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We have investigated the distribution function for mesoscopic fluctuations in the hopping 
conductivity G which are observed in short-channel GaAs field-effect transistors as the gate 
voltage is varied. We show that the distribution function for In G is asymmetrical and that it falls 
off smoothly for large values of G. This agrees with the results of theoretical studies of mesoscopic 
conductivity fluctuations for a system with exponential scatter in the values of its local 
conductivity. In order to describe the temperature dependence of the width of the distribution of 
In G for the channel of a GaAs FET ( T = 1.5 to 8 K), we propose a model for hopping 
conductivity in a short sample which takes into account short-range fluctuations in the charged 
donor potential. 

1. INTRODUCTION 

There have been several studies of mesoscopic fluctu- 
ations in the hopping conductivity of both one-dimension- 
alls2 and two-dimensional3s4 transistor structures as the 
electron concentration varies. In the first case a silicon MOS 
structure was investigated in which a narrow strip of n-type 
semiconductor with a width < l  p m  was defined by using 
acceptor doping. The conductivity of the strip was measured 
as current was passed along its long dimension. In the second 
case, the channel of a GaAs field-effect transistor was inves- 
tigated. This channel also has the form of a strip; however, 
the conductivity is now measured along its short dimension. 
In this case, the explanation for the conductivity fluctu- 
ations which are observed as the voltage V, at the Schottky 
gate varies is based on the idea that the conductivity of every 
sample is dominated by a small-area region where the con- 
ductivity is highest, whose resistivity in turn is determined 
by a single electron hop. The fluctuations in the conductivity 
Gas V, varies are related to shifts in the spatial location of 
this ("primary") hop which determines the conductivity 
across the entire sample. In Ref. 4 additional information 
was obtained: it was found that the crookedness of conduc- 
tivity paths in the sample are small, and they are extended in 
the direction of the current. This was indicated by anisotro- 
py of the magnetoresistance when the magnetic field was 
directed along and perpendicular to the direction of current, 
which clearly implies that the conducting paths can be pic- 
tured as consisting of resistors connected in series, each of 
which is associated with an electron hop between a pair of 
localized states. 

The following question then arises: how is a particular 
conducting chain selected in a large-area sample? One possi- 
ble explanation is the effect of fabrication inhomogeneity, as 
a result of which the effective width of the sample becomes 
much less than its geometric width. In this case the system 
becomes entirely equivalent to a one-dimensional system.' 

Another possible explanation is related to the fact that 
because of strong scatter in the resistance associated with 
individual hops, even in a macroscopically homogeneous 
sample there will be certain paths which will be selected to 
carry the primary portion of the current through the sample. 
In this picture, exponentially widely-spaced and almost rec- 

tilinear chains of hops whose conductivity is anomalously 
large are responsible for the conductivity of a short sample. 
In a wide sample the probability of formation of such chains 
can be large. 

A cardinal difference between these two explanations is 
the following: in the first case, the system consists of a set of 
series-connected high-impedance resistors, while in the sec- 
ond case low-impedance segments which join the contacts 
are responsible for the conductivity, and the total conductiv- 
ity of the sample is determined by the sum of the inverse 
resistances of these portions. The central point of this article 
is the fact that an unambiguous choice can be made between 
these two alternative explanations by studying the statistics 
of the mesoscopic conductivity fluctuations in a single sam- 
ple. Despite the fact that superficially the pictures of oscilla- 
tions described in Refs. 1,4 are similar, the distribution func- 
tions for the log conductivity are considerably different for 
the one dimensional and two dimensional cases. In the first 
case, the distribution function has a nonsymmetric form, 
with a "tail" extending toward the low-conductivity side, 
while in the second case the distribution function has a tail 
extending toward the high-conductivity side. 

In this paper we investigate the distribution function for 
fluctuations in In G( V, ) in a two-dimensional s y ~ t e m . ~  The 
experimental data are compared with the results of a theo- 
retical study of the statistical properties of mesoscopic fluc- 
tuations in the hopping conductivity of one-dimensional and 
two-dimensional The results of the paper suggest 
that the model consisting of a sum of individual chain con- 
ductivities is the more correct one to apply to these systems. 
In order to describe the experiments quantitatively we adopt 
a microscopic model of the hopping conductivity of a short 
channel which includes small-scale fluctuations of the 
charged impurity potential. 

2. DISTRIBUTION FUNCTION OF THE LOG CONDUCTIVITY 

In Ref. 5 a general expression was obtained for the dis- 
tribution function over an ensemble of samples of the log 
conductivity of a randomly inhomogeneous barrier struc- 
ture of finite area. The basic premise of this derivation was 
the following: because of spatial fluctuations in the barrier 
parameters, the total conductivity G is determined by 
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"punctures", i.e., rare regions with anomalously high con- 
ductivity. We denote the local conductivity of a puncture by 
g exp( - u) (where 8 is a preexponential factor) and intro- 
duce a density of punctures p (u )  such that p(u)du is the 
concentration of punctures whose log conductivity lies in the 
interval from - u to - u + du in a sample of infinite area. 
The distribution function of the log conductivity is ex- 
pressed in terms ofp(u)  as follows5: 

m 

where 

S is the area of the barrier, and So is a characteristic area of a 
puncture. Since the higher the conductivity the more rarely 
the punctures encounter each other, the function p (u )  can 
be cast in the form 

with R (u)  % 1 and decreasing with increasing u. When (3) is 
substituted into ( 1 ), it is found that for a large enough area S 
the position of the maximum of the distribution function is 
determined by "optimal" punctures, i.e., those for which the 
derivative of exp [R ( - u) ] exp( - u) is a maximum. Let us 
denote the corresponding value of u by uopt . The criterion 
that the areasbe sufficiently large then reduces to the condi- 
tion Sp (u,,, ) ) 1, which implies that the number of optimal 
punctures in a typical sample is much larger than unity. This 
condition can be cast in the form of a strict inequality Y > 1, 
where the parameter Y is defined as 

For Y < 1 we do not find an optimal puncture in a typical 
sample. The position of the maximum of the distribution 
function ( 1 ) for Y < 1 is determined by the most conductive 
of the punctures which exist in a typical sample. The value 
u = uf > uOpt corresponding to this puncture is found from 
the condition Sp(uf) - 1, which is equivalent to the condi- 
tion 

From this we see that uf decreases as a function of Y for Y < 1. 
The expression for the distribution function for Y < 1 is easy 
to write down once we introduce the auxiliary function: 

It is easy to see that P(Y)  increases with increasing Y. For 
Y = 1 we have uf ( 1 ) = u,,, and q,( 1 ) = 1, since R' 
u,,, = - 1. From this we see that the condition Y < 1 is 
equivalent to the condition q, < 1. For Y < 1, Eq. ( 1 ) can be 
transformed to the form - 

where 

=-ln(G/G) -uf (v) 

and T ( t )  is the gamma function. Using (7),  we can calculate 
the average value A: 

where C = .577 is the Euler-Mascheroni constant, and also 
the corresponding moments: 

where f (n) is the zeta function. 
Equations (7)-( 10) become inapplicable in the region 

of values of q, close to unity, in particular for 
1 - S( [ R" ( uopt ) ] "' 4 1. The distribution function ( 1 ) has 
the form 

m 

for 11 - q, I ( (R" (u,,, ) ) '/', where 

Here 

is the error function. It is clear from Eq. ( 11) that for 
11 - q, 1 ( (R1'(uOpt ) ) the distribution function is a uni- 
versal function of the ratio A,/w, while only its width de- 
pends on the parameter q,. In the interval 
I 1 - q, I - (R" (u,,, ) ) "' a constriction of the distribution 
function takes place. For A,%w it falls off as 
exp[ - exp(A,/w)], while for A, <O,lA,l%w it decreases 
more slowly, as w/A:; i.e., as a power-law; therefore the 
average value of this distribution function diverges, along 
with its higher moments. 

Equations (7) and ( 11 ) for the distribution function 
were obtained in Ref. 5 by averaging over all samples. It can 
be shown that the same distribution function applies to me- 
soscopic conductivity fluctuations in a single sample as the 
Fermi level varies. The proof of this assertion (i.e., the proof 
of ergodicity of the mesoscopic fluctuations) reduces to a 
proof of the fact that all the even-order correlation functions 
reduce to zero as the difference in arguments increases (see 
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Ref. 9). It is carried out in a way analogous to that described In 6, 
in Refs. 5,7,8, where the second-order correlator was calcu- -Io 

lated for a number of specific current-transport models. 
- I4 

3. EXPERIMENTAL RESULTS 

Figure 1 shows an example of the experimental depend- -18 

ence on gate voltage of the conductivity of a GaAs field- 
effect transistor at several temperatures. The fabrication of 
the structure was described in Ref. 3. The length L of the n 
conducting channel along the current direction was 4 pm, - 
while its width A in the transverse direction was 200pm (the 
thickness of the conducting channel was on the order of 200 
A).  It is clear that, in addition to the fluctuations, there is a O.'O - 

monotonic variation of the function In G( Vg ) associated 
with a decrease in the density of states as the Fermi level p - f8 - I 4  - t 0  InG 
decreases. When we examine intervals of variation of Vg 
within whose limits the density of electron states can be con- F Z  

sidered to be approximately constant, we always find that O*zO 

they contain something like 4 or 5 oscillations. Now, it is 
plain that a good statistical analysis of mesoscopic conduc- 0.10 

tivity fluctuations can be carried out only for a large number 
of oscillations. In order to check how informative such an 
analysis can be for this rather small number of oscillations, - 20 -16 712 Ln G 

we Our by using the presented in FIG, 2. Conductivity fluctuations of a one.dimensional chain of hops 
Ref. 10 for hopping conductivity on a one-dimensional (results of the modeling in Ref. 10) and histograms of the distribution of 
chain. It was important to clarify whether a distribution the log conductivity obtained from an analysis of four oscillations (F1 )  

function obtained by investigating about five oscillations can and the functions In G ( p )  V2). 

reflect the basic features of the conductivity fluctuations of a 
one-dimensional system, and how the distribution function 
of the log conductivity depends on the number of oscillations 
included in the analysis. - 

Figure 2 shows the results of modeling the function 
In G(p) given in Ref. 10. Processing of the data was carried 
out in the following fashion. We first broke up the total inter- 
val of variation of the argument p into 125 to 600 points, 
each of which had its corresponding value of In G( V, 1. Then 

FIG. 1 .  Conductivity fluctuations in the channel of a GaAs FET at var- 
ious temperatures T:1.5; 2.0; 2.5; 3.0; 3.5; 4.2; 6.0; 8.0 K (curves 1-8). 

we determined the fraction Fof values of In G(p)  which fell 
into a given interval [In G, In G + S]. The interval 6 was 
chosen to be 0.02 to 0.03 of the total range of variation of In 
G. Figure 2 shows histograms of F(ln G) obtained by analy- 
sis of the first four oscillations of the function In G(p)  (F 1 ) 
and of all the curves containing =: 12 oscillations (F 2). De- 
spite the small number of oscillations analyzed in histogram 
F 1 an asymmetry with a smooth falloff on the small-conduc- 
tivity side is evident. Increasing the number of oscillations 
under study (i.e., F 2 )  only smooths out the histogram and 
allows us to better study the tail of the distribution function. 
The same tendency is traceable as the number of oscillations 
included is increased further (we have analyzed the results 
of modeling the conductivity of a one-dimensional chain giv- 
en in Ref. 11, which contained - 70 oscillations). Let us note 
that the symmetry of the distribution function is difficult to 
see directly from the shape of the oscillations on the fluctuat- 
ing curve In G(p ) . 

The theoretical expression for the distribution function 
of the logarithm of the hopping conductivity of a one-dimen- 
sional system has the form (7)  with A replaced by - A and 
p (v )  l'* (Ref. 8).  From the data presented in Fig. 2 the mo- 
ments can be calculated: M, = 5.5, M, = 6.9, and M, = 83. 
The corresponding values of p found from Eq. ( 10) come to 
0.51,0.65, and 0.57. The function (7 )  fore, = 0.5 is shownin 
Fig. 2 by the smooth curve; it is clear that this curve de- 
scribes the modeling results satisfactorily. Therefore our 
processing of the data from Ref. 10 has verified that it is 
correct to carry out a statistical analysis of the mesoscopic 
conductivity fluctuations even when the number of oscilla- 
tions is not large. 
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In contrast to the functions obtained in modeling, the 
experimental curves have a clearly visible overall monotonic 
variation (Fig. 1 ) .  This constitutes an additional obstacle to 
statistical processing of the data, which we overcome'ln the 
following way. The monotonic variation in In Go(  V,) at 
each temperature is extracted from the experimental func- 
tions by using the least-squares method to approximate it 
with a straight line. This line In Go( V, ) is then subtracted 
from the experimental curves. Once this is done, we follow 
the procedure described above to construct conductivity his- 
tograms F(ln [ G (  V, ) /Go(  V, ) ]  ) for each temperature. In 
Fig. 3 we show an example of these histograms obtained at 
three temperatures. In contrast to the distribution function 
for the one-dimensional case (Fig. 2), a smoother falloff of 
the histogram is observed on the side of large conductivities. 
It is also clear that the width of the histogram decreases with 
increasing temperature, which is a consequence of the de- 
creasing amplitude of oscillation. The values of the second 
moment M, for the fluctuating function In 
[ G ( V g ) / G o ( V , ) ]  come to 0.97 for T =  1.5 K, 0.54 for 
T = 4.2 K and 0.1 1 for T = 8 K. The corresponding values 
o fp  determined by using Eq. ( 10) equal 0.79,0.89, and 0.97. 
At those values o fp  which are close to unity, the distribution 
function is described by Eq. ( 11 ) and depends only on the 
argument A,/w (p) . Therefore the experimental histograms 
for all eight temperatures are approximated by the same 
function ( 1 1 ), in which the parameter w ( T )  is determined 
each time by mini~izing the mean-square deviation of the 
theoretical curve from the experimental histogram. The re- 
sults of this analysis for three temperatures are shown by the 
smooth curve in Fig. 3. 

Because of the small number of oscillations on the In 
[ G (  V, )/Go( V, ) curves being processed, considerable scat- 
ter can be observed in the histograms. In order to decrease it, 
we carried out the following procedure. All eight of the his- 
tograms were reduced to the same temperature T = 1.5 K by 
compressing the ordinate and expanding the abscissa by a 
factor of w ( 1.5 )/w ( T )  . Then the histograms were shifted 
along the abscissa until the maxima of the corresponding 
approximate curves ( 1 1 ) coincided. A histogram was then 
constructed by taking the arithmetic average of the individ- 
ual histograms which were transformed using the methods 
described above. This histogram is shown in Fig. 4, together 
with the theoretical distribution function ( 1 1 ) . Despite the 
fact that perfect scaling of the picture of the oscillations as 
the temperature is varied does not occur (see Fig. I ) ,  this 
averaging procedure leads to a considerable decrease in the 
scatter. It is clear that agreement between theory and experi- 
ment is satisfactory. The analysis leads us to the conclusion 
that the system under study is a two-dimensional array of 
parallel-connected random conducting paths. The question 
of the microscopic structure of these paths will be discussed 
in the following section. 

4. DISCUSSION 

As we indicated in Sec. 2, the form of the distribution 
function of a short sample is universal, and gives no i~forma- 
tion about the microscopic mechanism of the current trans- 
port. On the other hand, the width of the distribution func- 
tion wand the position of its maximum In G, depend on the 
specific current transport model. Both these quantities are 
determined from the experimental histograms at eight tem- 
peratures. In order to analyze quantitatively the functions In 
G, ( T )  and w( T )  obtained in this way it is necessary to 
adopt a specified model of the hopping conductivity. 

A first glance suggests that the model of an amorphous 
film proposed in Ref. 12 ought to be a good candidate. In this 
model it is assumed that current transport across an amor- 

FIG. 3. Histogram ofthe distribution ofthe log conductivity of the experi- 
mental dependences for the three temperatures 1.5 (a),  4.2 (b) and 8 K 
(c)  (curves 1,6 and 8 of Fig. 1 ) after subtracting the monotonic part from 
them. The smooth curves show the corresponding approximating func- 
tions. 

FIG. 4. Histogram resulting from averaging over the data reduced to 
T =  1.5 K for eight temperatures, and the corresponding theoretical dis- 
tribution function of the log conductivity. 
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phous film of thickness L comes about by hopping of elec- 
trons along localized states whose radius of localization a is 
assumed to be constant, while the density of statesgdoes not 
depend on energy. For sufficiently small thicknesses t ex- 
tended, almost equivalent chains of impurities are responsi- 
ble for the transverse conductivity of a large-area film. Using 
simple  consideration^,'^ we can find the mean position E of 
the band near the Fermi level in which the energy levels of 
these impurities are located and find the number of links Nin 
the chain. Let us denote by v, the small volume in which an 
impurity should fall in order to become a link of the chain. 
Then the probability of forming a chain is PN = (gv&lN. 
The conductivity of a single link of the chain equals 
5 exp [ - (2L /aN + E/T) ] and is determined by the proba- 
bility of tunnelling of an electron over a distance L /Nand by 
activation over a characteristic energy E. The contribution to 
the conductivity of the film of chains with a given Nand E has 
the form 

The quantity GN is a maximum for 

where 

Substituting N, E into Eq. ( 14), we find for the specific con- 
ductivity (i.e., the conductivity per unit volume) of the film 

Equation ( 17) is valid for A % 1. 
Let us try to compare the experimental results with the 

predictions of this model of an amorphous film. From Eq. 
( 17) there follows the relation 

Let us study the experimental behavior of the quantity d In 
G /d( 1/T). In Fig. 5 we show the temperature dependence of 

FIG. 5. Temperature dependence of the channel conductivity for various 
values of IV,/: 1-1.105; 2-1.117; 3-1.148; 4-1.157; 5-1.195; b 
1.200; and 7-1.241 V (curves 1-6 are arbitrarily shifted along the ordi- 
nate axis). 

the sample conductivity for various values of V,, which cor- 
respond to V, = const cross-sections of the curves in Fig. 1. 
At small values of I V, I, for which multiple electron hopping 
gives a contribution to the conductivity of the sample, the 
temperature dependence of the conductivity has a curvature 
which is characteristic of variable-range hopping. The acti- 
vation energy in this regime decreases as the temperature 
decreases (curves 1, 2).  In the region of large fluctuations, 
the behavior of the conductivity can be described by a single 
activation energy, whose value undergoes mesoscopic fluc- 
tuations as we pass from one peak to the other in Fig. 1 
(curves 3-6) .  In addition, curve 7 exhibits a substantial 
change in slope as the temperature varies. 

In the temperature interval under study here, the acti- 
vation energy of the curves in Fig. 5, ignoring their differ- 
ence in shape, varies from 0.4 meV to 0.8 meV. At the lowest 
temperature T = 1.5 K we obtain from ( 18) a value for N of 
3 to 6. For L = 4 p and a = 100 this value of N can be 
obtained only for an anomalously largeA =: 50, while accord- 
ing to ( 16) the quantity A does not exceed unity. (For this 
estimate the volume v, was set equal to lo-'' cm- 3 ,  the 
width of the impurity band set equal to 10 meV, and the 
concentration of donors set equal to 10'' ~ m - ~ ;  these 
numbers imply a value of the density of states g z  1019 
cm-3 -eVP1.)  .! 

It is our view that the inapplicability of the amorphous- 
film model to the system under study is connected with the 
fact that the channel of a GaAs transistor consists of a layer 
of heavily-doped semiconductor. For such a structure, the 
region of values of V, in which strong conductivity fluctu- 
ations are observed corresponds to electron concentrations 
in the channel which are too small to screen fluctuations in 
the charged donor potential which occur in the region sur- 
rounding the conducting channel.I4 These fluctuations in 
the charged donor potential then cause the distribution of 
electrons to become quite inhomogeneous. The contour of 
the bottom of the c&uction band consists of a set of poten- 
tial barriers of varying heights and all possible spatial scales, 
with filled electron states located in the regions between the 
barriers. The passage of current comes about by tunnelling- 
mediated electron hops through these barriers. The height of 
a typical barrier S(R)  caused by fluctuations in the donor 
concentration on a scale R can be estimated in the following 
fashion.I5 A typical fluctuation in the number of charged 
donors in a sphere of radius R is (N, R 3, where Nd is the 
mean concentration of donors. The potential caused by this 
charge fluctuation has the form 

where x is the dielectri~permittivity. The height of the bar- 
rier S(R ) increases with increasing R up to a scale R, (the 
radius of nonlinear screening) determined by the condition 
that the excess fluctuation charge in a volume R,, equal to 
(NdR ) begins to be balanced by the electron charge 
nR in the channel which screens the appearance of the po- 
tential fluctuation. From this we obtain 

R,=NdIn2 (20) 

and for the corresponding value of the potential amplitude 
we have 

y (R,)  =y,=e2Ndj%n. (21) 
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The tunnelling transparency D of a barrier of height S, and 
thickness R, is 

Iln Dl = (my,) ' " R e l f i = N ~ / n " ~ a ~ ,  (22) 

where m is the electron mass, and a, = fi?c/me2 is the Bohr 
radius. 

It is clear from this expression that as the concentration 
n is decreased by increasing I V, I, the transparency of a typi- 
cal barrier drops sharply. Therefore, in a sample whose 
width A considerably exceeds the length L, a certain point is 
reached at which the conductivity is determined by rare 
"grooves" between the contacts, along which the amplitude 
of the potential contour is considerably smaller than a typi- 
cal value of 8,. This concept is the basis of our model of 
current transport in a short sample with an inhomogeneous 
distribution of localized states. 

Let us estimate the probability Po of forming a groove 
which links the transistor source and drain within which the 
height of the fluctuating contour is less than a certain value 
So (6,. The required probability equals the probability that 
potential fluctuations are absent over the entire length L of 
the conducting channel for all spatial scales which exceed a 
certain scale R,<R, determined by the condition 
S(Ro) = So. Let us surround this groove with a sphere of 
fixed radius R such that R, <R <R,. The probability that 
the potential fluctuation is less than So in a given sphere is 
S,/S(R ), where S(R ) is the typical value of the fluctuation 
( 19). However, the probability that a potential fluctuation is 
less than So in all of the L /R spheres which are located along 
the channel length equals 

In order to estimate the required probability Po we must 
multiply the quantities P(R)  for all scales R over which the 
fluctuations can be considered independent (for example, 
R = R,, 2R0, 4R0, etc. ) . Since IlnP(R, ) I falls rapidly as the 
index k increases (R, = 2,R0), the quantity Po coincides to 
exponential accuracy with P(R,), i.e., 

P,=P ( R , )  =exp (-LIR,). (24) 

The potential contour along the axis of the groove con- 
sists of a series of barriers of heights on the order of S(R,) 
and thickness R,. The order of magnitude of the tunnelling 
transparency of each of these barriers is 
exp{ - Ro[mS(Ro) I ) .  If we assume the value of the 
transparency D = exp( - u) and express R, in terms of u by 
using (19), then the value of Po will be proportional to the 
puncture density p (u ) (Sec. 2 ) .  In this case we obtain for the 
logarithm of the puncture density 

where p i s  an unknown numerical coefficient, while the coef- 
ficient in (25) is introduced in such a way that the maximum 
of the product exp[ - fl (u )  ] .exp( - u )  equals 
exp( - Qo). In this case, according to the universal scheme 
of Sec. 2, the quantity - Q, is the logarithm of the specific 
conductivity of a sample of infinite width. Comparing Eqs. 
(22) and (26), we see that the conductivity of the sample 
will be determined by the punctures when the condition 

is fulfilled, i.e., when a sufficiently low concentration of elec- 
trons exists in the channel. 

We remark that the quantity Q, does not depend on n. 
This comes about because in calculating the probability of 
forming punctures only the small scales R - R, turn out to 
be important, while the concentration of electrons n is deter- 
mined by larger scales on the order of R,. 

Let us take note of a peculiarity of this model which 
distinguishes it from other models of inhomogeneous bar- 
riers in which the sample conductivity is determined by 
punctures. In all such models (e.g., in the amorphous film 
model) a puncture arises in the strong-fluctuation regime, 
where the concentration of impurities significantly exceeds 
its mean value. In the puncture model under discussion here, 
however, a puncture is created where the fluctuations are 
much smaller than the typical value, i.e., in the weak-fluctu- 
ation regime. 

Let us attempt to apply our model to the experimental 
situation. First of all, we note that Eq. (26) does not depend 
on temperature. This is related to the fact that in deriving 
Eqs. (25), (26) it was assumed that the energy of the local- 
ized states between which the tunnelling occurs are the 
same, and does not differ from the Fermi level. The scatter of 
these energy levels which exists in reality leads to the appear- 
ance of a finite activation energy E and correspondingly to a 
correction E / T  to the value of Q, in Eq. (26). In what fol- 
lows, we will see that this correction is small. Therefore, we 
will assume that Eq. (25) forp(u)  remains valid, and that 
we need only substitute the modified value 

Qo (T) = B  (LIa,) v8(NdaBZ) " 9 i - ~ / T  (27) 

into it. 
In Sec. 2 we presented expressions for the width and 

position of the maximum of the distribution function for the 
log conductivity, both expressed in general form in terms of 
the function Sl (u) .  Let us calculate the quantities which en- 
ter into these expressions within the framework of the model 
under discussion here. Substituting Eq. (25) into (4),  (5),  
and (6),  we obtain 

where A, is the characteristic width of the groove. Further- 
more, in Eqs. (12) and (13) there figures the quantity 
Q"(u,,,) = 81/(20Q0). Substituting it into (12) and (13), 
and also using (3  1 ), we obtain for the width of the distribu- 
tion function 

while for the position of the maximum 

where G is the total conductivity of the sample. 
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Our goal is to compare the values of the width calculat- 
ed using Eq. (32) with the experimental values obtained 
from an analysis of the histograms. In order to do this, we 
proceed in the following way. Let us pick the value 
Aoza, = 100 A. Using for the theoretical estimate 
g=e2T/rp,,1s SO that G =  l.l.10W4 W 1  for T =  1.5 K 
and rphl z 10I1sec - l, and Eqs. (29), (32), and (33) for v, 
In G, , w - I ,  we can now determine the values of the param- 
eters v, Q0 and w for each temperature. To do this, we substi- 
tute the experimental values of In G, (T)  into the system of 
three equations (29), (32) and (33), where these values are 
found by shifting the maxima of the approximate distribu- 
tion functions relative to the mean value In Go( T). In place 
of the mean value of the log conductivity for each tempera- 
ture we use the value of In Go( V, ) at that value of V, which 
corresponds to the middle of the interval of variation of V, in 
Fig. 1. 

The parameters w and Qo obtained in this way are 
shown in Fig. 6 along with the experimental values of w. It is 
clear that in the low-temperature region we find adequate 
agreement between the theoretical and experimental values 
of w( T). In the region D 4  K, we observe experimentally a 
stronger decrease in the width of the distribution function 
with temperature than is predicted by theory. We note that 
there is some arbitrariness in our choice of the parameter c; 
however, increasing its value by a factor of 10 causes the 
calculated values of w( T )  to increase by approximately 30% 
(curve 2 in Fig. 6). 

Let us now discuss the values of Q, obtained in this way 
(Fig. 6). It is clear that in the interval 1.5 to 8 K these values 
vary from 22 to 17. Within the framework of our model, the 
quantity Qo(T) is determined by Eq. (27). The characteris- 
tic value of the activation energy E, which is determined by 
the slope of the function Qo( T), comes to E -- 1 meV. From 
this we see that the value of the activation correction to Q,, 

FIG. 6. Temperature dependence of the experimental value of the width w 
of the distribution function and the calculated parameters w and Q, for 
two values of the frequency r& ': 10' ' sec - ' (curve 1 ) and 10" sec - ' 
(curve 2).  

which equals E/T, amounts to (0.1-0.3)Qo in the tempera- 
ture interval under investigation. If we compare the value of 
Qo at T = 6 K with the theoretical value (26), we obtain the 
value 0.9 for the coefficient p for N,  = 4. 1016 cm-'. 

We noted above that our model of the current transport 
is applicable when the conductivity G z  exp( - Qo) of the 
punctures exceeds the conductivity arising from tunnelling 
through a typical barrier in the potential contour, i.e., when 
the condition 

is fulfilled [Eq. (22) 1. Let us estimate the initial concentra- 
tion n, of electrons for which this condition is fulfilled. For 
Qo = 20 we obtain n, z 5. 101° cm - 2 .  The results of capaci- 
tance suggest that strong fluctuations in 
In G( V,) are observed for n 5;4.101° cmP2;  this density 
coincides in order of magnitude with the estimate given here. 

From this we see that, on the whole, a model based on 
current transport determined by hopping of electrons along 
paths with anomalously low potential contour barriers gives 
a satisfactory description of the relation between mean con- 
ductivity and the amplitude of fluctuations at various tem- 
peratures. The specific mechanism for the conductivity fluc- 
tuations as V, varies is the same in this model as in the model 
of an amorphous film.' As V, varies, so does the position of 
the Fermi level. This leads to a variation in the effective acti- 
vation energy for all the hops, and to an exponentially strong 
decrease in the resistance corresponding to them. For v < 1 
the resistance of a sample is determined by the maximum 
resistance of the most conducting chain. As the position of 
the Fermi level varies there are sudden changes both in the 
maximum resistance within a single chain and in the particu- 
lar chains which determine the conductivity of the sample. 
Because of the exponential scatter of individual resistances, 
these sudden changes lead to fluctuations in the sample con- 
ductivity; the minimum conductivity corresponds to the in- 
stant at which the chains are switched. 

An exponential variation in the value of each of the re- 
sistances also takes place as the temperature is raised. As in 
the model of an amorphous film, this should lead to conduc- 
tivity fluctuations with a characteristic "period" ST- T2/€. 
We could consider the kink in the temperature dependence 
of the conductivity (curve 7 of Fig. 5) an example of such 
fluctuations, which can be interpreted as a switching-on of 
resistance with different activation energies. However,for 
experimental values of the activation energy E = 0.4 to 0.8 
meV, the period STat T = 4 K should come to approximate- 
ly 2K, i.e., in the temperature interval under discussion we 
should see 2 to 3 fluctuations in the curve of ln G( T) for each 
V,. However, the majority of curves in Fig. 5 do not exhibit 
kinks. The reason for this remains unexplained. 

In conclusion, let us discuss the observed deviations of 
the experimental function w(T) from theory in the high- 
temperature region (Fig. 6).  The reason for this may be re- 
lated to the fact that as the temperature is increased a transi- 
tion should occur from the regime of chainlike conduction to 
a regime where the sample conductivity is determined by a 
rather small number of regions having the form of branched 
clusters. In this case, the increase in the number of conduct- 
ing paths which takes place leads to an enhancement in the 
attenuation of the fluctuation amplitude and to a sharp de- 
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crease in the width of the distribution function of the log 
conductivity. 
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