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The rate of free polarization decay has been calculated exactly as a function of the saturating field 
under conditions of uncorrelated frequency migration along the biLorentzian profile. The limits 
of applicability of results obtained by means of perturbation theory (valid in the limit of rapid 
frequency modulation) have been determined. It is shown that the exact theory can describe the 
experimental data of Ref. 9 if the modulation is assumed to be slow. 

INTRODUCTION 

Of late, a large number of theoretical publications have 
dealt with the effect of a strong field on the processes of 
relaxation of two-level systems (TLS).'-a The impetus for 
this research was an experiment carried out by DeVoe and 
B r e ~ e r , ~  who measured the rate of free polarization decay 
(FPD), after the saturating variable field was turned off, as a 
function of the amplitude of this field. 

The sample used was a crystal of LaF, with Pr3 + impu- 
rity. The 3H,-'D2 transition which they studied between the 
electronic states of trivalent praseodymium in lanthanum 
trifluoride exhibits a marked inhomogeneous broadening 
(2.5 GHz) (Ref. 4) due to dispersion of the crystal field. 
Magnetic interaction with fluorine nuclei also leads to inho- 
mogeneous broadening of the spectral lines, but its width is 
considerably smaller, and therefore, the broad inhomogen- 
eous profile is assumed to be broken up into a collection of 
packets. Reorientation of the nuclei, which leads to a change 
in the local fields around the ions, causes modulation of the 
transition frequency or spectral exchange within a packet. 
Rapid exchange transforms the latter into a homogeneous 
line with a width equal to the rate of phase relaxation. The 
FPD rate was assumed to be similar after saturation in rapid 
exchange. However, it was found experimentally that this 
rate is markedly suppressed as the field increases. This field 
dependence of the FPD rate sharply contradicted the calcu- 
lated rate obtained from the Bloch equations. There were 
good reasons to doubt the inapplicability of these equations 
to the description of the interaction of a strong field with a 
TLS, even if the latter was inhomogeneously broadened. 

As an alternative, perturbation theory (PT) for ran- 
dom frequency detuning ~ ( t )  has been used in the majority 
of studies to account for the effect. This theory holds exactly 
in the rapid modulation (homogeneous broadening) limit if 
there exists a finite second moment 2 = d such that 
q2 = d *T: < 1 (rO being the frequency correlation time). 
Perturbation theory makes it possible to describe the effect 
of suppression of homogeneous broadening by a field, but 
the authors obtained quantitative agreement with experi- 
ment by setting q2 = 0.6-1.1, which places PT at the edge of 
applicability. On the other hand, it is not certain that the 
exchange is in fact rapid. According to Ref. 8, q2 = 11.5. In 
view of this fact, it is necessary to determine whether the 
suppression effect takes place in slow exchange (in a quasi- 
static situation). This can only be done by turning to an 
exact theory free from the limitations of PT. 

Such a theory is that of sudden mod~lation,'~." which 
makes it possible to find the average response of a TLS to a 
purely discontinuous Markovian noise, which ~ ( t )  will 
henceforth be assumed to be. Such a perturbation changes 
abruptly at successive instants of time obeying a Poisson dis- 
tribution, while remaining constant in the intervals between 
them, the average duration of which is equal to 7,. For sim- 
plicity the discussion will be confined to the special case of an 
uncorrelated process. This case is characterized by the fact 
that the values of E before and after the discontinuity are 
independent and distributed in accordance with equilibrium 
distribution p ( ~ ) .  These statistics are determined by the 
shape of the frequency packet, which is usually assumed to 
be Gaussian. Actually, the distribution is Gaussian if the 
spin environment of the ions is close-packed and can be 
transformed into a Lorentzian shape in a magnetically dilute 
system. l 2  

In the present work, therefore, we shall model the situa- 
tion by using a biLorentzian distribution, which makes it 
possible to obtain an analytic solution for the FPD signal. 
Like the Gaussian distribution, it has a finite second mo- 
ment, which makes it possible to apply PT to it and then 
compare the result with the exact solution. On the other 
hand, the biLorentzian distribution contains as a special case 
the Lorentzian distribution, to which PT is not applicable at 
all, since its dispersion is infinite. In this case, the exchange 
can also be slow or rapid, but it is never weak in the sense of 
perturbation theory."~'~ Knowing the exact solution, we 
can use this example to ascertain the legitimacy of another 
approximate calculation of FPD, which holds over a wider 
range. 

The main conclusions of the present work consist in the 
following: (a )  PT appreciably exaggerates the FPD rate in 
low fields even when q2 = 0.5; (b)  agreement between the 
exact calculation and the experimental data for LaF3:Pr3 + 

is reached at values q = 2-4, i.e., in the region of slow ex- 
change, where PT is not applicable at all. 

METHODS OF CALCULATION OF THE FPD SIGNAL 

We shall consider the interaction of a single impurity 
ion, represented by a TLS, with a monochromatic wave 
29 = E, exp(iot). The latter causes transitions between the 
TLS levels, whose frequency 

is a stationary random variable; its mean value o, and detun- 
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ing distribution p ( ~ )  are conserved in time. In a coordinate 
system rotating together with the field, the TLS density ma- 
trix satisfies a Liouville kinetic equation of the form 

x=- ( z O + i ~  ( t )  z1)x+A, (2)  

where 
1/T, - iz 0 - i w / 2  

- iw iw 

the time being chosen in units of r0; z = (w, - w)r0 is the 
frequency detuning in units of T; I ;  6( t )  = &(t)rO;  w = xr0; 
x is the Rabi frequency; n =p2, - p I  I is the difference 
between the level populations (E2 >El ); u12 = uTl 
= p12 exp( - iwt); TI, and T, are the - longitudinal and 

transverse relaxation times in units of r0( T , , ,  = TI,, /ro). 
After the field is switched off (w = 0) ,  Eq. (2 )  is easily 

integrated, but its solution should be averaged over the real- 
ization of the random process {(t); 

t 

The angular brackets and bar in Eq. (3)  denote this averag- 
ing; a;, is the initial polarization, produced by the action of 
the saturating field. This polarization is determined by the 
stationary solution of Eq. (2)  for w#O. To determine the 
FPD signal, it is necessary to perform the averaging G ( t )  
over a wide nonuniform frequency distribution @ (z). Con- 
sidering that the dispersion of the distribution @ ( z )  is much 
greater than the saturation region, we shall assume 
@ ( z )  = QO = const. Then the signal shape will be given by 
the 

Usually, in the determination of R( t ) ,  one neglects the 
correlation of the TLS frequency fluctuations before and 
after the field is switched off. This makes it possible to decor- 
relate, u;2 and the exponential in Eq. (3)  and average them 
separately. Then the formula becomes much simpler: 
- 
G I ,  ( t )  =o,,"~(t) exp {(iz-1/2'2) t ) ,  ( 5 )  

where 

K ( f )  = (exp{i 5 g ( t f )  d t ' ) )  
0 

is the correlation function of the frequency modulation. 
Thus the problem reduces to calculating K( t )  and the aver- - 
age stationary value a h .  

Only perturbation theory for a fluctuating frequency 
has been used for this purpose thus far.'-' However, this is 
entirely optional; both K( t )  and a;, can be calculated ex- 
actly. By using them in the decorrelated equation ( S ) ,  one 
can hope to extend the scope of applicability of the approxi- 

mate results. We shall return to this question below, but first 
consider a rigorous method of calculating the FPD. 

UNCORRELATED MARKOVIAN FREQUENCY MODULATION 

If the TLS frequency is modulated by a purely discon- 
tinuous, stationary Markov process, then according to the 
sudden modulation theory the averaging in Eq. (3)  may be 
represented as follows: 

whereK(6,t) and a h  ( 5 )  are partial or conditional averages, 
whose argument for t = 0 is identical with and equal to 6. 
For the Laplace transform a,,(p) we obtain from Eq. (6)  

According to Ref. 17, for the Laplace transform of a partial 
function of frequency modulation we have 

where t ,  = 1 + I/?,. 
Substituting K(6,p) into Eq. ( 7 ) ,  we find 

To determine the stationary value of a,", (0, we use the 
kinetic equation for the density matrix, obtained in the theo- 
ry of uncorrelated sudden mod~la t ion , '~  which can be writ- 
ten in the form 

h A  * 
where L = Lo + 1. Setting X(6,t) = 0, we find 

h h 

where 2 (6) = [L + i lL,  ] - . Hence for the average sta- 
tionary elements of the density matrix we obtain 

where (2) = j p ( f ) P ( l ) d g .  Using Eqs. (10) and ( l l ) ,  
one can find the following relationship between the station- 
ary "partials" and averages: 

Eliminating z, from Eqs. ( 11 ) and ( 12), we recover the 
result found in Ref. 6. 

Using the explicit form 2 (g), we obtain 
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where the following notation was used: 

For the average stationary values we obtain from Eq. 
(11) 

Equations (8), (13), and (14) were obtained for an 
arbitrary form of the equilibrium distribution ~ ( 6 ) .  They 
determine the general solution of the FPD signal, valid for 
any field strength and any frequency modulation rate. To 
obtain the explicit form of the FPD signal, it is now neces- 
sary to turn to specific equilibrium distributions p(g). 

BILORENTZIAN EQUILIBRIUM DISTRIBUTION 

If, as was done in Ref. 6,  a Gaussian profile is chosen for 
p(g), difficulties arise in inverting the Laplace transform - 
a,, ( p )  and in further integration with respect to z, needed 

in Eq. (4).  To obtain an explicit analytic solution, we pro- 
pose to use the so-called biLorentzian distribution: 

The second moment of this distribution is 

and its tails fall as f - ' . By applying the calculation method 
discussed above, we shall be able to compare the results ob- 
tained with those of PT and determine the limits of applica- 
bility of PT. In addition, such a distribution makes it possi- 
ble to pass in the limit b-  co to the Lorentzian distribution 

Since the latter has no second moment ( = cc ), PT is not 
applicable to it, i.e., the frequency perturbation should not 
be considered small anywhere. 

For the distribution ( 15) we obtain 

For the Laplace transform G(p), determined in Eq. (8), 
we obtain 

- 1 - 
o,, ( p )  = K ( P ) ~ ' - K '  (~1F-r ( P )  a', ( 17a) 

where 

p-iz- (p,+p2- l /Ta )  
K ( p ) =  (p-iz-p,+llT,) (p-iz-p2+llT2) ' 

Performing an inverse Laplace transformation, we find from 
Eq. (17a) 

1 
K ( t ) = -  [pi exp (p2t) -pz exp (p i t )  I ,  

Pi -P2  
( 1 8 ~ )  

~ ( t )  = - P ' P 7 e x p  (pat)  - exp (p i t )  I .  
P i -Pz  

Only the first term in Eq. (18a) reproduces the decorrelated 
equation (5)  exactly. The remaining terms allow for the cor- 
relation of the frequency fluctuations before and after the 
saturating field is switched off. 

Free from the limitation of PT, we can use Eqs. ( 18) 
directly in Eq. (4). Thus for the FPD signal we obtain the 
final expression 
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where 

X 
R.= (a+b) ( i  - +) [ a b  +- ( r + a + b ) / ~ . - c  1, (21e) 

t  2 

1 
~ i ( t )  =Re{- 1% exp ( iz2t)  -2, exp(iz , t )  ] , 

21-Zz 
} (22a) 

~ , ( t )  =lm{= [ e rp  ( [ z i t )  -exp(iz f) ] }, 
zi-zz 

(22b) 

Considering that q2 = ab, we can write the result of the 
perturbation theory' as follows: 

R ( t )  - - z n ( 9 0  exp{-  ( q 2 + 1 / ~ a )  t ) [ A i x t  ( t )  +Aaxa( t )  1, 
2 

where 

1167 Sov. Phys. JETP 69 (6), December 1989 

[ z i  exp (-z i t )  -z2 exp (-zat)  1, Ba>4C, 
21 [cos (z,t) + -sin (Z4t) ] , Ba44C,  
2 4  

LI 
[exp ( - z i t )  -exp (-z2t)  1, B2>4C, 

zt-za 
Kz ( t l=  I - ",,, 

b .- 1 - ~ , e x ~  ( - ~ s t )  sin ( z4 t ) ,  B2<4C, 

Expression (25) is obtained from the decorrelated equation 
( S ) ,  when for and K(t) ,  their approximate estimates 
from perturbation theory' are used. However, if the exact 
expressions for K( t) and a;',, determined in Eqs. ( 18c) and 
(17a), are substituted into Eq. ( 5 ) ,  we obtain for the FPD 
signal 

(the time is given in units of T, throughout). It will be shown 
below that the range of applicability of this result is wider 
than that of the result of PT. 

LORENTZIAN EQUILIBRIUM DISTRIBUTION 

As noted above, a Lorentzian distribution is of interest 
because in this case the PT (q2 = co ) cannot be constructed. 
At the same time, the exact solution of the problem exists, 
and it can be obtained by carrying out the passage to the limit 
b-  ~4 in the general expressions ( 19)-(24). For the signal 
shape we find 

R ( t )  ==Ro exp{-  (l/Ta+a+F) t }  

where 

The correction term in Eq. (27) allows for the correla- 
tion in the motion of the system before and after the field is 
switched off. If such a correlation did not exist, the initial 
condition created by the stationary preparation of the sys- 
tem would reproduce the detuning equilibrium distribution, 
and the method (5)  would become valid. In this case, letting 
the parameter b in Eq. (26) approach infinity, we obtain 

R ( t )  =Ro expl- (1/T2+a+F)t) .  (28) 

Actually, as is evident from the solution (27) ,  the FPD sig- 
nal is described, in general, by not one, but two exponentials 
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with different weight factors. 
A special or degenerate case is that of equal rates, i.e., 

In this case it is easy to obtain from Eq. (27) 

A simple analysis shows that for the characteristic decay 
times ( 1/T2 + a + F )  - ' the correction in this expression 
remains < 1 for any parameter values, i.e., expression (28) is 
correct. 

From the condition (29) one can readily obtain the fol- 
lowing expression for the curve separating the regions of 
monoexponential and biexponential solutions: 

The approximation 1 was used here. For 
a + F< 1 + x, the correction term in Eq. (27) damps out 
faster than the main term, and in addition, its amplitude 
II/( 1 + x - a - F )  is small. Neglecting the correction 
term, we find that the decay proceeds exponentially, in ac- 
cordance with expression (28). 

For large a, when a + FS 1 + x ,  the time scale is divid- 
ed into two regions by the point t = t,. In each of these re- 
gions, the solution can be considered to be approximately 
monoexponential (see Fig. 1 ) : 

The quantity t, is determined from the condition 

Ro expi-  ( l /Tz+a+F) t ) ,  t a b t  

FIG. 1. Time dependence of FPD signal for an ensemble of Lorentz pack- 
ets for Cifferent values of the saturating field: 1-w = 0.45, 2-w = 4.5; 
a-30, T,  = 22.55. 

R ( t ) -  

under which the correction term in Eq. (27) is equated to 
unity. For t ,  - ' < a  + F, the correction term can be neglect- 
ed, and the solution is in the form of Eq. (3la) ,  which is the 
same as Eq. (28). In the opposite case, in the range r < t ,  , no 
appreciable relaxation takes place, and practically all of it 
develops in accordance with the law (3lb).The boundary 
between these situations is determined by the curve 

r b - ' = a + F .  

Taking this condition and the value for t, into account, we 
obtain the following relationship for determining the bound- 
ary between the regions: 

(3  la)  
e x p { - - ( 1 / T 2 + ~ + x ) t ) ,  t~ *,. 

F+a- lFx  (31b) 

Thus in the case of a Lorentzian distribution of the ran- 
dom frequency of a TLS, the calculation method based on 
uncoupling is valid if the relation a/?, < x  holds. If 
a/F, > x, it is necessary to take into account the correlation 
of the frequency change before and after the field is switched 
off. 

INTEGRATED RATE OF FPD 

It is evident from the above discussion that in general, 
the relaxation of free polarization is nonexponential. In this 
connection, a difficulty arises in the determination of the 
decay rate, which is equivalent to the damping rate of mono- 
exponential kinetics. This difficulty can be circumvented by 
introducing the integrated rate, defined as follows: 

y=R(t=O) / ( 5  J ~ ( t ) d t )  
0 

= [n lim z ~e,.'+ Sdz 1m Z ]  /(r. Im I d z ~ ( p - 0 )  ). 
2- - 

Returning to the biLorentzian profile, for which expressions 
( 17) and ( 19) are valid, we obtain 

FIG. 2. Field dependence of integrated rates of FPD for q' = 0.5, 
T ,  = T,/2 = 45.1; dashed curve-perturbation theory; dot-dash curve- 
according to the decorrelated method based on uncoupling; continuous 
curve--exact calculation (a = b ) .  
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y /2a ,  kHz 

FIG. 3. Same as in Fig. 2, for q2 = 25, PI = P2/2 = 22.55. 

o L l l l l l l l l l L  

L? d /2 /6 20 24 28 32 36 4 1  
x / 2 n ,  kHz 

FIG. 5. Comparison of the field dependence of FPD rate with experiment: 
dashed curve-Bloch theory, continuous curve--exact calculation 
( a  = b): 1--q = 2, T" = 20psec; 2-9 = 3, T,, = 29psec. k x p e r i m e n -  
tal data of Ref. 9, TI = 0.5 psec. 

+pipzRd ( tz+x)  ]Fa)-', 

where 

(34) From the calculation according to the perturbation the- 
ory (25) we obtain according to Eq. (33) 

a= ( t ,+a+b) l~ ,+ab ,  p = ~ / ~ ~ + t ~ . + a + b ,  Figures 2 and 3 compare the field dependence of the 
Fo=a ( a + B , )  + p  (2C,'"+B,)'" (a+Ci") +C,Ih (pZ+CiU) . integrated rates, calculated by the three methods indicated 

above. It is evident that in general, calculation of FPD signal 
If Eq. (26) is used to calculate the FPD signal, the integrat- from perturbation theory is already inapplicable when 
ed rate is q2 = 0.5, since the integrated rate y'2' is equal to almost 

twice the exact value of y in low fields (Fig. 2). As the field 
increases, the differences between yC2' and y decrease, since 
in strong fields, PT becomes valid again.IR 

On the other hand, the method of calculation of the 
integrated rate and signal of FPD using the decorrelated 
formula is valid both in the PT region and beyond its con- 

y(O'r0 / 2  fines at moderate values of q (see Fig. 3). 

- - -  .,. . 
parameter q: TI = 17.32; dot-dash curve-perturbation theory, dashed in'& case, for specific values of q, the magnitude of yo is 
curve-according to the decorrelated method, continuous curve-exact 
result ( a  = b). The value of q varies in the range from 0 to 120 ( a )  and uniquely determined from the relation y(0)ro (see Fig. 4). 
from 0 to 3 (b). Figure 5 shows theoretical curves obtained for different val- 

J 
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'I a COMPARISON WITH EXPERIMENT 
' I  

I In the literature, the results of the experiments of Ref. 9 

'{ were interpreted mainly in the framework of perturbation 
theory. It was thus found that satisfactory agreement of the- 
ory and experiment is obtained at values of the parameter q2 
that are too high for perturbation theory: In Ref. 2, this 
quantity ranged from 0.7 to 1.1, and in Ref. 1, it was assumed 
to be 0.6. As follows from the above analysis, the agreement 

1 - between theory and experiment thus obtained is insufficient- 
ly reliable. To explain the experimental results, it is neces- 
sary to use the exact theory, or, at moderate q, its decorrelat- 

I ' J; ' ;o ' ;o ' ,;o 
4 ed variant (see Fig. 4).  

In the adjustment, it is convenient to use the value of 
FIG. 4. Rate of FPD is zero fields ( y  = 0) as a function of narrowing y ( y  = 0)  obtained by extrapolation of experimental points. 



ues of q and r0. Good agreement with experiment was ob- 
tained for q = 2-3. The value of y(0) /27r  was taken to be 16 
kHz. From the relation y(0)7,/2 = 0.9 for q = 2 and 
y ( 0 ) 7 d 2  = 1.3 for q = 3 [see Fig. 4b], the values .r0 = 20 
psec and To = 29 psec, respectively, were determined. Note 
that a numerical calculation of the field dependence of FPD 
rate when the frequency migration has a diffusional charac- 
ter gives similar parameter values.I9 If such agreement is 
assumed satisfactory, it is necessary to recognize that the 
frequency modulation is slow, and that one cannot avoid 
turning to a theory which is an alternative to perturbation 
theory. 

'P. A. Apanasevich, S. L. Kilin, A. P. Nizovtsev, and N. S. Onischenko, 
Opt. Commun. 52,279 (1984). 

'M. Yamanoi and J. H. Eberly, J. Opt. Soc. Amer. B 1,751 (1984). 
'K. Wodkiewicz and J. H. Eberly, Phys. Rev. A 32,992 (1985). 
4A. Schenzle, M. Mitsunaga, R. G.DeVoe, and R. G. Brewer, Phys. Rev. 
A 30,325 (1984). 
5E. Hanamura, J. Phys. Soc. Jpn. 52,3678 (1983). 

6P. R. Berman and R.G. Brewer, Phys. Rev. A 32,2784 (1985). 
7E. G. Pestov, Tr. Fiz. Inst. Akad. Nauk 187, 60 (1988). 
'A. R. Kessel', R. N. Shakhmuratov, and L. D. Eskin, Zh. Eksp. Teor. 
Fiz. 94, No. 10,202 (1988) [Sov. Phys. JETP 67,2071 (1988)l. 

9R. G. DeVoe and R. G. Brewer, Phys. Rev. Lett. 50, 1268 (1983). 
''A. I. Burshtein, Quantum Kinetics, NGU, Novosibirsk ( 1968). 
"A. I. Burshtein, A. A. Zharikov, and S. I. Temkin, J.  Phys. B 21, 1907 

(1988). 
''A. Abraham, Nuclear Magnetism, Clarendon, Oxford (1961) [Russ. 

transl., IIL, Moscow ( 1963) 1. 
13A. I. Burshtein, Chem. Phys. Lett. 83, 335 (1981). 
I4A. I. Burshtein, S. G. Fedorenko, and A. Yu, Chem. Phys. Lett. 100, 155 

(1983). 
I5R. Shoemaker in Laser and Coherence Spectroscopy, J .  Steinfeld (ed. ), 

Plenum, New York ( 1978) [Russ. transl., Mir ( 1982) 1. 
16 R. G. Brewer, Nonlinear Spectroscopy, N. Blombergen (ed.), Elsevier- 

North Holland, New York (1977) [Russ. transl., Mir, Moscow 
(1979)l. 

I7A. B. Doktorov and A. I. Burshtein, Zh. Eksp.Teor. Fiz. 63,784 ( 1972) 
[Sov. Phys. JETP 36,411 (1973)l. 

'"A. I. Burshtein and V. S. Malinovsky, J. Opt. Soc. Amer. B (in press). 
I9J. Javanainen, Opt. Commun. 50,26 (1984). 

Translated by Adam Peiperl 

11 70 Sov. Phys. JETP 69 (6), December 1989 


