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The nonlinear electromagnetic excitation of longitudinal sound in metals in a parallel magnetic 
field ha is studied theoretically. Sound is generated by the induction and deformation mechanisms 
of the electron-phonon interaction. The cases of both weak and strong nonlinearity are analyzed. 
It is established that under conditions of strong nonlinearity, when the sample is in the current 
state, the dependence of the sound field on the external field h, exhibits hysteresis. The dynamics 
of the change in the hysteresis loops of the bias field is studied as the amplitude 2V of the wave 
incident on the metal is increased. It is shown that under the conditions of fully developed 
nonlinearity the sound field consists of a series of "sharp" spikes, moving with the velocity of 
longitudinal sound into the interior of the metal. The spacing of the spikes is determined by the 
quantity h0/22??. 

1. INTRODUCTION 

In pure metals at low temperatures the most efficient 
mechanism of nonlinearity, determining the electromagnet- 
ic properties, is the so-called magnetodynamic mechanism. 
It is connected with the effect of the magnetic field of a ratio 
wave on the dynamics of th electrons and thereby on the 
kinetic coefficients of the metals (for example, the conduc- 
tivity). For the type of anomalous skin effect most typical 
for metals, when the thickness of the skin layer S is much 
smaller than the electron mean free path I and the radius of 
curvature R of the electron trajectories in the magnetic field 
of the wave, i.e., 

this excitation is determined by the characteristics of the 
nonlinear anomalous skin e f f e ~ t . ~  The generation of the sec- 
ond harmonic of longitudinal sound in tungsten was first 
observed by Korolyuk and K h i ~ h n ~ i , ~  whose experimental 
results are in qualitative agreement with the theoretical re- 
sults of Refs. 1-3. 

Nonlinear phenomena in metals become richer and 
more interesting when a constant external magnetic field ha 
is present. In particular, when a metal is irradiated with a 
radio wave with sufficiently high amplitude in the presence 
of an external field h, a rectified current and a constant mag- 
netic field h induced by this current appear in the sample. It 
is interesting that hysteresis is observed in the behavior of h 
as a function of the external field ha, so that the rectified 
current and the magnetic field h do not vanish even when ha 

the magnetodynamic nonlinearity is characterized by the is switched off. This phenomenon is termed current states in 
parameter 

metals, and it has been well studied experimentally and theo- 

Here %' is the amplitude of the radio wave ( 2 R  is the char- 
acteristic value of the magnetic field of the radio wave in the 
skin layer), p, is the Fermi momentum, e is the absolute 
value of the electron charge, and cis the velocity of light. The 
quantity b is the ratio of the mean free path I and the range 
(8RS) of electrons in the skin layer. For typical metals 
the field in which the curvature of the electron trajectories 
becomes significant and the magnetodynamic nonlinearity 
starts to play a role is small (0.5-5 Oe). 

The magnetodynamic nonlinearity plays an important 
role in the process of electromagnetic generation of sound. 
Thus, for example, in the absence of a constant external mag- 
netic field longitudinal sound is generated in an isotropic 
metal exclusively owing to n~nlinearity,'-~ and the resulting 
sound contains only even harmonics of the incident wave. 
The nonlinear excitation of sound when the anomalous skin 
effect ( 1.1 ) is present was first studied theoretically in the 
regime of weak nonlinearity (b < 1 ) in Ref. 1. The depend- 
ence of the amplitudes of the sound harmonics on the ampli- 
tude 2Y and frequency w of the radio wave and the electron 
mean free path I was calculated in Refs. 2 and 3 for a wide 
range of values of the nonlinearity parameter b. It was shown 
that the efficiency of the electromagnetic excitation of sound 
increases as the nonlinearity increases, and the character of 

retically (see, for example, Refs. 6 and 7 ) .  Current states are 
excited if the external field vector h, and the magnetic field 
vector of the radio wave are collinear, and Ihol (2%'. Cur- 
rent states are responsible for the appearance of a member of 
nonlinear electrodynamic effects, e.g., nonlinear interaction 
of radio waves with different freq~encies'.~ and the appear- 
ance of low-frequency auto wave^'^ and auto-oscillations6~'1 
in metals, causing the electromagnetic response of the con- 
duction electrons to become stochastic. Current states 
should also give rise to new features of the nonlinear electro- 
magnetic generation of sound. 

This paper is devoted to the theoretical analysis of non- 
linear electromagnetic excitation of longitudinal sound in a 
metal which in a constant magnetic field ha is oriented paral- 
lel to its surface. The analysis is restricted to the quasistatic 
case when the frequency w of the wave is much lower than 
electron the electron relaxation rate Y :  

The inequality ( 1.3 ) permits neglecting the change in the 
electromagnetic field during the time of free flight of the 
electrons. In this paper the distribution of the sound field is 
found and its dependence on the amplitude %' and frequen- 
cy w of the external signal, the quantity h,, the electron mean 
free path I, and other parameters of the problem is calculated 
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for both weak (b 4 1 ) and well developed (b 2 1 ) nonlinear- 
ity. It is shown that in the current state the resulting longitu- 
dinal sound contains a collection of harmonics (w, 213, 3w, 
... ) of the incident wave and the sound field exhibits hystere- 
sis as a function of the external field h,. The dynamics of the 
change in the hysteresis loops as the amplitude AF is in- 
creased is studied. It is found that under conditions of well 
developed nonlinearity ( 6 2  1) the field of longitudinal 
sound displacements consists of a series of "sharp" spikes 
whose relative width and height are, respectively, - b - and 
-b2. These spikes move with the velocity of longitudinal 
sound into the volume of the metal. In the current state 
neighboring spikes in the current state have opposite signs 
and their spacing is determined by the quantity h0/2X. The 
next successive peak is generated at the surface of the metal 
excited by the radio wave when the sum of the magnetic field 
of the radio wave on this surface and the external field h, 
vanishes. Two nonequivalent spikes appear during each pe- 
riod of the radio wave 2r/w. 

2. FORMULATION OF THE PROBLEM: GENERAL RELATIONS 

1. Let a plane monochromatic electromagnetic wave 
with frequency w and amplitude A? be incident on the sur- 
face of a metallic half-space. We orient the x-axis along the 
normal to the surface into the interior of the sample (x  = 0 
at the metal-vacuum interface) and they- and z-axes paral- 
lel to the electric and magnetic field vectors of the wave: 

We orient the constant external magnetic field h, parallel to 
the vector H(x,t): hollH(x,t) llz. We shall study the electro- 
magnetic generation of a longitudinal sound wave in which 
the displacement vector is 

The solution of the equation of elasticity for longitudi- 
nal acoustic oscillations can be written as follows: 

m 

u ( x ,  q )  = L{J a x 1 [ @  (x ' ,  q -qx+qxl )  
2p0s2 0 

-@ (x ' ,  q-qx-9%') ] 
00 

- J axl[m (z ! ,  ( P - ~ x + ~ x o  +O ( X I ,  q + q ~ - q ~ t )  I). 
c 

(2.3) 

Here p = wt,p, is the density of the metal, and s and q = w/s 
are the velocity and the wave number of the longitudinal 
sound, respectively. 

The quantity cP(x,p) appearing in Eq. (2.3) is the sum 
of two terms: 

the first of which, @,,,(x,p), is due to the deformation 
mechanism while the second one, cPin, (x,p),  is due to the 
induction mechanism of electron-phonon interaction. 

The potential of the deformation force has the form 

while the potential of the induction force is described by the 

formula 

Here (dfF/d&)x(x,p) is the nonequilibrium correction 
to the Fermi distribution function f,, p is the electron mo- 
mentum, j (x,p)  is the electric current density, and H, (x,p) 
is the total magnetic field in the metal 

We employ the simplest model of the quadratic and isotropic 
electron dispersion laws, in which the component A,, ( p )  of 
the deformation potential tensor is 

where v = p/m is the electron velocity, m is the effective 
electron mass, KI is the deformation electron mass, and v, is 
the Fermi velocity of the electrons. 

In deriving expression (2.3 ) we employed the boundary 
conditions that at the free boundary x = 0 the tangential 
components of the fields are continuous and the stresses van- 
iSh12,13. 

2. Under the conditions of the quasistatic ( w < v )  
anomalous skin effect (6 < 1) in the region of magnetic fields 
where R 9 I the attenuation length 1, of the sound is the lar- 
gest parameter: 

It follows from this that at large distances from the surface of 
the metal ( x%l )  the first integral over x' makes the main 
contribution to u (x,p) (2.3). In addition, the field of the 
longitudinal displacements u (x,p) assumes the form of a 
plane wave travelling along the boundary of the sample: 

u (x, cp) =u (@) , qJ=cp--qx=ot-qx; (2.11) 
OD 

1 
u ( ~ ~ = - J d x ' [ ' ( x l , ~ q . f ) - ~ ( x ~ . ~ - q z ~ ) l .  2p0s2 , (2.12) 

According to (2.4) the sound-induced displacement 
u ($) consists of two terms: 

The "deformation" term u,,, (@) is determined by the 
expression (2.12), in which cP(x,p) must be replaced by 
@,,, (x,p) (2.5). The "induction" term uind ($) is obtained 
by substituting into (2.12) the potential cP,, (x,p) from 
(2.6) for @(x,p).  

We note that in the linear regime Eqs. (2.3)-(2.6) and 
(2.11 )-(2.13) transform into the corresponding expres- 
sions of Ref. 14. 

3. We now analyze the induction mechanism of nonlin- 
ear excitation of longitudinal sound. It can be shown that 
under the conditions of the anomalous skin effect ( 1.1 ) this 
mechanism can complete with the deformation mechanism 
only in the region of small values of the parameter q6: 
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For this reason we calculate uind (@) only for wavelengths 
q- '  of the sound waves that are large compared with the 
depth of the skin layer 6. First, we write with the help of 
Maxwell's equation 

-caHt (s, cp) ldx=4ni (x, cp) , (2.15) 

the potential of the induction force (2.16) in the following 
equivalent form: 

The scaling length of the total magnetic field H, (x,p) 
(2.7) along the x-axis is 6. Over this distance HI changes 
from the value 

at the surface of the metal (x = 0)  to the time(phase)-inde- 
pendent quantity 

in the interior of the metal (h is the induced magnetic field, 
which is related with the current state7; see introduction). It 
follows that the contribution of the first term in Eq. (2.16) to 
uind (@) [see Eq. (2.12) 1 is of order (qt3)2 < 1 compared 
with the contribution of the second term. Because of the 
anomalous nature of the skin effect ( 1.1 ) this contribution is 
also small compared with udef (@). So, to lowest-order in 
q6< 1 the sound field uind (@) is determined by the second 
term in the formula (2.16), and according to (2.12) it is 
described by the expression 

uind (at-qx) =2ul sin(ot-qx) +2uz sin 2 (ot-qx) , 
(2.19) 

ui=%'ho/4npoos, ~ ~ = % ~ / 1 6 n p ~ o s .  

The formula (2.19) contains only the first and second 
harmonics of the longitudinal sound. The first harmonic is 
excited owing to the presence of the constant magnetic field 
h, and the second harmonic is a consequence of the nonlin- 
ear action of the magnetic field of the radio wave. 

We note that the result obtained for the induction dis- 
placement uind (@) is valid for any degree of nonlinearity and 
anomalousness of the skin effect. The application of the for- 
mula (2.19) is determined solely by the inequality (2.14). 
Since this inequality gives an upper limit for the frequency w 
of the external electromagnetic wave the case q6< 1 is the 
most important one in the quasistatic situation w <v. 

4. The rest of this presentation will be devoted to the 
study of the deformation mechanism of nonlinear excitation 
of longitudinal sound. To calculate Qdef (x,p) and udef (@) it 
is necessary to solve the Boltzmann equation for the non- 
equilibrium correction x (x ,p )  [see Eq. (2.5) 1. This equa- 
tion is linearized with respect to the electric field E(x,p).  
The nonlinearity is connected with the magnetic field 
HI (x,p) and is contained in the Lorentz force, which deter- 
mines the electron trajectories. The electromagnetic fields 
E(x,p)  and H(x,p)  are found from Maxwell's equations. A 
procedure for solving the kinetic equation and Maxwell's 
equations, which takes into account the dynamics of the mo- 
tion of the electrons in the external magnetic field H, (x,p) 
(2.7), was developed in Ref. 15. We refer also to our paper2 
where a general expression was derived for the deformation 
force with h, = 0. Following Refs. 15 and 2 it is not difficult 

to obtain exact expressions for Qdef (x,p).  Because these ex- 
pressions are complicated we shall not write them out here, 
especially since under the conditions of the anomalous skin 
effect ( 1.1 ) the exact expressions for Qdef (x,p) can be sim- 
plified by replacing them with their asymptotic forms. Since 
the asymptotic expressions for Qde, (x,p) have a significant- 
ly different form in the case of low (b  < 1 ) and high (b  X 1 ) 
amplitudes of the external radio wave, in what follows we 
shall study these two cases separately. 

3. WEAK NONLINEARITY 

In the case of a weak nonlinearity and a weak external 
field h,, 

the total field HI (x,p) bends the electron trajectories in the 
skin layer only slightly. Under such conditions electromag- 
netic generation of longitudinal sound is manifested in the 
linear h z a n d  quadratic 2Y approximations. The asymp- 
totic expansion of the Fourier cosine transform 

m 

(k, cp)=2J d~ cos (kx) Qur (x, 'P) (3.2) 
0 

of the potential of the deformation force (2.5) has the form 

E(k', cp) G,, (k, cp) = lfil*{phok J k' dk' (k+k,) 
2 m c  0 

sin (kz) 
- (1-p) [kE(O, cp) O j ds --- x 

x j dxrFa  XI^, cp) + j ax j ax1 ws(kx') ( (XI-X) A (XI, cp) 
0 0 ( 5 ' - ~ ) ~  

Here a, is the static conductivity of the metal, p is the proba- 
bility that electrons are specularly reflected from the bound- 
ary of the sample (O<p< l ) ,  B (k ,p )  is the spatial Fourier 
since transform of the magnetic field of the radio wave 
H(x,p)  

E(k,p)  is the Fourier cosine transform of the electric field of 
the radiowave E(x,p),  and A(x,p) is the vector potential 

The expression (3.3) was derived to lowest order in the 
parameters h,/h < 1 and b < 1. The electric fieldg(k,p) and 
the magnetic field g( k,p) are the solution of the linear Max- 
well's equations with h, = 0 and contain only the first har- 
monic (w) of the radio wave incident on the metal. For this 
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reason the asymptotic expansion (3.3) contains the zeroth, 
first (w),  and second (2w) harmonics. The other harmonics 
(3w,4w, ...) are of higher order in the parameters h,/h and 
b '. We note that the zeroth harmonic of @,,, vanishes in the 
expression (2.12) for the displacement u,,, ( p )  . 

To calculate the sound field u,,, (9) we substitute the 
expression (3.3 ) into the (2.12) and apply the results of Ref. 
16, where the distribution of the electromagnetic field in the 
linear regime with h, = 0 and arbitrary value of the specu- 
larity parameterp is found. The final expression for u,,, (@) 
is quite involved. For this reason we present below only its 
asymptotic form for large and small values of the quantity 
46. 

1. In the limit (2.14) in which the wavelength of the 
sound wave is long, the deformation term in the longitudinal 
displacement of sound (2.13) is given by the formula 

ud,, (at-qx) =2u1(") sin (ot-qx) +2ul(+) sin (ot-qx+nzo/6) 
+2ul(-) sin(ot-qx-nzo/6)+ 2uz sin 2 (ot-qx). (3.6) 

The first three terms in (3.6) refer to the first harmonic 
of the sound wave. Their amplitudes are equal to, respective- 
ly, 

where TZ, = arccos p, while g(z) is given by 

(Z) =3%2-3+(1+=)/3 (1-z) (2-2) {COS (nz) )-('-2z)1e 

sin[n (1+z)/3] 

n 2-2 
xexp{- sin (2nz) J dx 

3 cos (2nx) -cos (2nz) }. (3.9) 

The function g(z)  is a smooth function of its argument. 
When the electrons reflect specularly from the boundary of 
the sample (p = 1, i.e., z, = 0), g (0)  = 1/2, while in the 
case of diffuse reflection (p  = 0, i.e., z, = 1/2) it assumes 
the values 

Under the condition (2.14) the amplitude of the second 
harmonic is given by the expression: 

where the quantity x,, is a smooth function ofp: x,, = 29.46 
at p = 0 and x, = 2 ~ / 3  at p = 1. When the nonlinearity and 
the external field h, are weak, i.e., the conditions (3.1 ) hold, 
the depth of the skin layer 6, is described by the linear theo- 
ry: 

According to the results (3.6)-(3.10) obtained above 
the dependence of the amplitude of the first harmonic on the 
parameter 46, is largely determined by the character of the 
surface scattering of the electrons. If the reflection is close to 

specular, i.e., 

this dependence contains a logarithmic singularity, and the 
first three terms in (3.6) combine into one term of the form 

In the limit opposite to (3.13) the first harmonic is deter- 
mined by a power of the parameter 46, < 1. The exponent 
varies from 3/2 to 2, depending on the value of specularity 
parameter p. 

Under the conditions (3.1 ) and (2.14) the deformation 
term (3.6) is larger than the induction term (2.19), if the 
wavelength of the sound wave is shorter than the electron 
mean free path: 

2. For sound waves with short wavelengths (qS,< 1) 
the longitudinal sound-induced displacement u ( p )  is asso- 
ciated primarily with the deformation mechanism of the 
electron-phonon interaction: 

(ot-qx) =2ul cos (ot-qx-nl6) +2uz cos [2 (ot-qx) --n/61, 

Here the quantities x,, x, and x, are smooth functions of the 
parameter p. For p = 0 we have x, = 7?3'12/4, and 
7t3 = 3.9; for p = 1, then we have x, = 1, and x, = 3.5. 

3. So, under the conditions (3.1 ), when the amplitude 
of the radio wave X is small and the magnetic field h, is 
weak, the resulting longitudinal sound field u (@) contains 
to lowest order for x > l  only two independent harmonics- 
the first harmonic (w) and the second harmonic (2w). The 
first harmonic (w) is the linear (with b = 0)  response to the 
constant magnetic field h,. The second harmonic (2w) is 
engendered by the nonuniformity of the magnetic field of the 
wave H(x,t)  and does not depend on the presence of the 
external field h,. 

4. WELL DEVELOPED NONLINEARITY; CURRENTSTATES 

1. In an external magnetic field with 1 hol < 2 X ,  when 
current states are excited in the the regime of well 
developed nonlinearity (b 2 1 ) is characterized by the trap- 
ping of some of the electrons in the potential well of the total 
nonuniform magnetic field H, (x,p)  (2.7). The trapping oc- 
curs because of the H, (x,p) charges sign as a function of x 
and it therefore occurs in the time intervals when the sign of 
the total field on the surface of the metal H, (0,p) (2.17) 
differs from that of the field H, ( cc ,p )  (2.18) in the interior 
of the metal. The trapped electrons drift along the boundary 
of the sample along trajectories whirling near the surface, 
where H, (x,p) = 0 (Fig. la) .  At other times the electrons 
move in a field Ht (x,p) with constant sign (there are no 
trapped particles), and their trajectories are virtually indis- 
tinguishable from closed Larmor orbits in the magnetic field 
H, ( oo ,p) = h + h, (Fig, Ib).  Changes in the character of 
the electron motion occurring during each period of the 
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FIG. 1. The trajectories of the effective electrons in nonuniform magnetic 
fields (a)  alternating in direction and (b)  pointing in one direction only. 

wave ~ T / W  cause the time-dependence of the conductivity of 
the metal to be jump-like, which leads to rectification of the 
current that induces the constant magnetic field h (the cur- 
rent state). It is obvious that the periodic appearance and 
vanishing of the trapped electrons also play an important 
role in the process of electromagnetic generation of ~ o u n d . ~ . ~  

Under the conditions of well developed nonlinearity 
( b  2 1 ) the potential of the deformation force a,,, ( x , p )  
( 2 . 5 )  can be represented in the following form: 

The formula (4.1 ) was derived based on asymptotically ex- 
act calculations with weak ( b 4  1 ) and strong ( 6 )  1 ) nonlin- 
earity using the method developed in Ref. 15 for construct- 
ing the asymptotic expansion of the current density j ( x , p ) .  

With the help of (4.1 ) we find the field of the longitudi- 
nal sound displacements u,,, ( g )  in the case (2 .14)  when the 
wavelength 2 ~ / q  of the sound wave is much larger than the 
depth S of the skin layer. The nonlinear current j ( x , p )  and 
a,,, ( x , p )  decay together toward the interior of the metal 
over a distance x -6 .  For this reason the region x' - 6  makes 
the main contribution to the integral over x' in the deforma- 
tion term (2.121, and to lowest order in qx l -98x4  1 the 
displacement u,, ( g )  can be written in the form 

Substituting ( 4 .1 )  into ( 4 .2 )  and using Maxwell's 
equation (2 .15)  we obtain 

2. We now employ an expression derived in Refs. 7 and 
15 for the magnetic component H ( x ,  t ) of the radio wave in 
the metal in the current state. We obtain finally for the longi- 
tudinal sound field 

X bZ sin Q, dq' cos q' 
[ c ~ ~ [ ~ ' ( ~ + c o s  Q,) 1 ' pS ( q r )  

Here the following notation was introduced. The character- 
istic "amplitude" n, determining the dependence of the dis- 
placement udef (@) on the parameters of the problem, is 

The dimensionless conductivity of the metal 

The most distinctive property o f S ( p )  is its jump-like behav- 
ior as a function of time, the nature of which was described 
above. O ( x )  is the Heaviside function and a is the relative 
change in the conductivity at the moments when groups of 
trapped electrons appear and disappear. In the simplest 
model" with diffuse reflection of electrons from the surface 
of the sample (p  = 0 )  

The ratios of the magnetic fields h,, h, and h + h, to the 
doubled amplitude of the radio wave 2 X a r e  corresponding- 
ly denoted by 

The dimensionless resistancep averaged over a period of the 
wave, according to ( 4 . 6 ) ,  is equal to 

.1 dq n+aS - 
' ~ 2 ; ;  '-= n(l+a) 

B=arccos (-a sign x ) ,  ( 4 . 9 )  

where sign x is the sign function. The function f ( p )  is 
piecewise-smooth and is defined by the following formulas: 

2+a cp + asign x =-- -BGcpGB1 
l+a 2 p  PGqGZn-b, 

The induced magnetic field h = 2Xt as a function of the 
external field h, = 2 a R  undergoes hysteresis. x (or h )  is 
determined from the equation 

In Eqs. (4 .4 ) - (4 .11)  the linear limit ( b  = 0 )  is ob- 
tained by making a go to zero. At a = 0 we have S ( p )  = 1, 
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FIG. 2. The results of the calculation of the dis- 
placement u,,, (@) (@ = wt - qk)  for values of the 
nonlinearity parameter b = 5, the external field 
h d 2 Z  = 0.2, and Z > 0. 

p = 1, g(p) = p, x = 0, and only the linear term with r = 1 
remains in the sum over r in (4.4). It vanishes for h, = 0. In 
the case of weak nonlinearity and small h, expression (4.4) 
is similar to the corresponding expression (3.6) of the pre- 
ceding section. The limit of strong nonlinearity (b- a, ) is 
obtained by making a go to o? . 

In the chosen model of jump-like-varying conductivity 
the integrals over p ' in the expression (4.4) can be comput- 
ed, after which the expression can be easily analyzed. 

3. Under the conditions of developed nonlinearity the 
sound field udef (@) has a spiked structure. The spikes, ac- 
cording to the expression (4.4), are located on those fronts 
of the sound wave that move according to the law 

the field of displacements (4.4) must be used: 

~ d a f  (g, ha, R )  =udct (g+n, -ho, -X). (4.13) 

Spikes are present in the generated longitudinal sound 
owing to the jump-like behavior of the potential of the defor- 
mation field @,,, (x,p) (4.1 ) as a function of the time p. The 
point is that the potential engendering sound oscillations de- 
pends strongly on which electrons (trapped or Larmor) de- 
termine it at a given time and their direction of motion along 
the y-axis in the skin-layer. The groups of effective electrons 
and at the same time the direction of electron motion change 
as the plane on which the total magnetic field H, ( x , ~ )  van- 
ishes arrives and vanishes at the surface of the metal x = 0. It 

The shape of the spikes is determined, generally speaking, by 
both terms in the expression (4.4). The second term under u d e f  

the condition (4.12) undergoes sharp jumps of relative 
width -b-2 and relative magnitude -all3, while the first 
term contains spikes of relative height -b and relative 
width -b-2. The sound spikes are quite "sharp" even for 
small values of the nonlinearity parameter b 2 3. In the limit 
b+ they transform into S-function peaks. 

By virtue of the condition (4.12) the sound spikes are 
generated on the surface of the metal x = 0 (in the skin layer 
S(q-' ) when the total magnetic field on this surface 
H, (0,t) vanishes. For this reason, during each period of the 
radio wave 2n-/W there arise two nonequivalent spikes which 
move with the sound velocity s into the volume of the Sam- - 
ple. At any moment the number of peaks in the sound field in 
a sample with thickness d B  l is less than the integer part of 
the ratio qd /T. It can be shown that in the current state 
(with h #O)  neighboring spikes have opposite signs. The 
spacing of the spikes assumes successively values equal to 
2cos- ' ( f h0/2X)q. 

The graph of the dependence u,,, (@) in Fig. 2, which 
was calculated for values of the external magnetic field 
h, = 0 . 4 z a n d  the nonlinearity parameter b = 5, illustrates 
the above-described spike structure of the field of longitudi- 
nal sound displacements. The plot presented corresponds to 
a current state with ' > O' We that with the of this 

FIG. 3. plots of the sound field u,,, (p,,) forp, = cos- ' ( - 0 . 2 )  versus h,   lot it is not difficult to obtain the dependence (@) with for different values of the parameter b [ b  = 3  ( 1 ), 5 ( 2 ) ,  7 ( 3  ), 10 (41, and 
Z < 0 and h, = - 0.4X. For this the following property of b- m ( 5 )  1 .  
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FIG. 4. Plots of u,,, (a) versus h, for different values of the parameter b 
[ b =  3 ( I ) ,  5 (2) ,  7 (31,  10 ( 4 ) ,  and b- w ( . 5 ) ] .  

is precisely at these times that sound spikes are generated on 
the boundary of the sample. 

It is well k n ~ w n ' ~ ~ ' ~  that the periodic appearance and 
disappearance of the plane on which the field H, (0,p) van- 
ishes gives rise to abrupt jumps in the electric field of the 
radio wave at the surface of the metal E ( 0 , ~ )  as a function 
of time. It is not difficult to show that the second term in the 
formula (4.4) for u,,, (@I is proportional to E(0,3@). For 

FIG. 5. Schematic diagram of the dynamics (1-5)  of the change in the 
shape of the hysteresis loops of u,,,(qo) as a function of h, with 
q, = cos - ' ( - 0 .2 )  as the amplitudeof theincident wave&a (the param- 
eter b )  increases ( 1-5, 5-b- m ). 

this reason the singularities contained in this term repeat the 
singularities of E(0,p).  

4. The hysteretic dependence of the induced magnetic 
field h(h,) leads to hysteresis of the longitudinal sound dis- 
placement u,,, (@) as a function of the external magnetic 
field h,. 

Figures 3 and 4 show the results of the calculation of the 
dependence of the sound field udef ( )  for 
p, = cos - ' ( - 0.2) and u,,, (a) on h, for different values of 
the nonlinearity parameter b (different amplitudes of the 
radio wave X). It the nonlinearity b is less than the critical 
value b,, - 5, u,,, (p,) and u,,, (a) are single-valued func- 
tions of h,. Forb = b,, points with vertical tangents appear 
on the curves u,,, (h,) and for b > b,, the dependence of the 
sound field on h, is no longer single-valued. The instability of 
the current state on the sections between the points at which 
the derivative au,,,/ah, becomes infinite leads to jumps in 
u,,, (h,) at these singular points. Thus in the region b > b,, 
the function u,,, (h,) becomes hysteretic. Figures 5 and 6 
show schematically the dynamics of the hysteresis loops of 
u,,, (pol and u,,, (a) as a function of the nonlinearity pa- 
rameter b. It is obvious that the quantity b,, and the singular 
points on the h, axis for the sound wave are the same as for 
the induced magnetic field h(h,). 

The plot of u,,, (p,,h,) contains a spike at the point 
h, = 0 . 4 X  (Figs. 3 and 5); this obviously agrees with the 
condition (4.12). Unlike the hysteresis loops, the spikes do 
not have a threshold with respect to the nonlinearity param- 
eter b, so that they also exist for b < b,,. In the plot of 
u,,, (a,h,) (Figs. 4 and 6) there is no spike, since here the 

FIG. 6.  Schematic diagram of the dynamics ( 1-5) of the change in the 
shape of the hysteresis loops of u,,, ( T )  as a function of h,, as the amplitude 
of the incident wave 2?? (the parameter b )  increases ( 1-5; 5-b-. w ). 
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condition (4.12) can be satisfied only if h, = 2 8 ,  when a 
point at which the sign of H, (0,~) changes is not engen- 
dered on the surface of the metal. In this sense the depend- 
ence u,,, (n,h,) is singular, while the curves for 
u,,, (@ fnn-) as a function of h, are similar to the curve of 
udcf (PO)' 

The hysteretic dependence of the sound wave on h, also 
gives rise to hysteresis in the amplitudes of the separate har- 
monics of longitudinal sound. The shape of the hysteresis 
loops and the dynamics of the change in shape are signifi- 
cantly different for the amplitudes of the first, second, and 
third harmonics. The multivalued nature of the amplitudes 
of higher-order harmonics is similar to that observed in the 
third-order harmonic. 

5. We recall that aside from the deformation term 
u,,, (9) the sound field u(@) (2.13) also contains an induc- 
tion term u,, (@), which in the case (2.14) (984 1 ) is de- 
scribed by the formula (2.19). Comparing (2.19) with (4.4) 
shows that under conditions of strong nonlinearity (6% 1) 
the induction contribution to u ( @ )  must be taken into ac- 
count in the region where 

Even in this region, however, the deformation term u,,, (@) 
dominates, since it contains all the features of the nonlinear 
excitation of sound. 

The results of this section were obtained for the case 
when the wavelength of the sound wave is large, gag 1. As 
the parameter 98 increases (the frequency w of the radio 
wave increases) the spikes observed in the sound field 
"spread" and in the region 98% 1 they vanish. In the process 
the hysteretic dependence of the displacement u,,, (@) and 

its harmonics on the magnitude of the external magnetic 
field h, remains. 
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