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The effect of exchange interaction on the behavior of a hole in oxygen in the Emery model of a 
high-temperature superconductor (HTSC) is considered. It is shown that the spin state produced 
by the hole may be a purely ferromagnetic polaron only up to a certain (small) energy-normalized 
jump of the critical value of the exchange constant. 

In discussions of the problem of high-temperature su- 
perconductivity, much consideration has been given to the 
study of the magnetic states of the new superconductors.' 
This is linked to the fact that the majority of them are antifer- 
romagnets in the non-superconducting state. The antiferro- 
magnetism is suppressed by alloying; that is, by an increase 
in the concentration of free carriers. The Hubbard model 
with strong on-site Coulomb repulsion (U, large)* or the 
generalized Hubbard model is often used in describing the 
magnetic characteristics of the new superconductors. In the 
latter case, the approach of Emery3 is used as the basic ap- 
proximation, where an additional hole is responsible for the 
oxygen 0- state. In Refs. 4 and 5, the behavior of a hole on 
oxygen was studied in the framework of this model, on the - 
assumption that E = E~ - E, > 0 ( E ~  is the energy of the 0 
p-orbital; E, is the energy of the Cu + state). According to 
the estimate of Ref. 3, p- 1 eV. 

The problems of the normal states of the HTSC antifer- 
romagnetic phase have also been discussed, in Refs. 6-8, on 
the basis of a single-band Hubbard model. In particular, Ta- 
kahashi6 analyzed the possibility of the formation in cu- 
prates of a ferromagnetic polaron, the existence of which had 
long been predicted in Ref. 9. Such a polaron can arise for a 
finite antiferromagnetic exchange constant because a single 
hole in a half-filled band polarizes a ferromagnetic medium. 
The balance between the gain in kinetic and loss in exchange 
energies determines the size of the polaron. Estimates cited 
in Ref. 6 give the value -0.25 for the ratio J / t  = 4t /Uabove 
which the large-radius ferromagnetic polaron - does not exist. 
Assuming for the Hubbard model6,' t-0.3 eV, we find 
J-900 K, which is below the measured constant for 
La,Cu04 ( J- 1 100 K) .  ' Since the numerical estimate was 
obtained in Ref. 6 on the basis of qualitative reasoning, it 
could differ from 0.25. However, computer calculations car- 
ried out within the Hubbard model on finite units1' demon- 
strated antiferromagnetic correlation and the absence of a 
polaron for the value of the exchange constant obtained from 
experiment. 

We show below that in the Emery model the region of 
existence of the spin polaron in J is even more narrow. 

In Ref. 4 it was shown that in the atomic limit ( U, - cc , 
J -0 )  the saturated ferromagnetic polaron is not a ground 
state of the system (for some types of lattices this is possible 
even in the standard Hubbard model1'). The authors of Ref. 
4 showed that in the limit J- 0 it is more favorable to form a 
high-spin complex created by the hole, and in principle a 
state of unsaturated ferromagnetism is not excluded. For 
J >  0, delocalized states of this type on a ferromagnetic or 

unsaturated ferromagnetic background lead to loss of ex- 
change energy. For a certain range of values of J ,  this can 
lead to formation of a large-radius ferromagnetic polaron. 

In this study, we determine the region of stability of the 
polaron state. We note at once that our chosen trial function 
for the spin polaron with J - 0  (that is, if the polaron radius 
grows without bound) describes a ferromagnetic back- 
ground which is not a ground state of the ~ y s t e m . ~  This is 
undoubtedly a defect of the function. However, for finite J ,  
for which we can expect destruction of the ferromagnetic 
polaron, it correctly reflects qualitatively the dynamics of its 
decay. In Refs. 6 and 9, the mechanism of polaron destruc- 
tion lies in the fact that the state formed by the hole and 
entirely concentrated in the polaronic ferromagnetic well 
transforms, as J grows, into a state of the continuous spec- 
trum. However, more precisely, the hole, due to the finite 
well depth, forms a state the wave function of which contains 
tails which emerge into the Nee1 surroundings of the ferro- 
magnetic region. In such a case, a delocalized state arises for 
small values of J. The ratio of the critical values, J , ,  for two 
possible destruction mechanisms of the large-radius spin po- 
laron is weakly sensitive to the choice of the trial wave func- 
tion. 

The reduced Hamiltonian describing the Emery model 
for p- and d-states is presented in Refs. 3, 5, 12, and 13 and 
has the form 

t 
H=H,+H, = - pla+ (l+2S,a)pi..~+l Si.S,, 

,2 <<irj) <itid 

(1 )  

where (T, is the Pauli matrix; pi, is the hole destruction 
operator on the oxygen orbital; SJ are the spin operators, 
which are expressed in terms of d,+ , dJ,  the creation and 
annihilation operators for Cu holes. 

Proposing, further, to also study the antiferromagnetic 
state, we rewrite Eq. ( 1 ) separating out the summation over 
the magnetic sublattice of the copper spins alone. Also, we 
will assign states according to combinations transforming as 
the irreducible representations of the group D,. This is 
achieved by introducing the matrix B: 

Here each column forms a basis for a representation A , ,  B,, 
E of the group D,. Ultimately, HI takes the following form: 
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H ,  = 2, )' as1)  (I + 2 . ~ ~ 0 )  a12 + C C .Tia) 
-J 

~ E A  yy'aa' j€A 

where 

a$) = B~&;". ~f = (pi+#, pi-o ~ 1 - e .  P;+*). 
a 

Z1=22-29, Z2=42?, Tj=22+ 23, T&=O. 

The translation vectors T are written in units of a, the dis- 
tance between Cu and 0 spins. 

Writing HI in the form of a sum over the sublattice A 
(with constant 2fia) is convenient in that the operators 
a,!:' anticommute on different sites of this sublattice; all the 
a;:'' in the Hamiltonian run over only the A sites, with the 
sites of the other sublattices linked only to the spin operators 
Sj + 7.i - r; 

In analyzing the hole states we choose a trial function 
with fixed total spin, so that [H,S,,, ] = 0 holds. 

We will consider a region in the form of a disk of radius 
R,  containing NR spins belonging to sublattice A (we choose 
them to be directed downward). Inside the disk the spins of 
both sublattices are directed in one sense (ferromagnetic or- 
dering). We further suppose that this region is surrounded 
by a layer in which the tail of the wave function describing 
the hole in an antiferromagnetic surrounding is nonzero. 
The second sublattice interacts with the hole by means of 
two-spin excitations; that is, excitations connected with the 
reversal of spins of sublattices A and B. Inside the ferromag- 
netic region, the single-plaquette approximation4 for the 
wave function is used, with an envelope that determines the 
shape of the polaron for a potential well of the oscillatory 
type. The tail of the wave function of the Nkel background is 
described by a decaying exponential, which corresponds to 
the usual behavior of a function outside a well of finite depth. 
Therefore, we finally obtain for the trial function the expres- 
sion 

a a  + a )  + - - 4 ,-. ~~a~ j bj+zy-zybj+2*-zy) J 1 G). 
w'a 

The operators b f acting on the state IG ) reverse the 
spin on site j. The vectors j in Eqs. 5 and 6 are normalized to 
the lattice constant of A ( 2 n a  ); the parameters x ,  and x,  
determine respectively the shape of the function in the ferro- 
magnetic region and the rate of extinction of the wave func- 
tion tail in the antiferromagnetic background, with 
xi = 2R *x, . The function $is normalized to unity; the nor- 
malizing constant is equal to 

where the parameter B is proportional to the number of 
boundary spins of the region R: 

p='/,zj~,, g,- (I~/NR) '~x~ exp(-x2) [ (I-exp(-xZ) ] -l - (n/NR)'"E(x), (8 

(x, xz) ='/,g (5) exp (-212) (1+2Rxz) (Rxz) -' 

We note that in the Nee1 environment the second sublattice 
(B) is affected due to two-spin excitations in $,, created 
locally by the oxygen hole. The values entering in Eqs. (4)- 
(9) are determined by the conditions for minimum energy. 

The average value of the Hamiltonian in the state of Eq. 
(4)  is equal to 

" + 1+2 [ " ] ' I 2 }  +g, (x,) 
l+a? 

In the expressions cited, E~ and E, describe the contri- 
butions from states formed by the hole on a uniform ferro- 
magnetic or antiferromagnetic background. For small val- 
ues of J, when, as follows from the criteria above, 
destruction of the large-radius spin polaron takes place, we 
find values of the constants z, , a,, zf, af by minimizing the 
energy for a uniform ferromagnetic or NCel spin orientation. 
This goes along with the single-plaquette appr~ximation.~ 
We obtain finally, for the constants given, the values 
a, = 0.57, z, = 0.82, zf = 0.46 and af = 1. The value of the 
energy E/ = - 5.18 agrees with the result in Ref. 4 and 
E, = - 3.32; E~ is the exchange energy, in which the largest 
term in NR is kept. The term E,  owes its origin to the pres- 
ence of the boundary around the ferromagnetic region, while 
a ,  and a, describe bulk effects connected with the form of the 
polaron wave function. The value of p, (x2) in Eq. ( 15) is 
determined as follows: 
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where 

The equation that determines x,, following from the 
condition that E be optimized, has the form 

where 

u = Rx,, a, ( u )  = 3.39 - 0.7 P,(u)/3, (P l (0)  z 3 ) ,  and 
~ ( X , U )  is determined in Eq. 9. 

All the numerical coefficients are obtained taking ac- 
count of the values cited above for the parameters zOJ and 
ao f .  The value of 6 is a sum of terms connected with the 
surface energy [the term in PI in Eq. ( 15) ] and the kinetic 
energy [Eq. ( 13) 1. Here, S = 0.44. 

A feature of Eq. (17) is that it always has a positive 
solution for  independent of NR and x) ,  which decreases 
with a decrease of the function w (x,u) . This last is the energy 
which determines the well depth for a state described by the 
tail of the wave function of Eq. (6).  As o (x,u ) - 0, such a 
state becomes delocalized and x,-0. A similar behavior of 
the solution, in fact, follows from Eq. ( 17). For u $1, when 
almost all the wave function is concentrated inside the disk 
of radius R, we get the following expression: 

u2=4NR(0 ( x ,  m) ln6, (19) 

which decays with a decrease in w (x, oo ); that is, the region 
outside the disk, where $, #0, growy. The value of u has 
been expressed in terms of the natural parameter 
NR w = TR 'w, the effective well depth for a state described 
by $, . Destruction of the polaron is connected with this pa- 
rameter tending to zero (while R #O). If w (x,u) -0, then 
Eq. ( 17) yields a solution with u -0: 

u= (8Ndn6) E-' (x) o (x, 0) , Nno (x, 0) < 1. (20) 

Since as u - 0 the function 6 grows (tends to co ), then 
due to the normalization condition the ferromagnetic part of 
the wave function decreases and, correspondingly, $, in- 
creases; that is, the destruction of the large-radius spin po- 
laron in fact takes place. 

Minimizing the energy in x and N R ,  we obtain equa- 
tions that determine the forms and dimensions of the ferro- 
magnetic region: 

FIG. 1. Dependence of the radii of the ferromagnetic region ( R ,  curve 1 ) 
and the ferromagnetic state (L, = 2"* R  / x ,  curve 2 )  on the exchange 
constant J / t .  The dashed line shows the qualitative dependence of the 
parameter Lo a u ' on J / t ;  J, = 0.023. Values on the vertical axis are 
expressed in units of the lattice constant. 

where 

Zf e,+eag el (u) = [a, (u) +---I ( n ~ , )  ". 
2 1+E 

Letting the effective well depth N, w go to zero, we deter- 
mine the critical value J, at which destruction of the large- 
radius ferromagnetic polaron takes place, having solved in 
this limit Eqs. (21 ) and (22), together with the condition 
W ( X , U )  = 0. Let us consider that for u -0 

el (0) = [a. (0) +'lzzfe,l (nN,) '" 

(a, (0)  = 2.7) and having substituted in Eqs. (21) and (22) 
the numerical values of the parameters Z , ~ ,  aaJ, E,, and E ~ ,  
we find numerically the value of J, (in units o f t )  and the 
values of N', = rrR f and xf corresponding to it. We finally 
obtain J,  = 0.023, xf = 2.2, and N, = 9.1. 

The radius of the hole state in the antiferromagnetic 
region, Lo a u - '  , grows without bound. In the figure we 
present the variation of radii of the ferromagnetic state 
L, = GR /x and of the ferromagnetic region R obtained by 
solution of Eqs. (21) and (22) as a function of J / t .  The 
dashed line describes the qualitative behavior ofL, as J- J,  . 
The value of J, found for a choice oft -- 1 eV corresponds to 
a value J=. 200 K, which is far below the exchange constant 
characteristic for a HTSC, and also below the value 
Jc/t=.0.25 obtained in Ref. 6 on qualitative grounds. 

Thus, the analysis carried out shows that in the Emery 
model, due to the possibility of penetration of a hole into the 
antiferromagnetic region, it can turn out to be more favor- 
able, for J >  J,, to form a delocalized hole state with spin 
reversal on the copper ions than to preserve a large-radius 
ferromagnetic polaron, which is linked to a loss of exchange 
energy. We must note that in the absence of such a mecha- 
nism the polaron could still exist. The gain in surface energy 
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leads to a gradual spreading of the wave function of Eq. (6) 
in the NCel region. The estimates obtained show that the 
region of values of J for which a large-radius spin polaron is 
possible is significantly narrower than in the Hubbard mod- 
el. Therefore, just as in the latter, in the Emery model, appar- 
ently, different types of bound states are po~sible .~ 

The authors are grateful to I. I. Glazman for discussion 
of the work and valuable critical comments. 
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