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A rotationally invariant theory of a magnetic acoustic birefringence is developed for tetragonal 
antiferromagnets with the rutile structure (fluorides) in a situation with kllLIIB11411~, where k, L, 
and B are, respectively, the wave vector of sound, and the antiferromagnetic and magnetic field 
vectors, and 4 is the tetragonal symmetry axis. The effect is proportional to the product L J, and 
is governed by the combined effect of the piezomagnetism and magnetostriction. A quantitative 
estimate of the effect is obtained for CoF,. Trigonal antiferromagnets in a state with L13 are also 
considered, thus providing a quantitative explanation of the experimental results obtained by 
Gakel' [JETP Lett. 9,360 ( 1969) 1, who discovered oscillations of the amplitude of sound 
transmitted by an MnCO, plate as a function of B. 

1. INTRODUCTION 

A symmetry analysis was used in Ref. 1 to show that 
antiferromagnetic linear birefringence (LB) should be ex- 
hibited by sound as well as by light.2 In optics the magnetic 
LB effect is called, depending on the source, the Voigt or the 
Cotton-Mouton effect. It was observed experimentally3 in 
acoustics over 20 years ago by Gakel' in MnCO,, When the 
effect is sufficiently large, it may be of considerable interest 
in solid-state electronics, because it provides means for con- 
trolling sound (its polarization and intensity) by a magnetic 
field. We shall show that this may occur in some antiferro- 
magnets. 

Our aim is to develop a quantitative theory of the acous- 
tic LB in tetragonal and trigonal antiferromagnets on the 
basis of the coupled equations of motion of the magnetic 
moments and elastic displacements. However, it should be 
noted that in the trigonal case (a-Fe20,,  FeBO, , MnCO, , 
etc. ) the wave vectors of normal acoustic modes, governing 
the LB, can be calculated using the effective elastic moduli, 
known from the work of Ozhogin and Preobrazhenskii4 and 
allowing for the renormalization associated with the mag- 
netoelastic interaction. 

2. TETRAGONAL ANTIFERROMAGNETS 

substitutions x +y, D-, - D, n,, + - H,,. Here, E, K, and 
D are, respectively, the homogeneous exchange, anisotropy, 
and Dzyaloshinskii constants; C4, is an elastic modulus; B ,  
and II,, are magnetostriction and piezomagnetism con- 
stants (representing the magnetoelastic interaction). Final- 
ly, the constant 

determines the contribution of the external magnetic field B, 
= B to the energy of the oscillations. The dynamic variables 
in Eq. (2)  are, apart from the magnetic oscillations I, and 
m, , also dynamic strains ex, = (du,/dz + au,/ax)/2 and 
local rotations a,, = (au,/az - du,/dx)/2. 

It is worth noting that, firstly, in writing down Eqs. ( 1) 
and (2)  the coordinate axes x and y are selected in the basal 
plane along the binary 2+ symmetry axes and, secondly, that 
Eq. (2)  ignores the inhomogeneous exchange energy. This 
means that only vibrations with sufficiently long wave- 
lengths will be considered. 

We assume that the frequency of these vibrations is 
much less than the gap (activation) of a spin-wave mode, so 
that we consider only zero-gap quasiacoustic waves. For 
these waves, I, and m, follow in a quasi-equilibrium manner 
the vibrations 

We first consider tetragonal antiferromagnets with the 1 dux 
I+4,2: structure' in a state characterized by llJBllz, m = 0 exr=m.. = -- ( for k/ lz)  (4) 2 d z  
[ I  = ( M I  - M,)/2M0 and m = (MI + M,)/2M0 are the 
relative values of the antiferromagnetic and magnetization (similar expressions can be obtained for e, and a,) and, 

vectors]. Allowing for the rotational in~ariance,~ we can de- consequently, the f ~ r m e r  can be expressed in terms of the 
scribe the quadratic (in small oscillations of the dynamic latter by minimizing F:"' [or F :  ". 1 The values of m, and 1, 
variables) part of the free energy density corresponding to (my and 1, ) found in this way should be substituted into the 
magnetoelastic waves propagating along the tetragonal axis initial expressions for F:". ". Consequently, Eq. ( 1) subject 
(k114; llz) by the following expression to Eq. (4)  becomes 

F,(x)='/,Em,2+'/,Kl,2+(h-D)m,l,+ (2B,,e,,-KoX,)1, where C:Ty' are the effective elastic moduli for the vibra- 

+ (2r14,e,,+Do,,) m,S2C4,e,,Z+11,Ko,,'-2B,4eXzorI, tions polarized along the x and y axes, respectively, renor- 
malized allowing for the magnetoelastic interaction. This - - 

(2 )  renormalization lifts the degeneracy of normal transverse 
waves with the polarizations given above and propagating 

whereas F $  Y' is obtained from the above expression by the along the z axis. 
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We shall not give the explicit form of the moduli C:: Y', 
but write down directly the difference between them because 
it governs the LB effect of interest to us: 

We can use Eq. (6)  to find the relative differences between 
the phase velocities v'". Y' = ( C g  y)/p) ' I 2  and the wave vec- 
tors k(x. Y )  = w / v ( ~ .  Y )  (at a given frequency w) of normal 

waves which are polarized along the x and y axes. For I AC/ 
C 1 ( 1 (which is not always true), then 

A linearly polarized transverse wave entering a plate 
along the normal nllz and characterized by a polarization 
vector e = u/u,  tilted at an angle po #O and n/2 to the x 
axis, is generally elliptically polarized at the exit (see, for 
example, Ref. 6). This ellipticity is an oscillatory function 
either of the plate thickness z = d for a given value of Ak or 
of the magnetic field B [because of the dependence Ak(B) ] 
when the value of d is given. This means that, depending on 
B, we can expect oscillations of the amplitude A ,  of vibra- 
tions measured along one of the directions of $ at the exit 
from the plate. For example, if $ = cp, = n/4 holds, we have 

(Expressions for the more general situation are given in the 
Appendix.) The period AB of the amplitude oscillations is 
given by 

It is oscillations of this type that were observed in MnCO, 
(Ref. 3),  but this point will be discussed later. At this stage 
let us obtain a quantitative estimate of the effect (i.e., of the 
quantity Ak /k) for CoF, . 

3. ESTIMATE FOR CoF, 

Using Eq. (7 )  in fields such that 

(which in the case of CoF, corresponds to B < 10 T ) ,  we find 
approximately from Eq. (6) that 

where 

A1=-(2M~IC,4) (B4,D+IT4,K)/(EK-~2) (12) 

is a coefficient deduced from the piezomagnetic effect. In 
fact, according to Borovik-Romanov,' we have 

where A, ~ 2 .  lop5 T-l. On the other hand, minimization of 
Eq. (2)  with respect to m, and I ,  (when w,, = 0)  gives 

which together with Eq. ( 13) yields Eq. ( 12). In Eqs. ( 11 ) 
and ( 12) the following constants (in J/m ) are also known8: 
E = 1 . 4 ~  lo8, K = 3 . 8 ~  lo6, and D = 1 . 7 ~  lo7. 

It therefore follows that the knowledge of the magneto- 
striction constant B, is insufficient to calculate S from Eq. 
( 11 ) . This quantity can be estimated from Eq. ( 12) if we 
assume that B, makes a contribution to A, which in any 
case is no less than the contribution of n,. Consequently, 
assuming also 2M0 --, lo6 A/m and C,, --, 10" J/m3, we find 
B,, -- 3 x lo7 J/m3. Then, we finally obtain from Eq. ( 1 1 ) 

When the condition ( 10) is satisfied, the period of the ampli- 
tude oscillations of Eq. ( 8) in terms of the field B is constant 
(independent of B), so that in Eqs. (6)-(11) we have 

where Q = (S/B) - ' and A = 2r/k is the wavelength of 
sound. When the frequency is w = lo9 s ' ,  the velocity is 
v = lo3 m/s, and the plate thickness is d = 1 cm, we find 
from Eq. ( 16) subject to Eq. ( 15), in particular, ABz0.6 T. 

Noting that independence of the oscillation period AB 
of B disappears in high fields (in the case of CoF, this hap- 
pens in the range B 2 10 T )  and also in the approach to its 
spin-flop point where h = (EK) ' I 2  - ID I holds, the value of 
AB decreases rapidly because of an increase in AC given by 
Eq. (6).  

Experimental investigations of the acoustic LB effect 
described above have not yet (to the best of our knowledge) 
been carried out, bearing in mind that it may be simply of 
purely physical interest as a new effect, but may also have 
practical applications. 

The only new feature (singularity) of the effect is asso- 
ciated with the fact that we have A k a  h = L, B,, so that Ak 
changes its sign exactly when the sign of B, or L, is reversed. 
This clearly provides an opportunity for "acoustic visualiza- 
tion" of antiferromagnetic domains differing in the direction 
L. The point is this: reversal of the sign of Ak alters the phase 
of the transmitted beam. [The latter is clear from Eq. (A2) 
in the Appendix. ] 

It is interesting to note also that the magnitude of the 
LB effect (magnitude of IAk / ) depends on the sign of the 
constant D or, more exactly, on the relationship between the 
signs ofD and H, : reversal of one of them changes the value 
of I Ak 1. A quantitative theory of the effect should include 
the magnetoelastic energy contributions of both the terms 
with strains eaB and with local rotation map. 

Finally, a special feature of the situation in the case of 
the I+4; 2 2  structure is that the magnetic LB effect (Cot- 
ton-Mouton effect) appears not in a transverse field B (or, 
more correctly, not only in a transverse field, as is usually 
assumed for paramagnets), but in a longitudinal field when 

Bilk. 

4. TRIGONAL ANTIFERROMAGNETS 

We now consider trigonal antiferromagnets with the 
I+3: 2; structure (a-Fe,O, , FeBO, , MnCO, , etc.) . In 
the B111113, llz state (which is known to occur, for example, in 
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hematite a-Fe,O, at temperatures T <  T ,  = 250 K)  there 
is no LB and we shall consider only the easy-plane state with 
llz. Let us assume that B also lies in the basal plane xy and is 
sufficiently strong to ensure that the condition MIIBl1 is sat- 
isfied. This direction of B, making an angle of p, with the 
2; I I x  axis, will be adopted as the new X axis. We then have 

Illy. 
Let us consider magnetoelastic modes which are cou- 

pled to an If spin-wave mode. In the case of the latter mode 
both 1 and M do not, in the first approximation, emerge on 
the XY plane and all the dynamic variables include now (in 
addition to the strains eaB ) not only the angle 6p by which 
the whole "construct" 11M deviates from its equilibrium di- 
rection (1I(Y and MIIX), but also the relative magnetization 
m = M/2M0, Since I, = 0, there are no terms with w, 
(those that need be allowed for). We shall again consider the 
If range where we can ignore the inhomogeneous exchange 
and assume quasiequilibrium coupling between the elastic 
and magnetic variables. 

Omitting calculations similar to those given in the pre- 
ceding case, we write down immediately the result of Ref. 4 
for the effective correction to the elastic energy associated 
with the magnetoelastic interaction 

AP.2 - Hs[2B,&en.+4Z?i,(erg cos 3q,-ey, sin 3qJ 1' 
Mo [ B  (B+HD) +2H~Hm,i I I 

where HD and HE are the effective Dzyaloshinskii and ho- 
mogeneous exchange fields, whereas 

Hme,=[ C,,Be,t-4Cl,Bt4B,e+4CeeBiI21 12Mo (CuCee-CI4') 

is the effective magnetoelastic field due to the spontaneous 
magnetostrictive strains (2C6, = C,, - C,, , B,, = B,, 
- 4 2  1. 

The effective magnetoelastic correction of Eq. ( 17) to 
the elastic energy not only renormalizes some of the elastic 
moduli, by differentiating the initially identical (for exam- 
ple, C;T#C:T) moduli, but it may also create additional 
nonzero moduli corresponding to the crystal symmetry dis- 
turbed by the antiferromagnetic ordering. Here we consider 
only the effect of the first type, which in the present case 
gives rise to an LB of purely antiferromagnetic origin be- 
cause the magnetoelastic interaction lifts the degeneracy of 
the polarizations of two normal modes. 

We again consider waves with the vector k directed 
along the principal symmetry axis (kt1 3,Ilz). The corre- 
sponding part of the elastic energy deduced allowing for Eq. 
( 17) becomes 

where 

It is convenient to introduce here new coordinate axes 5 and 
q in the basal plane instead of X and Y in such a way that 

E=X cos 3 q B - Y  sin S r p ~ ,  

ll=Y cos 3qB+X sin 3 ~ s .  

This corresponds to an additional rotation of the coordinate 

axes X and Y about the z axis by an angle - 3p, and, conse- 
quently, the 6 axis makes an angle - 2p, with the 2; sym- 
metry axis. 

The transformation (20) in fact separates variables re- 
ducing the energy Fzff to the diagonal form of Eq. (18), 
which allows us to determine directly the phase velocities 
and the polarization of the normal waves: 

u=vE= ((c;: l p ) %  for ell%, (21 

v--v,=(C4,1p) '" for ejlq. 

The magnetoelastic interaction does indeed lift the de- 
generacy of two transverse waves characterized by kllz and 
therefore gives rise to LB. We then have 

where k, = o/v ,  and 

representing the second effective magnetoelastic field. The 
second (approximate) part of Eq. (22) corresponds to the 
case when Ak /k< 1.'' 

The intensity ofsound I transmitted by an MnCO, plate 
of thickness d = 0.08 cm and with the same polarization e as 
at the entry (I-I, ) and also with the polarization in the 
transverse direction t (I- I, ) was determined and reported 
in Ref. 3. The general expression (A1 ) in the Appendix ap- 
plicable to such cases (qb = p, and qb = p, + n-/2) yields the 
corresponding expressions 

This indicates the appearance of ellipticity, which oscillates 
with B, because according to Eq. (22) Ak is a function of B. 
For po = n-/4 the polarization ellipse has its semiaxes 
a = u0lcos(Akd /2) 1 and b = uolsin(Akd /2) / along the di- 
rections e and t, respectively. This means that if 
Akd = (2p + l ) a  and Akd = 2pn- hold, the polarization is 
linear for only one or the other of these directions, whereas 
for Akd = ~ ( 2 p  + 1)/2 the polarization is circular ( p is an 
integer). 

We can estimate approximately the rate of oscillations 
of the ellipticity (and also I, and I,) as a function of B using 
Eqs. (9)  and (22) provided we know their "period" AB. In 
fact, because of the nonlinearity of the function Ak(B) this is 
true only if AB< B. We then have 

where A, = 2n-vO/w is the wavelength of sound with the 
polarization 71. 

Before discussing the experimental results reported' in 
Ref. 3 for MnCO, , we first estimate AB for hematite (there 
are as yet no suitable experimental data for this compound). 
All the parameters occurring in Eq. (25) are however 
known for hematite4 and, consequently, ford = 1 mm, then 
at a frequency w/2n-z203 MHz and in fields Bz0 .1  T we 
find from Eq. (25) ABzO.01 T. Therefore, hematite is a 
unique material which can be used to analyze hypersound 
and to control it with a magnetic field. Transmission of 
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magnetoelastic contribution, but also for the hyperfine inter- 
action (at T = 4.2 K, which was the temperature at which 
the experiments of Ref. 3 were carried out, the hyperfine 
contribution even predominated). 

The second fitting parameter G subject to allowance for 
the velocity of sound u, = 3 x lo3 m/s (Ref. 9) made it pos- 
sible to find the second magnetoelastic field, which was H,, 
=: 7 X T. Unfortunately, this value was deduced from 
Eq. (23 ), but could not be compared with the experimental 
value because it was not available. 

FIG. 1. 
6. RAY VELOCITY IN HEMATITE 

sound across a plate can alter the polarization and intensity 
of sound along a given polarization direction and can modu- 
late it by small oscillations of B. 

5. MANGANESE CARBONATE 

In the case of manganese carbonate MnCO, the situa- 
tion is, on the one hand, less favorable because we do not 
know all the parameters necessary for a quantitative descrip- 
tion of the LB. On the other hand, there is also an advantage 
to the experimental data reported in Ref. 3, because they 
allow us not only to check the theoretical predictions but 
even possibly estimate some unknown parameters. 

Figure la shows the experimental (reported in Ref. 3) 
intensity I=I,,, of sound of frequency w / 2 ~  = 203 MHz 
transmitted by a plate of thickness d = 0.8 mm in a geometry 
corresponding to Eq. (24), as a function of the field B. (Un- 
fortunately, the value of the angle p, was not given.) Using 
Fig. 1 (very approximately!) to find the positions of two 
maxima (B ~ 0 . 0 3 3  T and B 1;""-,0.089 T )  and two mini- 
ma (B ';'"-0.059 T and B ynzO. 155 T)  and substituting 
the known values HD = 0.44 T and HE = 32 T (Ref. 7), we 
can use equations 

in accordance with Eq. (9) and allowing for Eq. (22), which 
yields two quantities: 

H ~ 2 = 2 H E H m . , ~  0.03 T' E G= (dlh,) H,H,,,-- 0.12 T'. 

In addition to these data the agreement between the theoreti- 
cal curve and the experimental results in the argument of the 
cosine in the second term of Eq. (24) (which is the only 
quantity that can be compared with the experimental re- 
sults) requires introduction of an additional phase. It  is 
somewhat surprising that this phase is not ~ / 2 ,  but this is 
clearly related to the method used to record the transmitted 
signal. 

Our theoretical curve shown in Fig. lb  reproduces quite 
well the experimental results. The fitting parameters used 
were as follows: the first of them (H :, ) governs the gap in 
the If branch of spin waves and it can be compared with the 
corresponding H :, (AFMR) value amounting to 0.016 T2, 
obtained from an antiferromagnetic resonance (AFMR).9 
If we bear in mind the roughness of our estimate, then in 
spite of the difference between the value obtained and the 
AFMR data by a factor of 2, the agreement can be regarded 
as satisfactory. In both cases H i  allows not only for the 

We conclude by considering an additional effect typical 
of trigonal antiferromagnets. In the case of crystals with the 
symmetry axis 3 this axis is no longer "pure" acoustic. The 
ray or group velocity of transverse (or more exactly quasi- 
transverse) waves V is not equal to the phase velocity 
vllkll311z and it is described by the following expressionlo: 

where e is a unit polarization vector. In the absence of anti- 
ferromagnetism, two such waves are degenerate in the sense 
that their phase velocities are identical and the polarization 
in the XY plane can be arbitrary. Rotation of e in this plane 
makes the group velocity vector describe a cone of angle 19 at 
its vertex given by the equation 

tg 8= IC,'IC,,I. 
In the presence of antiferromagnetism this degeneracy 

is lifted by the magnetoelastic interaction. Each of the nor- 
mal quasitransverse waves with k113, can have not only its 
own definite polarization (along the 6 or q axes), as well as 
its own phase and group ( Vg or V, ) velocities, but also its 
own group velocity direction, which is the energy transport 
velocity. These components can be found from Eq. (27) if in 
the elastic moduli Cap,, we include the effective magneto- 
elastic corrections found from Eq. ( 17), and adopt the axes 
and q. It should be noted that vg and v, are the projections of 
the vectors Vc and V, along the z axis. In terms of the polar 
(Og and 8, ) and azimuthal (pc and p, ) angles of the vec- 
tors Vg and V,, the result is as follows: 

tg cos qE=-cbE sin 6 q B ,  tg OE sin qt=cbE cos 6 q B ,  

tg 0, cos q,=c sin 6qB,  tg 0, sin q,=-c cos 6qB,  (28) 

where c = C,, /C, and 

In addition to H,,, and H,,, we can also deduce directly the 
third effective magnetoelastic field: 

Hme,=2Bi,B,,IMoCi,. 

In the case of hematite, we have H,,, = 7 x  lop5, 
H,,, = 1 0 ~  lov5, and H,,, = - 19x  lo-', when 
HE = 920 and HD = 2.2 (all in teslas). This means that bg 
of Eq. (29) shows sign reversal at B-Bo -0.023 T. In fields 
B > Bo, which are the only ones that can reasonably be con- 
sidered (assuming the samples to be of the single-domain 
type), p, = pc + T follows from Eq. (28). The angle be- 
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tween the vectors Vg-  and V ,  is then equal to 8 = 8g- + 8,, 
whereas the angles pg-, Og- ,  and 8, are described by the equa- 
tions 

These relationships show that an acoustic ray with a 
definite transverse polarization (which does not coincide 
with the c and q axes) directed along the symmetry axis 3, 
splits in an antiferromagnet into two rays with the polariza- 
tions along the axis 5 and q and group velocities V p  and V, 
differing in the magnitude ( Vc = vg /cos dp and V, = v, / 
cos 8, ) and direction. A magnetic field B13, can, in accor- 
dance with Eq. (30), be used to concentrate the polariza- 
tions and also the phase and group velocities of one of the 
rays (that with ellg) with the angle 8 between V p  and V,. 

We now give some numerical values of the angle 
8 = O p  + 8, calculated in degrees and deduced from Eqs. 
(29) and (3 1 ) (c = - 0.153) for different values of B  (in 
teslas) : 

We should note finally that the cardinal difference be- 
tween the antiferromagnetic LB effect in tetragonal and tri- 
gonal antiferromagnets, which follows from the present 
work, is not only associated with the different crystallo- 
graphic symmetries, but also with the different parity of the 
principal symmetry axes (4- and 3 + )  and in different mag- 
netic states (1112 and l l z ) .  

The author is grateful to M.I. Kurkin for valuable dis- 
cussions. 

APPENDIX 

Let us assume that the polarization vector e of sound of 
amplitude u,, which enters a medium along the z direction, 
makes an angle p, with the direction of polarization of the 
normal mode g. At the exit of a plate of thickness z = d the 
projections of the displacement u along the f axis and T,I are, 
respectively, 

UE ( d )  =UO cos (PO cos ( kEd-a t ) ,  
u, ( d )  =uo sin (PO cos (k,d-at)  . 

Hence, we can find the total displacement in any one direc- 
tion making an angle of $ with the axis: 

where the amplitude A ,  and phase @, are described by the 
expressions 

cOs ("+*) t g ( F  d )  (Pk -k t -h ) .  " '* - coa (r-0) (A21 

Both the amplitude and phase oscillate as a function ofB for 
Ak = A k ( B ) .  

"This may not be satisfied in low fields B: for example, in the case of 
hematite we find Ak /k-25% even for B = 0.1 T. 
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