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We investigate magnetic states and phase transitions in anisotropic magnets with hexagonal 
close-packed (hcp) lattices. We show that the effects of frustration in these lattices lead to 
instability at the conical point: in place of the well-known 120 "structure there appears an 
incommensurate structure which is continuously degenerate both with respect to the orientation 
of the wave vector in the basal plane and with respect to its magnitude (i.e., structures with 
inequivalent spirals). In antiferromagnets with the "easy plane" type of anisotropy, 
incommensurate configurations arise in the low-temperature region. In the presence of the "easy 
axis" type of anisotropy, at intermediate temperatures antiferromagnets can support 
incommensurate states with well-developed short-range order. As the temperature decreases, 
long-range order in the incommensurate structures arises only for small values of the anisotropy 
constant D; if D is larger than a critical value, a frozen-in aperiodic structure forms in the low- 
temperature region. We also investigate the effects of additional interactions which lift the 
degeneracy of the structures in the ground state. 

1. INTRODUCTION 

At this time it is well known that the effect of frustration 
plays an important role in various magnetic systems. In par- 
ticular, antiferromagnets with triangular lattices are typical 
examples of such frustrated spin systems, where the frustra- 
tion manifests itself in many properties which differ from the 
corresponding unfrustrated systems. These differences are 
reflected above all in the rich variety of phases and phase 
transitions exhibited by such systems, along with their high 
frustration-induced sensitivity to various kinds of perturb- 
ing interactions. It is found that one effect of these perturba- 
tions is to make possible structures which originate with in- 
stabilities at high-symmetry points of the Brillouin zone in 
addition to the other structures which appear in these anti- 
ferromagnets. 

In triangular antiferromagnets, which, in contrast to 
the usual systems, admit the existence of either Lifshits in- 
variants which are linear in a derivative' or of competing 
exchange  interaction^,^ such instabilities can arise because 
of the weak dipole forces. Just this situation is realized in the 
hexagonal magnet RbFeC1, (Refs. 3,4), whose spectrum of 
excitations is degenerate at the conical point 5, in addition, 
this spectrum contains discontinuities5 in one of the two in- 
termediate states (i.e., in states with a twinned incommensu- 
rate structure). 

Not long ago, interesting neutron and magnetic mea- 
surement~"~ were carried out on compounds whose crystal 
lattices consist of two interpenetrating simple hexagonal lat- 
tices [i.e., antiferromagnets with hexagonal close-packed 
(hcp) lattices]. All of these compounds are characterized by 
strong antiferromagnetic interactions in the plane of the 
triangular lattice and weak exchange interactions between 
neighboring (different type) planes. In these compounds an 
instability at the conical point is also possible; however, the 
mechanism for producing it is different. As an example we 
note the hcp-like antiferromagnet Cs,Cr,Br,, for which the 

dispersion curves6 near the symmetry point K have a clearly- 
expressed minimum; in contrast to the dipole mechanism, 
the frequency spectrum at the minimum points is continu- 
ously degenerate. 

The topic of this paper is the investigation of possible 
spin structures in antiferromagnets with hcp lattices. We 
will investigate the stability of various structures as a func- 
tion of the magnitude of the interplane interaction J' and the 
values of the single-ion anisotropy D. In simple hexagonal 
lattices with one type of layer, J ' can stabilize the spin config- 
~ r a t i o n , ~  while the "easy-axis" type of anisotropy leads to 
the appearance of two phase transitions as the temperature 
decreases; the first of these is connected with ordering of the 
longitudinal component of the spin, while the second is con- 
nected with ordering of its transverse c~mponent . '~  At the 
same time, in antiferromagnets with hcp lattices consisting 
of two types of layers, the noncollinear structures which 
form are found to be unstable against an arbitrarily small 
interplanar interaction J'. This circumstance is closely tied 
to the fact that the systems investigated here are frustrated 
not only in the plane but also in the third dimension; in this 
new direction the frustration is independent of the sign of 
J '. However, the presence of an easy-axis anisotropy in these 
frustrated systems does not lead to the appearance of struc- 
tures with long-range order at intermediate temperatures: in 
place of these, structures form with well-developed short- 
range order. Also, structures with long-range order whose 
period is incommensurate with the lattice period only appear 
at low temperatures. For values of D above critical, modula- 
ted structures do not appear even in this low-temperature 
region: in this case, it is found that in almost all cases the 
state which appears has no particular period (i.e., the phase 
is aperiodic). 

In what follows, rather than investigating these spin 
structures at T #O with anisotropy included, we will first 
discuss the question of spin configurations in the ground 
state, described for hcp lattices by the Hamiltonian 
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where S, and S, correspond to spins on alternate hexagonal 
lattices; J ( r  - r') = J, for nearest-neighbor spins in the bas- 
al plane, and J ( r  - r') = J2 for the next-nearest neighbor 
spins [for the remaining cases, J ( r  - r') = 01. If J, < 0, but 
J' = 0 and J2 = 0, then the ground state of the system con- 
sists of three magnetic sublsttices turned successively by 
120" (the 120" structure). It is well known that this two- 
dimensional magnetic system [with spatial order parameter 
V = SO( 3) where SO( 3 ) is the three-dimensional rotation 
group] undergoes a phase transition at a temperature 
TN =0.331J,I (Ref. 11). 

2. INSTABILITY AT HIGH-SYMMETRY POINTS; CONTINUOUS 
DEGENERACY 

In this section we will discuss the possible spin struc- 
tures for J '  #O. In the ground state (and also below the tran- 
sition point to the paramagnetic phase) these structures can 
be determined by finding the minimum eigenvalue and ei- 
genfunction of the Fourier components of the exchange in- 
teraction, i.e., 

Aae (Q) =- (1, (Q) +Jz (Q) ) 6ao-J' (Q) ~ ~ + I B - J '  (-Q)'a~+1 

(the subscripts a, P = 1,2 correspond to spins located at the 
nodes of the two different types of layers of the hcp lattices). 
Choosing the direction of the x axis along the elementary 
translation vector a = a (  1,0,0), we find 

1 1  (Q) =J1 [cos Q=+COS (Qs/2+3"'Qu/2) +cos (Qd2-3'"QU/2) 1 ,  
Jz(Q) =Jz [COS ~%Q,,+cos (3Qx/2+3'"Q,/2) 

+cos(3Qx/2-3'"Qu/2) I, (3) 

J' (Q) =I' (exp(i3-'"Q,) +exp [-i(Q,/2+3-'"Q,/2) I 
+exp [i (Q.12-3-'"Q"l.2) 1)cos (Qz/2) 

(the lattice parameters a and c are set equal to unity). The 
eigenvalues A ,  (Q and the eigenvector S+ (Q)  of the ma- 
trix (2) are represented in the following way: 

A* (Q)=-J~(Q)-J~(Q)*  IJ1(Q) I ,  
S, ( 0 )  = [S, (Q) *e-'"Q'Ss(Q) I /2'", (4)  

where p ( Q )  = arg J 1 ( Q ) .  
First, let the interaction between next nearest neighbors 

be J2 = 0. Then from the condition that the function /Z _ 

(Q)  be a minimum with respect to Q we obtain the equation 
for the equipotential curves: 

(j' = J f / J , ) .  From this it is clear that f o r j  = 0, then, as 
ought to be the case, we have a state with 120" structure 
which corresponds to any of the six equivalent points 
( f 4n-/3,0) and ( _+ 2n-/3, _+ 2 ~ / 3 ' / ~  ). For an arbitrarily 
small but nonzero j' these points, which are the symmetry 

points K, are unstable: the smallest eigenvalue (independent 
of the sign of j') appears on a circle of radius 21 j'1/31'2 
around each of these points, so that in this case there exists a 
spiral state which is infinitely degenerate relative to the ori- 
entation of the wave vector in the plane Q, , Q, . However, in 
the neighboring layers of the hcp lattice this spiral state is 
shifted in phase ( g7 + 0).  As I j'l increases the circles are 
transformed, and the state becomes degenerate not only with 
respect to the orientation of the modulation wave vector, but 
also with respect to its magnitude. For [ j'l = 1 the degener- 
acy curves determined by (5)  have the form of triangles; the 
sides of each of these triangles lie along any three of the six 
straight lines: 

In this case, the vertices of the triangles are at the symmetry 
points M, corresponding to a structure with an antiparallel 
arrangement of the spins along one of the three equivalent 
directions in the basal plane. A further increase in I j'l trans- 
forms the degeneracy lines into curves whose form in the 
limit 1 j'l -3 is again a set of circles. The centers of these 
circles, whose radii are [6( 1 - ( j'I2/9) ] 'I2, now lie at the I' 
points of the Brillouin zone: (0,0), (0, + 4 ~ / 3 ' / ~  ), 
( _+ 2n-, + 21~/3'/~ ). For I j'1>3 these points correspond to 
uniform states on a triangular lattice. In Fig. l a  we show 
equipotential curves for various values of 1 j'l. These lines 
resemble the distribution of the effective exchange field for 
the intermediate nonuniform state, i.e., the state analogous 
to a type I superconductor, in FeCO, (see Ref. 12); they also 
resemble the picture of force lines of a two-scale vortex 
structure in dipole systems.13 

Inclusion of additional interactions in the basal plane 
leads to lifting of the continuous degeneracy along curve 
(5) .  Thus, even for small but nonzero values of J2 the wave 
vector of the spiral is fixed. In this case the eigenvalues A. in 
the neighborhood of the K point ( I j'I 4 1 ) are given by the 
following expression: 

Here Q = Qk + q, where Q, = (4~/3,0,0),  q2 = q: + q:. 
Taking into account the cubic terms in q in the expansion 
(7),  the smallest eigenvalue A - ( Q )  is localized at the three 
equivalent points Q,, which are at a distance 
q0=2) j ' J [31/2(1  +6J2/) J , J ) ] - '  from the point Q,. In 
Fig. lb  we show the equipotential lines R - (Q)  near the 
point Qk for the case J2 < 0. The minimum points are sepa- 
rated from each other by barriers whose maximum value is 
attained at the saddle points Q,. For J2 > 0 the positions of 
the characteristic points change places, i.e., where there 
were saddle points minimum points appear, and conversely 
where there were minimum points saddle points appear. In 
the limit J2 = 0 the coefficient of the cubic powers in q for 
R _ (Q) in ( 7) reduces to zero, so that the smallest eigenval- 
ue appears on a circle, as it should. 

3. EFFECT OF ANISOTROPY; SPIN STRUCTURES 

In the presence of a single ion anisotropy energy 
E, = - DB, (Sf )2 ,  the ground state of the system depends 
significantly on the sign and magnitude of the anisotropy 
constant D. Thus, for D < 0, the spins are polarized in the 
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basal plane and the structure which arises is described by a 
spatial dependence of the magnetic moment vector identical 
to that of the structures obtained in the previous section, i.e., 
its period is incommensurate with the lattice period. It is 
obvious that these structures correspond to states which lie 
near the points of transition to the paramagnetic phase 
( T S  TI).  In the other case, where D > 0, the spins lie in a 
vertical plane; because of the condition that the absolute val- 
ue of the local magnetic moment be conserved, the ground 
state may differ strongly from the state which forms at 
T5: T,. As for structures which are close to collinear, this 
circumstance renders their existence with a modulation vec- 
tor q in the low-temperature region less likely. 

In the limiting case of large values of D(  > 0), i.e., of 
Ising-like spins, the ground state has a degeneracy of 2R, 
where R = N1'2 (Ref. 14). Two of these degenerate states 
with energy per spin 

(J' > 0, J, = 0) are shown in Figs. 2a, 2b. Conversely, in the 
region of small D( > 0) a long-period state becomes pre- 
ferred, whose energy for ( J'I 4 IJ, I is close to the energy of 
the three-sublattice structure. The latter can be found by 
minimizing the expression 

obtained from ( 1 ) by including the fact that the stable con- 
figurations are, as in the simple hexagonal  lattice^,^ planar 
(m,n = 1,2,3 are the indices of the magnetic sublattices, 
whose angle 0 is defined in the interval [ 0 , 2 ~ ]  in the vertical 
plane; the lower indices a, P = 1,2, as previously, label the 
types of layers in the hcp lattice). The planar configuration, 
which is degenerate with respect to the azimuthal angle, has 
the smallest (for Q = Q, ) value of the energy if the angles of 
the sublattices are given in the following way: 
8 z )  = - 8 = 8,B 2' = T; the angle 8 measured from the 
c-axis is determined by the expressions 

FIG. 1 .  a-Equipotential curves corresponding 
to the energy minimum for various values of/ 
( O i J j ' l  < 3 ,  J,=O);b-contoursofA_ ( Q )  
in the neighborhood of the conical point for 
J><O(IJzl<lJ,I). 

where D = 3/2(J,1 - J ' .  To the noncollinear structures 
there correspond the energies 

(12) 

and 

E/N=-I JiI -J'I3-D, D>Dl , .  (13) 

If D = 0 in ( lo),  then 8 = 77/3; consequently, the angle be- 
tween any two sublattices equals 2n/3. Thus we have a 120 " 
structure (Fig. 2c), as we should, whose energy in ( 12) does 
not depend on the interplanar interaction J', while its value 

FIG. 2. a,b,c,d-Spin structures on a triangular lattice (J ,  <O, JZ = 0):  
ground state for D > D,, J '  = 0 (a,b) and D < 0, J'  = 0 ( c ) ;  collinear 
structure OX 6 (d) ;  3 -dependence of the energy Eon the modulation 
wave vector q = Q - Q, for various values of D ( D >  0, Q parallel to the 
translation vector a = a( 1,O)): I-D/IJ, I = 0; 2-D/lJ, I = 0.2; 3- 
D/IJ,I = 0.4; 4-D/IJ,I = 0.6; 5-D/jJ,j = 0.7. 
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E / N  = - 3 1J11/2 coincides with the analogous expression 
for / Z  (Qk + q) from ( 7 )  for q = 0 (and J, = 0).  As D 
increases the angle 0 decreases; for J '  = 0 and D)D , , , the 
state with the two interwoven sublattices in Fig. 2d has the 
same energy as the state shown in Figs. 2a, 2b. However, for 
J' > 0 the state with noncollinear structure has higher energy 
( 12) compared to the energy (8  of the degenerate states, if 
D exceeds a threshold value D, (smaller than D l ,  ) : 

Now let the wave vector Q be unfixed. For D S D, , the 
dependence of E on q = Q - Q, (Fig. 2d) has a minimum 
near the conical point K of the Brillouin zone, and converse- 
ly for D 2 D, the minimum of E(q)  is realized at the sym- 
metric M point [q = ( - a/3,0), i.e., the state in Fig. 2a]. 

Based on these results, we should expect the following 
picture of the spin ordering. In the region D < 0, when the 
easy-plane type of anisotropy is realized, the long-period 
structures which appear have the same form both at T = 0 
and below the transition point to the paramagnetic phase T I .  
Therefore, in this case we should expect a unique phase tran- 
sition with the appearance for T< T I  of a modulated struc- 
ture in which the spins are polarized in the basal xy plane. 

In the other region, where the easy-axis type of anisot- 
ropy is realized (D  > 01, the spin configurations are located 
in the vertical plane. Therefore two situations are possible 
here. The first is when 0 < D < D, . In this region of values of 
D the spins of the modulated structures are not collinear at 
T = 0. Therefore, these systems behave like systems where 
purely commensurate structures are realized'' : as the tem- 
perature T decreases there should first appear correlations in 
the longitudinal components of the spin and only then, at 
lower temperatures, do correlations appear in the transverse 
components. Therefore, as the temperature decreases we 
should expect no more than two characteristic points at 
which a change occurs in the spin structure. In the second 
case (D  > D, , when only the longitudinal spin component is 
nonzero in the ground state, there also should exist two char- 
acteristic points. One of these points should be related to the 
development of correlations in structures with incommensu- 
rate period, while the other - in contrast to the first case 
(0  < D < D, )-is associated with the necessity for recon- 
struction of this structure, since it is different from the struc- 
tures which occur at T = 0 (Figs. 2a, 2b). 

A numerical investigation of the magnetic state of the 
phases for various temperatures and values of the anisotropy 
(carried out using Monte Carlo methods) confirms the basic 
stages in the process of spin ordering mentioned above. 
Thus, in the presence of easy-plane anisotropy (D  < 0 )  there 
actually exists only a single phase transition at the point TI .  
At this point the wave vector of the structure varies discon- 
tinuously from Q = Qk to Q = Q, + q. The energy and 
other physical quantities also vary discontinuously, which is 
obviously connected with the sudden reconstruction of the 
structure from one period to another. 

For the other sign of the anisotropy (D  > 0)  the behav- 
ior of the system, as might be expected, is different for 
D <D, and D > D,. In Figs. 3a, 3b, and 3c, for the case 
D=0.215,1, J1=0.21J11, D, =0.651J1I, we display the 
Fourier spectrum of the total spin S (  Q )  for Q oriented along 
an elementary translation vector of the triangular lattice. As 

FIG. 3. Fourier spectrum of the magnitude of the vector S ( Q )  for various 
values of the anisotropy D ( > 0 )  and temperature T ( j' = 0.2; J, = 0): 
a,b,c- D/IJ,I =0.2 and T=0.4/J l j  (a) ,  T=0.31J,I (b),  T=0.21JlI 
(c);  d,e,f - D/IJ l l  = 1.2 and T =  0.51JlI (d) ,  T =  0.31J11 (e),  and 
T= 0.04)J1 1 (f). 

the temperature decreases from the region where the spin is 
entirely paramagnetic, the first type of order to appear is 
short-range order in the various layers of the hcp lattice; this 
order is characterized by the wave vector Qk = (4a/3,0,0) 
[Fig. 3a; because of the condition S(Q)  = S ( 2 a  - Q) the 
value Q = 2 ~ / 3  corresponds to this point]. A further de- 
crease in temperature leads to the appearance of a modula- 
tion vector q = Q - Qk in the basal plane (Fig. 3b), so that 
as a result short-range order is realized along all three spatial 
directions. Associated with the development of short-range 
correlations are anomalies (weakly expressed compared to 
the usual phase transitions) in the behavior of the heat ca- 
pacity around the point TI .  Below this point, at first only the 
Sz  components of the spin contribute to the magnitude of 
the peak in S(Q) with Q = Qk + q; however, after the tem- 
perature point T = T, is reached, at which the heat capacity 
also has an anomaly, the magnitude of the peak in S (Q)  is 
also determined by the transverse spin components (Fig. 
312). At the point T =  T, long-range order appears, in this 
case not only for the spin components but also for the so- 
called chiral vector k, which is given by the relationI5 

taking into account normalization of its modulus to unity; 
here m,n, and Iare respectively the vertices of an elementary 
triangle in the layer when the latter is circled in the counter- 
clockwise direction. 

For D > 0.65 I Jl 1, the transverse components are not or- 
dered at any temperature. Furthermore, there is no long- 
range order in the longitudinal components down to zero 
temperature. In this case the critical value is D, = 0.6521 J, 1 
(Figs. 3d, 3e, 3f). In the intermediate temperature region 
this spectrum (Fig. 3d) is similar to the corresponding spec- 
trum for 0 < D 5 D, (Fig. 3b). However, below the charac- 
teristic point T = T, its form becomes even more complex 
and irregular as the temperature decreases (Fig. 3e, 3f). 
These variations in S(Q)  reflect the necessity of reconstruc- 
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FIG. 4. Phase diagram in the TD plane forj' = 0.2 ( J ,  = 0 ) ;  ZC-incom- 
mensurate phase, NP-aperiodic phase, 3DK-incommensurate state 
with 3 0  short-range order, P-paramagnetic phase. 

tion in the system from a state where the absolute value of the 
local magnetic moment is not conserved to a state where, in 
contrast, it should be conserved as T-0.  At the same time, 
numerical calculations show that such variations in an Ising- 
like system take place very slowly: as T decreases the spins 
are frozen in and the ground state becomes difficult to reach. 
Therefore as a result the state ~f the system is characterized 
by an aperiodic structure. Fig. 4 shows the phase diagram for 
various values of D and at D = 0 the transition point to an 
ordered state is close to the value TN = 0.33 lJl 1 for a two- 
dimensional Heisenberg system." 

The additional interaction J2 stabilizes the magnetic 
structures, which is reflected in the spin ordering at higher 
temperatures. However, the qualitative phase diagram for 
the most part remains the same as for J2 = 0. In particular, 
as previously, there exists a characteristic temperature T, 
below which the spins freeze in for sufficiently large D, form- 
ing an aperiodic structure. 

4. CONCLUSION 

In this paper, we have investigated the magnetic states 

cal point K is possible because of dipole interactions, the 
instability of these systems is due to its frustration in the 
third direction. The frustration which appears in this direc- 
tion is independent of the sign of J ' ;  therefore the modu- 
lation wave vector is also independent of the sign of J'. In- 
cluding the exchange interactions between the next-nearest 
neighbor spins lifts the continuous degeneracy of the struc- 
tures, so that as a result the wave vector of the modes be- 
comes fixed. 

In easy-plane magnets below the transition point to the 
paramagnetic phase, the spiral (incommensurate) state is 
realized in all temperature regions; the transition itself be- 
tween the two phases is a first-order transition. 

In easy-axis magnets, because of the conservation of the 
magnitude of the spin at each node of the lattice in the 
ground state, an incommensurate structure is possible only 
for small values of D. As the temperature falls, anomalies in 
the behavior of the specific heat arise at two characteristic 
points. Below the first point there exists an intermediate- 
temperature incommensurate phase with well-developed 
short-range order, while at the second point T, we have ei- 
ther an incommensurate phase with long-range order when 
D 5 D, (in this case, T, is a second-order transition point) or 
an aperiodic frozen-in phase for D > D, . 

We are grateful to V. L. Ignatchenko for discussion of 
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