the point w, ) and y (the 
I I 

I 
point w, ) reduce to zero: 

I 
I 

I I 
I I O ~ ~ = O ~ ( O ~ +  O M )  + O O O M /  ( E - I ) ,  ka= -on /c r  
K~ *A Kc, 

K 
2 ( E - 1 )  0 e 2 = 8 [ 2  ( O O + O M ) ~ +  O . W ~ ] - ( O O +  O M )  ( 2 0 0 + 0 M )  

+ o l a D ' 1 2 ,  

D = e Z [ 4  ( o o + o M )  - 2 ~  (w0+mrn)  ( 2 0 0 + 0 ~ )  FIG 1 Dlspers~on relat~on for surface rnagnetlc polar~tons (boldface 
curves), 1-0 = ch, 2-0 = el\ [ ~ p , ~ ,  ] "' for co> 04, + w,,. See the text + ( o O + O M ) ~ ~  

for the values of k,, , k,, k , , ,  o,, w,, kn=- ( O R / C )  ( E P  rff ) Ih .  
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In the limits of large and near-unity values of the dielectric 
permittivity we have 

The endpoints (w, and o, ) of the left branch of the disper- 
sion curve o = w(k) manifest themselves in the quadratic 
dependence of the phase velocity v = w/k on frequency 
( A v a  ( W  - w , , ~  )2, where Av = v - v, , ) .  

Comparing the left and right branches of the dispersion 
law for the surface magnetic shows that magnetos mG. 2. Dependence of the DE wave frequency on the angle 6 between the 
tatic waves (kc-, ) exist only for k > 0. Taking retardation two-dimensional wave vector and the magnetic field. The crosshatched 
into account in this limit [see the second expression of ( 10) 1 area is the region where internal Walker oscillations exist. 

yields group velocities which are nonzero but small com- 
pared with the velocity of light c: 

do vgr = - = 2'11 
(ODE-0)' 

dk 
1 OGODE. 

o ~ ' ~ o ~ ~ ( I + E )  ' (12) 

The group velocity of the wave for k < 0 is on the order of the 
velocity of light over the entire frequency range. 

Finally, we note that DE waves can exist not only in 
insulators but also in metals6 Assuming that the magnetic 
field has no effect on the motion of an electron (implying 
that w C r g l ,  where o, =eB/m*c, B = H + 4 n M ,  m* is 
the effective mass of a conduction electron, and T is its colli- 
sion time), we should replace the dielectric permittivity in 
( 10) by its value 4nia/o in the metal. Then 

The condition for existence of DE waves in a metal is more 
restrictive than in the insulator: SMk)l  in place of 
k%w,/c. 

4. DE waves can also propagate for 8 # n/2 (see 5 1 ). 
From (5) and ( 5 ' )  supplemented by the boundary condi- 
tions, it follows that 

bulk oscillations (Fig. 2).  The passage to infinity of the 
quantity y (at 8 = 8, ; see Fig. 3) shows that in the neighbor- 
hood of 8 = 8, we again have violated the condition for ap- 
plicability of the macroscopic description, and in particular 
the condition ( I ) ,  in which we must replace k by y, that 
spatial dispersion can be neglected. 

5. In this section (following Refs. 5-7) we will investi- 
gate the effect of spatial dispersion (spin waves) on the DE- 
waves. The replacement (4)  leads to a complicated depend- 
ence on they coordinate [see (7)  ], because of the increased 
number of solutions (in terms of y)  to the bulk dispersion 
relation 

It is clear that for 8 = 8, = arc sin [wo/(wo + w, ) ] the 
penetration depth y -  of the DE wave decreases to zero, 

I 

I 

while for 8 < 8, it becomes negative. Thus, 8, serves as a I 
I 

critical angle for the existence of DE waves (Figs. 2 and 3).  I 
I 

The bulk oscillations in a ferromagnet with magnetic I I 

permeability (3 )  (i.e., the Walker modes) have eigenfre- I I 

quencies equal to I 
I 
I 

According to Eqs. (3) and (4) ,  Eq. ( 16) is a bicubic. Those 
surface waves with Re y > 0 must be discarded. From this we 
see that the structure of the magnetic potential for y > 0 is as 
follows: 

(P cx ec r  (Ae-TtU+Be-l~U+Ce-711) 
Re yi>O, i= l ,  2, 3, 

(17) 

where p is a two-dimensional vector with coordinates x and 
z. The increase in the number of solutions requires addi- 
tional boundary conditions (in order to determine the coeffi- 
cient A, B, and C ) .  For their derivation it is necessary to 
investigate the motion of the magnetic moment at the sample 
boundary, taking into account the difference between the 

where p, is the angle between the three-dimensional wave 
vector k and the magnetic moment M. Consequently, the 

iy!, I 

bulk oscillations occupy the frequency interval (a,, 
I 

[oo(o0 + oM ) ] The smallest (critical) frequency of @C 2 r-e, e 

the DE waves wc w~~ ('c ) = [ w O ( w ~  + w~ ) 1 It FIG. 3. Dependence of y on 0 for the DE waves ( y -  ' is the attenuation 
coincides with the upper limit of the frequency interval for depth). 
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surface and volume anisotropy energy, and also the absence 
of magnetic atoms for y < 0 (Ref. 10). However, the Lan- 
dau-Lifshits equation, which describes the motion of the 
magnetic moment in the long-wavelength limit, is a second- 
order equation; therefore the following phenomenological 
boundary condition is sufficient, in which we introduce a 
single constant d with the dimensions of length: 

In the two limiting cases, condition ( 18) has an especially 
simple physical limit: in the limit d- oo the surface anisotro- 
py plays no role (i.e., there is no free magnetic moment at the 
boundary ), while for d -0 the opposite case holds: the sur- 
face anisotropy fixes the direction of the magnetic moment 
at the boundary. Of course, the anisotropy of the surface can 
lead to more complicated versions of the boundary condition 
( l a ) ,  e.g., to the replacement of the scalar d by a second- 
rank tensor dm,, where P,P ' = x,z. Note that the sign of d 
and of the components dog, are not determined-they can be 
both positive and negative; furthermore, the principal direc- 
tions of the tensor dgg, need not coincide with the basic crys- 

tallographic directions of the sample. 
To begin with, let us investigate the simplest case 

( 8  = ~ / 2 ,  i.e., k, = O), which admits an exact solution to 
Eq. (16): 

[see ( 3 )  and (4)  1. The absence of spatial dispersion implies 
a = 0. It is clear from ( 19) that y,,, - w as a-0. The exis- 
tence of a difference between 1 yz 1, 1 y3 1 and 1 y,  1 allows us to 
analyze the dispersion relation and to obtain a fairly com- 
pact expression for the dispersion relation of the DE-waves, 
taking into account spatial dispersion. 

Using the continuity of the corresponding components 
oT the vectors h and b, and also the additional boundary 
condition ( 181, we obtain an equation that determines the 
dispersion of DE waves in the form of a vanishing determi- 
nant: 

where we have written w, = w, + (w&/4 + wZ) From (20) it is easy to obtain 

Expressions (19)-(20) are limited only by the weak 
condition (ak( 1 ) for macroscopic waves. However, it is 
clear from Eq. ( 19) that the DE wave preserves its meaning 
as a macroscopic surface excitation (i.e., a type of Walker 
mode) only under the stronger condition (1).  In this case 
the exchange interaction either changes the structure of the 
field in the immediate vicinity of the surface ( yz and y3 are 
real quantities, and y,, y,) k ) ,  or, if Im y2,, #O, the ex- 
change interaction manifests itself in an oscillatory depend- 
ence of the field on position; the wavelength of the "wave" 
along y is considerably smaller than the wavelength of the 
DE wave. 

We assume that condition ( 1 ) is fulfilled, and in subse- 
quent transformations we will retain in (21) only the first 
nonvanishing terms with respect to (J /PM) (ak)'. Specifi- 
cally, in this case we should replace w by w,, in the right side 
of Eq. (21 ), i.e., in Eqs. ( 19). In analyzing the expressions 
we obtain in this way, we will start with the following princi- 
ple: every ferromagnet is characterized by a set of parame- 
ters,among them the parameter d which describes the 
clamping the magnetic moment at the surface. We will find 
that d is one of the most important of these parameters, and 
that it is necessary to distinguish ferromagnets (more pre- 
cisely, ferromagnetic boundaries) with d ) (J /PM) a and 
d (  (J/PM) a. The attenuation and dispersion of the DE 

I 
waves depends on the "position" of l/k (i.e., the wavelength 
of the DE wave) relative to the parameter d. 

For the cased ) (J /PM) 'I2 a, our results can be reduced 
to a table, in which the following notations 
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are introduced. In the limit of small w, (w, <ao) we have 

while in the limit of large w, (w, )wo), 

According to the table, as k increases the linear dependence 
of Re w(k) becomes quadratic, while the attenuation is 
much smaller than the dispersion. 

In the case d g (J /OM) "' a, the condition dk < 1 is al- 
ways fulfilled due to condition ( l ) ,  while from (21) and 
(19) we have 

where 

In the case under discussion here ( d k g  1 ) the dispersion is 
"washed out" by the attenuation: the quantities Im w and Re 
(a - uD ) are of the same order. Their dependence on k is 
linear. This was pointed out in Refs. 7-9, while Ref. 7 con- 
firms the smallness of the bulk wave component for dk) 1. 

We have mentioned several times that dissipative pro- 
cesses were neglected in deriving the dependence of the dis- 
persion law of DE waves. In particular, it should be under- 
stood that this implies the inequality Im w % l / ~ ,  where T is 
the dissipative attenuation time of the DE waves. 

The appearance of attenuation [see the table and Eq. 
(25) ] is a consequence of the diversion of energy from the 
surface by spin waves, in our case by waves with y = y3 
[with a minus sign in front of the root in ( 19) 1. Condition 
( 1 ) implies that < 0, so that y3 is a pure imaginary quanti- 
ty. In order to choose the sign of y, correctly, it is necessary 
to introduce a small dissipative attenuation, requiring as al- 
ways that the quantity Re y, be positive, and then to reduce 
this dissipative attenuation to zero. The correctness of this 
procedure is confirmed by the correct sign of Im w in the 
table and in (25). 

The attenuation of the surface waves even in the ab- 
sence of dissipative terms in the equations of motion of the 
magnetic moment is a well-known fact (see, e.g., Ref. 1 1 ). 
Nevertheless, in $8 below we will discuss the limiting transi- 
tion from a film of finite thickness (taking dissipation into 
account) to a half-space. Thisallows us to find criteria for 
the existence of weakly-damped DE waves, in whose de- 
scription we will consistently neglect dissipative processes. 

6. Now let us investigate the effect of the exchange in- 
teraction on surface waves which propagate at an angle 
8 # ?r/2 to the direction of the magnetic field. The exact solu- 
tion to ( 16) is too complicated; however, we can make use of 
the fact that for AB) (J/PM) (ak)', where A@ = B - B,, the 
roots of Eq. (16) differ significantly in magnitude [here, as 

previously, we limit ourselves to the case of weak spatial 
dispersion, i.e., ( 1 ) 1. Even at 8 = ?r/2 we have Jy,,, I ) y,; to 
the required accuracy we can assume that for w = wDE ,y, is 
determined by Eq. ( 15), while 

and the function wDE (8)  is given by Eq. ( 14). The values y, 
in this form were used in Refs. 12 and 8. 

Let us begin with the case of free magnetic moments at 
the boundary ( d  = w ). We will not calculate the dispersion 
relation in the form of a vanishing determinant; we need only 
note that the determinant depends on the values of the com- 
ponents of the tensor p,, in which we must substitute 
- ( i  = 1,2,3) in place of k :. Stopping at terms of first 

nonvanishing order in (J/PM)"' (ak),  we obtain 

Oah x [o. sin 0 + - sin 0-oDE (0) + 
2 mOoM I 2ODE(0) 

woonr sin 0 
 ODE(^) 

The subscript co indicates that have set d = co in the bound- 
ary conditions (21 ). For 8 = ?r/2 we naturally obtain the 
expression in the table for k )  l/d. The value of Im w (i.e., 
the attenuation) can be calculated by using the following 
approximation in (J /PM) "' (ak) : 

The reasons for the appearance of attenuation are the same 
as before. 

If the magnetic moment is pinned at the boundary 
( d  = O), analogous calculations lead to the following re- 
sults: 

where 

As for 8 = ~ / 2 ,  attenuation here is of the same order as dis- 
persion: 
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Re [o- ODE(^) 1, Im m a  (J/!M) "ak. (28') 

Note that by generalizing the boundary conditions 
(e.g., passing from a scalar d to a tensor ds,. ) we can investi- 
gate the mixed boundary conditions: 

It is found that pinning of even of a single component of the 
magnetic moment at the boundary is sufficient to ensure rap- 
id growth of the attenuation; in both cases (29) and (301, 
Re (O  - w,, ) and Im w are of the same order of magnitude, 
and are proportional to (J/flM)"2 (ak). Note the very im- 
portant dependence of the parameters of the DE wave on its 
direction of propagation: although the frequency w,, (8 )  
varies between finite limits as the angle 8 varies from 7~/2 to 
8,, the values of S ,  and So go to infinity and zero, respec- 
tively. Of course, our investigations limited by the inequality 

7. As we have seen, y, -+ oc, as 8- 6,. Consequently, a 
basic property of the DE-waves-their characteristically 
large damping length compared to the same length for spin 
waves-is lost. However, when spatial attenuation is taken 
into account, all three values yi remain finite at 8 = 6,, al- 
though one of them turns out to be imaginary, i.e., the wave 
is, strictly speaking, not a surface wave; nevertheless, as we 
will see, it is weakly damped (even for d = O!). 

Thus, for 8 = 8, we have 

Note that 

(for o - w, ), i.e., only the second wave is a pure spin wave, 
while the first and third are a result of "entangling" of the 
spin wave with the Walker mode. 

In the case of free magnetic moments at the boundary 
(d+  a, 

where 

For moments pinned at the boundary (d -0) 
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As we have said, even in this case the wave is weakly 
damped: 

We emphasize again that in both cases ( d  = co and d = 0)  
the weakly-damped waves possess anomalous dispersion, 
i.e., dw/dk < 0. 

Comparing the expressions obtained here with those 
given in Sec. 6, we can easily see that the spectrum is consid- 
erably altered near 8 = 6, : in particular, the coefficient of k, 
(or k )  in the dispersion law for surface waves changes sign in 
anarrow region of angles 18 - 8,1 5 (J/flM)"2 (ak),  while 
in the damping dependence on wave vector changes [com- 
pare Eqs. (27) and (33) 1. 

8. A half-space occupied by a ferromagnet is, of course, 
an abstraction. Let us investigate the half-space limit for the 
example of a film whose thickness L will be assumed to be 
significantly larger than all other parameters in the problem 
with the dimensions of length. I t  will become clear that our 
investigation of this model (i.e., of independent weakly-at- 
tenuated surface waves) presupposes the existence of dissi- 
pation, although the dissipative characteristics (which we 
derived above) do not enter into the final answers. 

Let us begin with the simplest case of Walker modes 
(we neglect spatial dispersion). There is a wave which is 
analogous to the surface wave with the following field struc- 
ture: 

I A sh(yy)+Bch(yy),  O<Y<L, 
cp = exp[i (k,x+k,z) ] C,eekU, Y >L, 

C2eku, y<O. 

Using the boundary conditions, for 8 # 7~/2 we can write the 
dispersion relation with the help of the two equations: 

(yZ/k2) (OM sin2 0-m0 cos2 0 )  - (2ylk) cth (yL)  oo cos2 0 
- ( o x  sin2 0+o0 cos2 0 )  =O. ( 3 7 )  

For 8 = 7~/2 both these equations reduce to an identity'), 
and the expression for the frequency of the waves can be 
obtained by making use of the fact that in this case y = k: 

The analysis shows that Eq. (37) has only one real solution 
for an arbitrary thickness L for 

while for 6 < 8, there is no solution at all. From this we see 
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that the angle O,, even in the half space, is a critical angle for 
solutions of the type (35). Changing the sign of k does not 
change the value of the frequency, i.e., the wave is reciprocal. 
In the limit L +  w it follows from (36) and (37) that there 
exist two solutions: 

@,= [o,+ (u0+oM)sin2 01 12 sin 8, sin 8>0, 
(39) 

oz=- [oo+(oa+oM)sinZ 01 / 2  sin 0, sin 8<0, 

the wave with frequency w, keeps close to one side of the 
film, while thew, stays close to the other. 

Naturally, the inclusion of spatial dispersion greatly 
complicates the problem. Therefore,we will investigate only 
the case 6 = + ~ / 2 .  The dispersion equation for the film is 
obtained, as always, in the form of a vanishing determinant 
D. In the case of a film this determinant is sixth order: 

We denote 3 X 3 blocks by the symbols {...I. If dissipation is 
omitted, of course, all solutions to Eq. (40) are real. Let us 
recall: the damping of DE waves is a consequence of the fact 
that one of the values of y in (19) is imaginary. In the solu- 
tion of the film problem, this implies that the wave field is a 
superposition not only of hyperbolic functions but also the 
trigonometric functions sin( kyy ) and cos( kyy ) , where 
ky = iy [see ( 19) 1, while in (40) not only the functions 
sh(yL) and ch(yL) but also sin(k, L )  and cos(kyL) ap- 
pear. The latter terms do not diverge as L + w , which inter- 
feres with the passage to the half-space limit in Eq. (40). In 
order to carry out this limit, we introduce a relaxation term 
into the Landau-Lifshits equation (i.e., we include dissipa- 
tion processes). As a result, all the y and ky acquire a rather 
small imaginary part. In this case of the hyperbolic functions 
this is unimportant, but for the trigonometric functions it 
plays a decisive role: as yL- co and Im (k, L )  + cc the ele- 
ment in blocks {12) and (21) reduce to zero and the deter- 
minant (40) can be written as a product of two factors: 

while the dispersion relation is split into two parts: 

each of which coincides with the dispersion relation for sur- 
face waves which keep close to one of the surfaces. Natural- 
ly, one equation has a solution for k, > 0, and the other for 
k, < 0. For Im ky g y,,, the dissipative terms can be omitted 
in Eqs. (41). 

This analysis allows us to trace the origin of the damp- 
ing for the DE waves when the spatial dispersion is included 
and dissipation is neglected. Formally, the imaginary unit i 
"remains" when, by virtue of the fact that I Im (ky L )  I > 1, 
we neglect one of the exponentials in the expression for 
sin(kyL) = [exp(ikyL) - exp( - ikyL) ]/2i. 

Thus, the DE wave dispersion laws found above are 
val idforImkyL)>l  andIm ( k y < y , ( i =  1,2). 

9. A detailed analysis of the DE wave dispersion law, 
and also of the magnetic surface polariton, as we have de- 
fined them, can be useful in comparing the experimental re- 
sults with theories (in particular, with respect to surface 
scattering; see, e.g., Ref. 13). 

The surface waves naturally contribute to the surface 
energy of a magnet, and correspondingly to the surface mag- 
netization. Because of the complicated dependence of the 
wave parameters on their propagation direction 6 (see § 6 ) ,  
an analytic calculation of the temperature dependence of the 
surface characteristics is extremely awkward to carry out, 
and possibly would not be of much interest, because isolating 
the surface magnetic moments from the bulk background is 
apparently a very complicated problem. In particular, be- 
cause the frequency w,, (6) is larger than the frequency of 
the Walker modes, as T-0 the principal contribution to the 
temperature variation of the magnetization is provided by 
the bulk oscillations. 

Of course, it is necessary to note the following circum- 
stance. The presence of nonreciprocal waves confined near 
the surface of the magnet compels us to assume that it is 
possible for quasiparticle currents flowing around the sur- 
face of the magnet to exist in equilibrium (!) which corre- 
spond to the nonreciprocal waves. In fact, because of the 
nonreciprocal property, 

v 
i = S  d2k t 0, 

exp (fiolT) -1 (2n)' 

vho (k) d2k 
q =  - 

~ x p [ h o  (k)lT] -l (2n)' + 0, 

This implies that on the two sides of the film there exist 
macroscopic currents of quasiparticles and energy, directed 
toward the opposite sides. A cylinder magnetized along its 
axis should be surrounded by a quasiparticle and energy cur- 
rent. How to observe this current remains unclear, as well as 
what role is played by dissipative processes in the phenome- 
non, although it would seem that their role (for Re o > Im 
w) cannot be too important. 
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