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The replica method is used to study the properties of the globular state of a statistical copolymer 
consisting of two kinds of units. The properties of such a globule are strongly dependent on the 
number of spatial dimensions. In spaces with a small number of dimensions d92,  a nonergodic 
state with broken replica symmetry is formed, which corresponds to the presence ofmany minima 
in the phase space. At these minima, the distance between members of the chain is fixed. Such 
behavior is observed if different kinds of monomers tend to separate into layers. If the monomers 
mix, a state with a sin-gle energy minimum is formed without the size of the chain link being fixed. 

1. INTRODUCTION 

The statistical mechanics of disordered heteropolymers 
is one of the major problems of the theory of disordered sys- 
tems. The importance of the problem is due to the biological 
applications to the theory of proteins and nucleic acids. The 
presence of disorder and of competition of different interac- 
tions (frustrations) suggests that the structure of the phase 
space of such systems can be rather complex - with barriers 
separating pure states - as observed in spin glasses.' In- 
deed, it was shown in Refs. 2-4 by the replica method that 
under certain conditions in heteropolymer globules, a transi- 
tion to a nonergodic state with a disturbed replica symmetry 
takes place. (The replica method for studying heteropo- 
lymer coils was used in Refs. 5 and 6.) It was shown in Refs. 
3 and 4 that the properties of the nonergodic phase are 
strongly dependent on the number of spatial dimensions; 
these properties were the least trivial for chains in spaces 
with a small number of dimensions d < 2. This is due to the 
fact that the joining of units into a chain is most appreciable 
in this case and gives rise to additional frustrations. 

It should be noted that in the initial model, used in Refs. 
2-4, it was assumed that the number of kinds of monomers 
was infinite, and the interaction constants of different pairs 
of monomers were independent random variables. The latter 
assumption means that instead of specifying the sequence of 
N quantities ( N  being the number of monomers in the 
chain), i.e., a linear memory,' it is necessary to specify 
N ( N  - 1 )/2 parameters. 

The opposite model - that of a disordered heteropo- 
lymer composed of two kinds of monomers - was discussed 
in Ref. 8. The latter studied the behavior of such a heteropo- 
lymer in 3 - 0  space and showed that this case involves the 
formation of a domain structure without violation of replica 
symmetry, i.e., without the formation of a nonergodic state. 
It is natural to ask the question, will such a state of a "two- 
letter" heteropolymer exist in a space with a small number of 
dimensions? It turns out that a nonergodic phase with a large 
number of equilibrium states arises in this case. 

2. MODEL AND BASIC RELATIONSHIPS 

Let us consider a polymer chain composed of two kinds 
of monomers. The statistical sum of such a system is 

ri being the spatial coordinates of the ith monomer along the 
chain; as usual (see, for example, Ref. 7), the function g ( r )  
describes the linking of the monomers into a chain: 

g (r) = (2na2) exp (-r2/2a2), (2 )  

a being the size of the link between adjacent monomers along 
the chain;& ( r )  is the Meyer function of interaction between 
the ith and jth monomers: 

where U,  ( r )  is the energy of interaction of the ith and 
jth monomers, and the temperature is set equal to one. The 
Meyer function in the case of two kinds of monomers may be 
represented in the form 

with a; = 1 if the ith monomer is of the first kind, and 
a; = - 1 in the opposite case. 

The free energy of such a chain is a self-averaging quan- 
tity. To calculate it, we use the replica method': 

<zn>,,-1 
(In Z>.,= lim I 

n-.O n 

where ( . . .).. denotes averaging over the disorder, i.e., over 
different sequences of the two kinds of monomers. The aver- 
aging on the right-hand side of Eq. (4 )  can be carried out for 
an integer-valued n: 

N ., 

Appendix A gives a description of an analogue of a vir- 
ial expansion by the replica method. In the approximation of 
broken bonds, which holds when the intrinsic volume of the 
monomer is u &ad, virial expansion gives 

( ) 
Here E C Q )  denotes a functional having the meaning of ener- 
gy, of the form 
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where the following macroscopic parameters (order param- 
eters) are introduced: 

Obviously, Qa ( r )  is the density of the monomers of replica a 
at the point r, and the parameters with a large number of 
replica indices are the correlators of the links of the chain of 
the corresponding replicas. From the definition ( 8 ) follows 
the obvious normalization condition 

As already stated, we are interested in the situation 
where the chain is globularized. In this case, the order pa- 
rameters Q are slightly fluctuating q~ant i t ies .~ Moreover, if 
the globule is sufficiently large (its volume is V>)ad ), the 
volume approximation of Ref. 7 can be used. In this approxi- 
mation, the density Qa ( r )  is constant inside the globule and 
zero outside it. For the order parameters, the following rela- 
tion holds: 

In particular, the two-replica order parameter Qap (r,,r2) 
depends only on the difference between its spatial argu- 
ments. It is also important to note that by virtue of the sym- 
metry with respect to the replicas (S), the quantities Qa are 
independent of the replica index: Qa = p .  However, this 
does not hold for correlators with a large number of replica 
indices - destruction of the replica symmetry may occur. 

Appendix A indicates a method of obtaining the quanti- 
ty E{Qa ,Qap,Q,,,... > in the form of a series in the correla- 
tors Qa Qap,Qap,, etc. We shall see below that ford < 2, the 
quantities Q,,, ?,,, ( r ,  - rk ,r2 - rk ,...) are localized in ac- 
cordance with spatial arguments with characteristic scale R. 
Different terms of the series E{Q, Qap,Qap,, ...I are charac- 
terized by different powers of R - d ,  with the terms corre- 
sponding to the ring diagrams having the minimum power 
(see Appendix B). If the scale R is sufficiently large (a  quan- 
titative estimate will be given below), but smaller than V"d, 
one can readily ascertain that to first order in R - expres- 
sion (7)  for the energy will be considerably simplified: 

where energy E2 is determined by the sum of the ring dia- 
grams and hence, is dependent solely on the two-replica or- 
der parameters. In analytic form, the energy E2 becomes 

Here the symbol {a,,a,, ..., a, ) signifies that the summation 
is carried out for a,  #a2 ,a2#a  ,,..., a, #a , .  In the limit of 
slight heterogeneity (or low density), we can drop all but the 
first term of the series in m. In this case, we arrive at the 
model discussed in Ref. 4. It is convenient to go over to mo- 
mentum space: 

where the usual Fourier transformation is used: 

9.1 (PI = Qap (I) exp (ipr) dr. 

It is now easy to rewrite expression (6)  in the form 

where s{Q} is the entropy corresponding to the number of 
links of the chain of all the replicas giving the specified 
Qao (r) :  

Calculation of the entropy defined in this manner is not very 
difficult and is carried sut as in Ref. 7. The difference lies in 
the fact that instead of an external field, it is necessary to 
introduce the external potential of the replica interaction 
Uao (r1,r2). An entropy calculation is presented in more de- 
tail in Ref. 4, which showed that in the approximation in 
which the ground state dominates7 we have 

where {r} denotes the set of spatial coordinates of the ends of 
all n replicas and is a dn-component vector with coordinates 
({r,,r2, ..., r, 1). The two-replica order parameter is easily ex- 
pressed in terms of the introduced function $ 

As already noted, in the globular state the order param- 
eters Qare weakly fluctuating, i.e., the average field approxi- 
mation is valid for them. This approximation corresponds to 
taking the integral in expression (14) by the method of 
steepest descents, i.e., to maximizing (not minimizing - see 
Ref. 1 ) the free energy 

with respect to the parameters Q, or, what is completely 
equivalent, with respect to the function $ allowing for Eq. 
( 16) and for the normalization condition (91, which takes 
the simple form 

J $2({r})d{r}=N. (18) 
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3. QUALITATIVE ANALYSIS 

Carrying out the maximization of the functional ( 17) is 
a very complicated task. However, much useful information 
can be extracted from some simple qualitative consider- 
ations. We shall first show the qualitatively different behav- 
ior of the studied system as a function of the number of space 
dimensions d. Indeed, consider some function $, providing a 
maximum to the functional ( 17) and satisfying the normali- 
zation condition ( 18). We define the one-parameter family 
of functions 

which also satisfies the condition ( 18). As can readily be 
ascertained, we have 

The quantities A ,  and A ,  are independent of R and positive 
fern< 1. 

It is evident from expression ( 19) that for d < 2, the 
maximum is reached when 

(naturally, $, satisfies R * = 1 ). At the same time, ford > 2, 
the maximum is reached at R = 0 or R = W .  It follows that 
for d < 2, we have a situation analogous to a second-order 
phase transition, when there exists a large scale for the order 
parameters (or for $) by virtue of the low degree of polymer 
heterogeneity. On the other hand, for d >  2, there 'is an 
abrupt transition in scale for a finite value of heterogeneity. 
Only the case d < 2 will be considered in the remaining part 
of this work. 

It will be shown that for d < 2 ,  the functional (17) 
reaches a maximum on the function $ nonsymmetric in the 
replica variables. Indeed, assuming the opposite, one can 
easily understand from the translation invariance of Eq. 
( 10) that the second, entropic term in Eq. ( 17) will be of the 
order of unity when n - 0, whereas the first, energy term will 
be of the order of n. This means that on the symmetric func- 
tions $ the entropy losses are higher than the energy gain. 
Hence, the maximizing functions $ is nonsymmetric. Ac- 
cording to the standard interpretation,' destruction of re- 
plica symmetry signifies the existence of a large number of 
equilibrium states in the system under consideration. 

4. DESTRUCTION OF REPLICA SYMMETRY 

Since the minimizing function $cannot be symmetric in 
the replica variables, as the zero approximation it is neces- 
sary to use Parisi's first stage of destruction of replica sym- 
metry.' In this approximation, n replicas are broken up into 
n/x groups with x replicas in each group ( 0  < x < 1 ), so that 
the maximization is carried out on test functions of the form 

n lx  

where the coordinate r: corresponds to the I th replica from 
the k th group, and the function $, is symmetric in its argu- 
ments. 

It is easy to understand that in such an approximation, 
the order parameter Qap is zero (in the thermodynamic lim- 
it, when V$ Rd ) if the replicas a and B are different groups, 

whereas for replicas from the same group Qap ( r )  is indepen- 
dent of either the choice of the replicas or the choice of the 
group. Hence it follows immediately that the free energy 
( 17) of the replicas is 

where F, is the free energy of x replicas, also determined by 
expressions ( 1 1 )-( 17), where instead of n it is necessary to 
use x. 

Before turning to further qualitative analysis, it is essen- 
tial to determine the coefficients B, in the expression ( 12) 
for the energy. For simplicity we assume that first, the pro- 
babilities of occurrence of the two kinds of monomers are 
equal, and second, in expression (3)  for the Meyer functions 
we have f, = 0. The latter fact means that the interaction 
of monomers of one kind is the same as that of the other 
kind. In Appendix B it is shown for such a case that 

To clarify the meaning of the constant B in this expres- 
sion, let us consider a mixture of monomers forming a chain, 
but without polymer linkages. It  is simply a mixture of two 
kinds of molecules. The free energy per unit volume in this 
case is a function f(p,  g , )  of the densities of both compo- 
nents. It is convenient to define the following quantity7: 

whereJ;, (pi ) = p i  ln(pi / e )  is the free energy of an ideal gas 
of density p i .  One can treat f * as a function of the total den- 
sity p = p ,  + p, and of the densities difference v = p, - p,. 
The result obtained in Appendix B may be expressed as 

Thus the physical meaning of B is very simple: for B > 0, 
the system tends to separate into phases consisting of like 
monomers; for B < 0, it tends to mix. It should be noted that 
in a real mixture of two components, the separation instabil- 
ity takes place when 

i.e., for Bp > 1. It is now easy to carry out the summation in 
the expression for the energy ( 13) 

where the quantities Gap satisfy the simple equations 

and the prime at the summation sign denotes summation 
over y#a.  As already stated, within the same group of repli- 
cas the parameters Qap are independent of the replica in- 
dices: Q,, = Q. It is evident that a similar statement applies 
to the quantities Gap: Gap = G, a ffl, G,, = Go. Taking 
this into account, we can substantially simplify Eqs. (23 ): 
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Solving the system obtained, we get '-dl' 

G=uQ[ ( I + @ )  ( I + ( l - x ) u Q ) ] - l ,  4 

G---~~Q*(I-+)  [ (I+UQ) ( I +  ( I - X )  UQ)J - 1 .  xJaZj, exp(-q2) 

Finally, substituting this result into Eq. (221, we obtain o (1+z exp ( ~ 7 * / 2 )  ) (1+ (1-x)z exp(-q2/2))  ' 

x [ ( l + u Q ( ~ )  ) ( I +  ( I - x ) u Q ( p ) )  I-'. ( 2 4 )  

After these simplifications, the problem of maximizing the 
free energy is still complicated. It seems natural, therefore, 
to try to carry out the maximization on test Gauss functions 

where A is the normalization constant. From the translation 
invariance of ( 10) follows the relation 

a-l 

Taking into consideration the symmetry of rC, in x replicas, 
we readily obtain 

From the normalization condition ( 1 8 ) ,  it is now easy to 
determine A: 

We substitute the test function ( 2 5 )  into the expres- 
sions ( 1 6 )  for Qap and ( 1 5 )  for the entropy and carry out 
the simple Gaussian integrals, thus obtaining 

Q (r )  =p (2n)  -d'2R-d exp ( - f  /2R2) ,  
Q (P) = P  exp (-RZp2/2).  ( 2 6 )  
Sr='IZNaZd ( I - X )  /R2,  

where R ' = ( x  - ' - 1 ) / k .  Finally, wesubstitute theexpres- 
sions obtained for Q ( p )  into Eq. ( 2 4 ) ,  introduce the new 
integration variables q = Rp and z = pu, and thus obtain the 
final expression for the free energy: 

where 

This can easily be done in three limiting cases: 

I - 1 ,  xmd/2, 
2  - B p B l ,  xml-Cl(Bp)-', 
3 - -1GBpd0,  1+Bp<1, smC.,(1+Bo\. 

where C ,  and C2 are constants of the order of unity, depen- 
dent solely on the number of spatial dimensions d. In the 
limiting cases, the scale R is also easy to determine: 

It is convenient to introduce the dimensionless param- 
eter E = NR /Ng  , where NR = pRd is the number of mon- 
omers inside a volume of size R ,  and N, = ( R  /a)' is the 
number of monomers in an ideal coil of size R .  This param- 
eter can serve as a measure of the localization of the mon- 
omers. In the limiting cases discussed we have the following 
asymptotic forms for E:  1-E-  (Bp)' ,  2-E-Bp, 3-E - ( 1 + ~ p ) ~ ' ~ .  Figure 1 is a qualitative representation of 
the localization measure E as a function of the dimensionless 
parameter Bp, which characterizes the degree of heterogen- 
eity of the chain. 

Let us examine certain approximations used in obtain- 
ing the results described. First of all, it is necessary to esti- 
mate the contribution of the discarded terms in going from 
Eq. (7)  to Eq. ( 1 1  ). It can readily be shown that the discard- 
ed terms are small for B / R d  < 1 .  Note that the average-field 
approximation is valid for pad ) 1 (Ref. 7 ) ,  so that in the 
first and third cases the condition that the discarded terms 
be small is automatically satisfied. In the second limiting 
case, the smallness of the discarded terms is ensured by the 
condition B p g p a d .  It is also easy to ascertain that for 
Bp <pad ,  the relation R )a holds in all limiting cases. This 
means that the results obtained are independent of the spe- 
cific form of the function g ( r )  ( 2 ) .  

5. DISCUSSION 

It is necessary first of all to note the qualitatively differ- 
ent behavior of the studied system as a function of the num- 
ber of spatial dimensions d.  These differences are due to the 
obvious fact that for d < 2, monomers which are close along 

z exp (-9'12) (1-x) z exp (-qV2) 

s=aZd ( 1-2) /2x. 
The maximum free energy over R is reached for 

R = R =  (2s/de) '"2-d); I 

-1 1 

substituting this result into Eq. ( 2 7 ) ,  we reduce the problem 
to the maximization over x of the expression FIG. 1 .  Localization parameter as a function of separation tendency. 
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the chain are also close in space, whereas fo rd  > 2 the major- 
ity of contacts take place between monomers widely separat- 
ed along the chain. Therefore f o r d  < 2 we encounter strong 
polymeric frustrations, i.e., competition between paired 
short-range interactions of the monomers and the linking of 
the monomers into a chain. Obviously, frustrations of this 
kind do not arise for d > 2. It is also important to note that 
topological limitations in the globularization kinetics of the 
polymer chain in real 3 - 0  space lead to the formation of a 
long-lived "folded globule" state, in which a majority of the 
contacts correspond to monomers that are close to each oth- 
er along the chain.' It seems natural, therefore, that the re- 
sults which we obtained for d < 2 are qualitatively applicable 
to this case as well. 

According to the standard interpretation," the de- 
struction of replica symmetry in the case d < 2 signifies the 
existence, in the system under consideration, of a large num- 
ber of equilibrium states separated by energy barriers tend- 
ing to infinity in the thermodynamic limit. The number of 
states is greater, the larger the parameter x. In particular, at 
x = 0 (when there is no destruction of replica symmetry), 
we have only one equilibrium state. In our case, the states are 
characterized by a canonical (frozen) spatial scale of the 
chain of order R, i.e, in each state the position of the mon- 
omer in space fluctuates by an amount on the order of R. 

In the framework of such an interpretation, the results 
obtained in the preceding section are easy to understand. For 
Bp = 0, i.e., when we are dealing with a homopolymer, 
R = holds, i.e., there is no canonical scale for the chain in 
space. In the case of a low degree of chain heterogeneity 
( /Bpi < 1 ) we find a slight fixation of the scale of the chain in 
space (R -+ as lBpl--0). For Bp > 0, separation of the 
monomers into phases is energetically favored; this is hin- 
dered by the linking of the monomers into a chain. As the 
separation tendency increases (Bp increases), the energy 
barriers also are raised, leading to an increase in the number 
of states (x  - 1 as Bp- ) and in the degree of their freezing 
(R -0 as Bp- ). Subtler effects are present when mixing 
is advantageous (Bp < 0 ) .  In a random sequence of mon- 
omers along the chain, regions enriched with like monomers 
occur. For Bp = 0, this is responsible for the fact that in the 
spatial structure of the globule as well, regions arise that are 
enriched with like monomers. For Bp < 0, some of these re- 
gions begin to mix, and this again is hindered by the linking 
of the monomers into a chain. As Bp increases, more and 
more regions mix, resulting in a decrease in the number of 
states and degree of their frozenness. Finally, at Bp = - 1, 
all the regions are found to be mixed, and there exists a single 
state ( x  = 0 )  without a reliable chain course (R = a ). It is 
natural to postulate that also for Bp < - 1, we have a single 
state without a definite chain separation scale. 

APPENDIX A 

VlRlAL EXPANSION IN THE REPLICA METHOD 

We consider the part of the integrand in Eq. (3 )  that 
corresponds to the interaction of replicas: 

.-(nu ( i + f i j a ) )  9 

t c j  0 
0" 

where for brevity the notation f =Aj (r; - ry ) has been 
introduced. Carrying out the multiplication on the right- 

hand side of ( A  1 ), we obtain the series 

I t  is convenient to introduce a graphical notation of the 
terms of the series by correlating the multiplier f with a 
segment of type a with ends i and j: 

a - 
i J 

In this notation, the series (A2)  takes the form 
a 

a .  - 

here summation over ihe indices which enter into the dia- 
gram and averaging over the disorder is implied. 

Virial expansion makes sense when the size of a polymer 
linkage is much greater than the characteristic scale of the 
Meyer function A, ( r ) .  In this case, instead of Meyer func- 
tions, use may be made of6 functions with the corresponding 
numerical multipliers. For this purpose, an arbitrary dia- 
gram from (A3)  is decomposed into connected subdiagrams 
containing only one type of line (corresponding to a single 
replica). Each such subdiagram contains indices corre- 
sponding to the numbers of the monomers: i,, iz, ..., i, , where 
m is the number of vertices in the subdiagram. We then put 
the subdiagram with a lines in correspondence with the fol- 
lowing product of the S function: 

and we put the entire diagram in correspondence with the 
product of the expressions, (A4) ,  which correspond to all 
the subdiagrams. For example, to the diagram 

corresponds the following product of S functions: 

To calculate the numerical multiplier corresponding to 
the diagram, it is necessary to integrate the analytic expres- 
sion corresponding to each subdiagram with respect to the 
variables r: ,..., ryfr . We then multiply the integrals obtained 
for all the subdiagrams and average over the disorder. The 
resulting numerical multiplier is obviously independent of 
the indices entering into the diagram. For the diagram (A5) 
this multiplier is 

p = < f i j  (7-i-r~) f j k  (r2-r3) f ik  (ri-r~) f ik  (r&-r5) dridrzdrJav. 

Finally, the rules for calculating the combinatorial coeffi- 
cient do not differ from the standard ones." 

The next step in obtaining the virial expansion consists 
in taking the logarithm of the series obtained. As usual, this 
will lead to a reduction of the unconnected diagrams. In 
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addition, there will be a change in the numerical multipliers 
in diagrams consisting of more than one type of line, i.e., 
diagrams corresponding to the interaction of replicas. To 
describe these changes, we shall consider an arbitrary dia- 
gram of this type. Lines of type a#, ...,y issue from an arbi- 
trary vertex ofthe diagram. We divide these types arbitrarily 
into two groups. We shall define the operation of reduction 
of the diagram, by requiring that in place of the initial dia- 
gram, we obtain a new diagram which differs from the initial 
one only in having two arbitrary vertices instead of one; all 
lines of the first-group type issue from one vertex, and all the 
lines of the second-group type issue from the second vertex. 
For example, reduction of diagram (A5) results in the dia- 
gram 

Applying the reduction operation to new diagrams, we 
ultimately arrive at the final unconnected diagram, whose 
connected parts are the subdiagrams discussed above. We 
now consider the initial diagram and all the diagrams that 
can be obtained from the initial one by successively applying 
several reduction operations to it. We say that the diagram 
belongs to the ith level if it is obtained from the initial one 
after i  reduction operations are performed. We subtract from 
the multiplier of all the diagrams the multiplier of the final 
diagram (belonging to the last level). We consider an arbi- 
trary diagram belonging to the next-to-the-last level. We 
subtract its multiplier from the multipliers of all the dia- 
grams which yield the given one after several reduction oper- 
ations. We do the same with all the.diagrams of the next-to- 
the-last level. We repeat this procedure for all the levels, 
going up from one level to the next. We finally subtract from 
the multiplier of the initial diagram the multipliers of all the 
diagrams obtained from the initial one after a single reduc- 
tion operation. The difference obtained will be the desired 
numerical multiplier of the initial diagram after the loga- 
rithm of the series has been taken. 

Two remarks are in order. First, if we are dealing with a 
homopolymer, then as a result of the procedure described, 
the diagrams corresponding to the interaction of replicas 
will have zero multipliers. Second, if only one diagram can 
be obtained from the initial diagram as a result of a single 
reduction operation (this holds for ring diagrams, discussed 
in Appendix B), the resulting multiplier is equal to the dif- 
ference of the multipliers of these two diagrams. 

We define the macroscopic parameters 

It is now easy to obtain the virial expansion in the powers of 
these parameters. For this purpose, it is necessary to change 
from summation in the diagrams over i < j  to summation 
over i f j ,  introducing the additional multiplier 1/2 for each 
such pair of indices. It is then necessary to extend the sum- 

mation also to i = j, by introducing an error which is small in 
the tihermodynamic limit. Thereafter, it is easy to transform 
the sum over the indices corresponding to the numbers of the 
monomers of the product of the S functions, corresponding 
to an arbitrary diagram, into an integral of the product of the 
macroparameters introduced. Thus, for example, the inte- 
gral 

j Qat ( r l ,  r z )  Qa (rl) dri drz. 

will correspond to the diagram (A5).  We thus obtain the 
desired virial expansion in powers of the macroparameters. 

APPENDIX B 

CALCULATION OF THE COEFFICIENTS B,,, 

It is easy to understand from Appendix A that ring dia- 
grams of the form 

correspond to the terms of the virial expansion (12). The 
double line denotes the sum of all the diagrams composed of 
the same type of lines, with two fixed indices: 

k 

Here again, summation over all indices except i and j  and 
integration with respect to the corresponding coordinates is. 
In analytic form the equality (B2) is 

According to the rules described in Appendix A, to dia- 
gram (B l ) in the virial expansion correspond the combina- 
torial multiplier (2m - ' and numerical multiplier Bm , 
where 

To calculate B we consider the following statistical sum: 

where f;, =Af;, + f,giaj [see Eq. ( 3 )  1, the summation in 
Eq. (B5) is carried out over all a, = + 1, and the integra- 
tion is carried out over the volume V. It is easy to ascertain 
directly, by expanding Eq. (B5) in a power series off;, , that 

On the other hand, in the thermodynamic limit the statisti- 
cal sum (B5) is identical to the statistical sum of a mixture of 
two kinds of molecules (details are given in the main text) 
with densities 
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