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A calculation is reported of the spectrum of spin waves in liquid and liquid-crystal ferromagnets. 
It is shown that at long wavelengths the damping of spin waves is due to fluctuation effects and in 
the exchange approximation is proportional to k' (k  is the wave vector). This dependence of the 
spin wave damping on the wave vector gives rise, in turn, to logarithmic corrections to the 
viscosity of a liquid or  a liquid crystal. Examples of ferromagnetic nematics and smectics are used 
to analyze the role of the relativistic effects which modify both the real and imaginary parts of the 
spin wave dispersion law. The relativistic effects in a ferromagnetic nematic result, even in the 
linear approximation, in the coupling of spin waves and oscillations of the director modifying 
radically the If mode spectrum. 

1. INTRODUCTION 

Liquids found in nature do not have any magnetic order 
and, therefore, interact very weakly with a magnetic field. 
On the other hand, the ability to control the flow and other 
properties of liquids by a magnetic field is very attractive in a 
number of different technical applications, which has stimu- 
lated attempts to synthesize magnetic liquids. Although 
there are no fundamental reasons why such liquids should 
not exist, all the attempts so far have been unsuccessful. 

However, for over 30 years it has been known that mag- 
netic liquids can be formed from colloidal solutions of ferro- 
magnetic particles in suitable carrier liquids; the properties 
of such ferromagnetic liquids are reviewed in Ref. 1. Similar 
systems composed of liquid crystals have recently become a 
subject of The main shortcoming limiting possible 
applications of magnetic colloids is their instability, with a 
tendency for ferromagnetic particles to coagulate forming 
large nodules which settle rapidly under the influence of the 
force of gravity. Therefore, it is in practice possible to form a 
long-lived ferromagnetic colloid only if the particle concen- 
tration is low and, consequently, the magnetic susceptibility 
of such liquids is low. Special methods for the stabilization of 
colloids' have made it possible to reach susceptibilities of the 
order of lop2-lo-',  which are still much less than typical 
values of the susceptibilities of solid ferromagnets. 

In view of this situation, we shall ignore colloidal sys- 
tems. We concentrate our attention on the noncrystalline 
state with an intrinsic long-range magnetic order. The hope 
for experimental realization of such a state has come from 
the major progress made in the synthesis of paramagnetic" 
and metal-organic4 liquid crystals. The present authors re- 
cently became aware of a preliminary report of the discovery 
of magnetic ordering in a nematic. There is therefore hope 
that some liquid-crystal (and possibly liquid) magnetics will 
be synthesized in the nearest future. 

This situation makes it a pressing task to formulate the 
problem of the properties of such systems. We shall consider 
ferromagnetic liquid crystals. Properties of liquid-crystal 
antiferromagnets are also very interesting. However, the lat- 
ter substances have a number of special properties and 
should therefore be considered separately. 

In  our opinion, the present state of the experimental 
data makes premature any consideration of the various 
mechanisms of ferromagnetic ordering in liquid crystals or 
of related problems in microscopic theory. The various pos- 
sibilities are in principle so numerous that their considera- 
tion without an analysis of specific experimental results is 
hardly useful. I t  is better to consider general phenomenolog- 
ical properties of liquid-crystal ferromagnets independently 
of any specific microscopic mechanisms and structure de- 
tails, but governed by the very existence of magnetic and 
liquid-crystal ordering. I t  is the purpose of the present paper 
to consider such phenomenological properties. 

The combination of both types of ordering is manifested 
most strikingly in the dynamic properties of liquid-crystal 
ferromagnets. I t  is known that in the ferromagnetic state a 
substance has a spontaneous magnetization characterized 
by a dynamics investigated many years ago by Landau and 
Lifshitz.' The existence of weakly damped spin waves in a 
ferromagnet is related to oscillations of the spontaneous 
magnetization direction. In  particular, we shall study the 
characteristics of the spectrum of spin waves associated with 
the liquid-crystal nature of the state of these ferromagnets. I t  
will be necessary therefore to formulate a system of dynamic 
equations for the magnetic and other soft degrees of free- 
dom, typical of a liquid crystal. An investigation of this com- 
bined system of equations shows that the linearized equation 
for the magnetization describing spin waves in the exchange 
approximation becomes separated from the other equations 
of the system. Linear coupling of spin waves to other modes 
appears only if we allow for the relativistic terms, which may 
result in a drastic modification of the If mode spectrum. 

The law of conservation of spin, considered in the ex- 
change approximation, means that the inherent damping of 
spin waves in a ferromagnet is anomalously weak. We shall 
demonstrate that in the case of a liquid-crystal (or liquid) 
ferromagnet there is a contribution from thermal fluctu- 
ations to the spin wave damping which exceeds the inherent 
damping. This thermal contribution is due to a nonlinear 
interaction of spin waves with viscous modes. In the case of a 
nematic it is necessary to allow also for the interaction of 
spin waves with orientational modes associated with relaxa- 
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tion of the director. This fluctuation effect is absent in solid 
ferromagnets, because of the absence of soft diffusion modes 
mentioned above. 

The present paper is organized as follows. The second 
and third sections deal with a liquid ferromagnet. The anom- 
alous fluctuation contribution to the spin wave damping as- 
sociated with viscous modes is calculated in Sec. 2. The loga- 
rithmic corrections to the viscosity associated with 
fluctuations of the magnetic degrees of freedom are calculat- 
ed in Sec. 3. 

The results obtained for a liquid ferromagnet are gener- 
alized in Sec. 4 to a liquid-crystal ferromagnet. In the ex- 
change region an allowance for the anisotropy of a liquid 
crystal makes the final expression more cumbersome but 
does not alter the results qualitatively. The fluctuation con- 
tribution to the spin wave damping associated with orienta- 
tional modes is calculated in this section. 

Next, Secs. 5 and 6 deal with the role of the relativistic 
terms by considering the examples of ferromagnetic nema- 
tics and smectics. In a ferromagnetic nematic there is an 
interaction between spin waves and orientational modes 
even in the linear approximation, which leads to a drastic 
modification of the If spectrum. This situation is even less 
trivial in the case of ferromagnetic smectics because linear 
coupling of modes or fluctuation effects may be important, 
depending on the direction of the wave vector. 

The results are summarized in Sec. 7 and possible ex- 
perimental consequences are discussed briefly. 

2. SPIN WAVE SPECTRUM OF A LIQUID FERROMAGNET 

In this and the following sections we consider a liquid 
ferromagnet. It represents a system which can be described 
by a simple model that can be used to study the main features 
ofthe dynamic effects of interest to us. Therefore, an analysis 
of a liquid ferromagnet is justified at least from the method- 
ological point of view. However, we must stress that such 
ferromagnets are of interest for their own sake. 

We describe the spontaneous magnetization direction 
by a unit vector m. An inhomogeneity of the vector m is 
associated with a gradient energy which can be written in the 
form 

rn 

Here, T is the absolute temperature and g is a certain con- 
stant representing the intensity of fluctuations of the vector 
m. 

The following nondissipative equation for the vector m 
can be derived from the Landau-Lifshitz equation6: 

am - = -vvm+V [Am, Vml. 
at  

The right-hand side of Eq. (2)  allows for what is known as 
the convective (or drift) term ( v  is the velocity). This term 
is shown to play an important role later. The coefficient A on 
the right-hand side of Eq. (2)  can be expressed in terms of 
the parameters of a ferromagnet: 

where So is the modulus of the spin density related to the 
spontaneous magnetization by the gyromagnetic ratio. 

Linearization of Eq. (2) with respect to deviations of 

the vector m from the equilibrium homogeneous value yields 
the dispersion law of spin waves: 

Here, w is the frequency and k is the wave vector. There is no 
damping in the dispersion law of Eq. (4)  since the law was 
derived using the nondissipative equation. A dissipative 
term must be included on the right-hand side of Eq. (2)  in 
order to calculate the spin wave damping. 

An analysis allowing for the law of conservation of spin 
(valid in the case of a liquid because of its isotropy) shows 
that the regular damping of spin waves is proportional to k4 
(see, for example, Ref. 7 ) . The same result follows also from 
a microscopic theory given in Ref. 8. This means that the 
spin wave damping in a ferromagnet is very weak. Therefore, 
the effects associated with fluctuations of the vector m are 
important in a crystalline ferromagnet. These effects are 
considered in Ref. 7 by one of the authors of the present 
paper. 

It will be shown below that in the case of a liquid ferro- 
magnet such fluctuation damping is much stronger than the 
inherent damping so that we can ignore the latter. 

The fluctuation contribution to the spin wave damping 
can be calculated conveniently using a diagram technique 
proposed by W ~ l d . ~  We shall employ a generalized variant of 
the method proposed in Ref. 10 (see also our monograph 'I). 
A procedure for deriving the effective action I from macro- 
scopic dynamic equations, which then leads to the required 
diagram technique in accordance with the standard rules 
used in field theory, is proposed in Refs. 10 and 11. 

In this way Eq. (2)  yields the following contribution to 
the effective action: 

Here p is an auxiliary Bose field which is subject to an addi- 
tional condition 

The correlations of the physical quantities are found as func- 
tional integrals with respect to the fields of m and p with a 
weight exp(i1). 

We shall assume that under equilibrium conditions the 
unit vector m is directed along the z axis. Its deviation from 
equilibrium is described by components m, of the vector m 
along the x and y axes. It follows from the condition (6)  that 
the vector p has two independent components and it is con- 
venient to select these componentsp,, along the same axes x 
and y. 

We are interested in the correlation function 

The inherent correlation function (7)  is determined by the 
part of I'2' which is quadratic in m, and p, the effective 
action of Eq. ( 5 ) ,  which must be supplemented by the dissi- 
pative terms omitted above if we are to obtain the correct 
analytic properties. Integration with respect to m,, and p,, 
with a weight e ~ ~ ( i 1 ' ~ ' )  makes it possible to obtain, in the 
limit of infinitesimally weak damping, an expression for the 
correlation function ( 7 )  which can be written conveniently 
in the Fourier representation: 
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We introduce the following notation for the velocity 
correlation function: 

The expression for the above correlation function is well 
known (see, for example, Refs. 9 and 1 1 ). We are interested 
in the transverse part of the correlation function of Eq. (9) ,  
which in the Fourier approximation is 

D:.' (o, k) = 2qT (kZ6,,-kikh), 
p202+qZk" 

wherep is the mass density and 7 is the viscosity. The longi- 
tudinal part of the correlation described by Eq. (9 )  is asso- 
ciated with the acoustic degrees of freedom. 

The fluctuation corrections to the dispersion law of spin 
waves can be studied conveniently as a manifestation of the 
fluctuation contribution to the part of the effective action 
which is a quadratic function of m, and p, . This contribu- 
tion can be written in the form 

h h 

Here, Z and II are operators which in what follows are called 
the self-energy and polarization operators. It follows from 
the fluctuation-dissipation theorem that these quantities are 
related by an expression which can be written conveniently 
in terms of the Fourier components: 

The dispersion law of spin waves derived including the 
contribution made by Eq. ( 11 ) to the effective action is 

where E,,, is a two-dimensional antisymmetric tensor. It 
therefore follows that the self-energy function Z,,,, (w,k) de- 
termines directly the fluctuation corrections to the disper- 
sion law of spin waves. It follows from Eq. ( 12) that in deter- 
mining the damping of these wavesit is in fact sufficient to 
calculate the polarization operator 11. 

A 

We are interested in the contribution made to rI by the 
diagram shown in Fig. 1. The continuous curve in this dia- 
gram is the correlation function of Eq. ( 7 ) ,  the wavy line 
represents the correlation function of Eq. ( l o ) ,  and triple 
vertices (dots in the diagram) are governed by the second 
term in the action of Eq. ( 5 ) ,  which is associated with con- 
vection. An analytic expression corresponding to this dia- 
gram is 

1 dvd" q 
n,(o, L) = - kik, J-Di:' (v, q )Dw(~+v ,k+q) .  ( 14) 

2 (2n)l 

The functions D,,. and D 2' should be described by Eqs. (8 )  
and ( l o ) ,  whereas the longittdinal part D,, makes only an 
unimportant contribution to II. 

Below we show that the fluctuation corrections to the 
real part of the dispersion law of spin waves are small, so that 
in obtaining the integral of Eq. ( 14) we can assume directly, 
following Eq. (4 ) ,  that w = Ak *. We then obtain the law of 
proportionality I1 cc k, and it then follows from Eq. ( 12) that 
Im Z cc k 3. This means that the fluctuation damping of spin 
waves is proportional to k', i.e., it is known to exceed the 
inherent damping (proportional to k4) in the long-wave- 
length limit. A similar law of proportionality Re Z a k ap- 
plies also to the real part of Z. This quantity describes the 
correction to the real dispersion law of spin waves. This cor- 
rection is small in the long-wavelength limit (Re  Z/w a k )  
and we shall ignore it. 

An analytic calculation of the integral of Eq. ( 14) for 
the general case is difficult. We shall give its values in the 
limit A 4 7/p.  In this case we have 

where 

Calculating now the dispersion law of spin waves in accor- 
dance with Eqs. ( 12) and ( 13) (and ignoring for the reasons 
given above Re Z )  we obtain the final dispersion law of spin 
waves in a liquid ferromagnet: 

In the case A-7/p the dispersion law of Eq. (17) is still 
valid, but the expression ( 16) for Y should then be regarded 
as an estimate. 

3. CORRECTIONSTO THE VISCOSITY OF A LIQUID 
FERROMAGNET 

The weak spin wave damping has the effect that fluctu- 
ations of m make a considerable contribution to the dynamic 
characteristics of the system. For example, it is shown in 
Ref. 7 that in solid isotropic ferromagnets the fluctuations of 
m are responsible for the long-wavelength divergence pro- 
portional to k - 'I4 of the viscosity (here, k is the characteris- 
tic wave vector). The actual law describing this divergence is 
associated with the fact that the spin wave damping is pro- 
portional to k4. As demonstrated in the preceding section, in 
the case of a liquid ferromagnet such damping is proportion- 
al to k! Therefore, the fluctuation contribution to the vis- 
cosity of such a system is less divergent (as shown below, it 
diverges logarithmically). Let us calculate this logarithmic 
contribution. 

We can do this if we have an explicit expression for the 
contribution to the stress tensor associated with an inhomo- 
geneity of the vector m. The main contribution is to the non- 
dissipative stress tensor, the expression for which is best de- 
duced by the Poisson bracket method1* (see also the 
monograph of Ref. 1 1 ). In addition to the well-known 
brackets for the mass density p, the specific entropy a, and 
the momentum density j =pv, we also have to use the 
bracket 

FIG. 1. 

which has a standard structure. 
Calculations are carried out using the Liouville equa- 

tion 
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where the nondissipative stress tensor is described by 

Here, E is the energy density and P i s  the applied pressure: 

Using now the expression for the energy density ( 1 ), we find 
with the aid of Eq. (20) the magnetic contribution to the 
stress tensor: 

T TI;)= - [ v ~ ~ v A ~ + B ( v ~ ) ~ ~ ~ , , I .  (22) 
g 

Here, 

d l n g  

is a constant of the order of unity. 
The contribution to the effective action associated with 

the momentuum density is 

It includes the self-energy Cij and polarization nij operators 
which are coupled because of the fluctuation-dissipation 
theorem. This coupling can be written conveniently in the 
Fourier representation: 

The inherent value of the self-energy operator Zij is gov- 
erned by the first 7, and second [, viscosities: 

We are interested in the fluctuation contribution to n,. 
which is determined by the diagram shown in Fig. 2. In this 
diagram the continuous curves represent the operator (7)  
and the triple vertices (points in the diagram) are governed 
by the contribution (22) to the stress tensor, in agreement 
with Eq. (24). The explicit expression for this contribution 
is 

In view of the logarithmic nature of the integration process 
we have dropped from Eq. (27) the dependence on w and k 
in the integrand. 

In evaluating the integral in Eq. (27) we can no longer 

FIG. 2. 

use the expression (8) ,  which was obtained ignoring the spin 
wave damping. Allowing for the fluctuation contribution t? 
the action (1  I ) ,  we find that the explicit expressions for n 
and I: are given by Eqs. ( 12) and ( 15 ) , so that 

This reduces to Eq. (8)  in the limit Y-0. Substituting Eq. 
(28) into Eq. (27) and then integrating, we finally obtain 

Here, 

and A is the characteristic wave vector corresponding to the 
ultraviolet cutoff. 

Using now the relationship (25) and comparing Eq. 
(29) with Eq. (26), we reach the conclusion that the pres- 
ence of the fluctuation contribution to E,, and n, is equiva- 
lent to the appearance of the following fluctuation correc- 
tions in the expressions for the viscosities: 

Substituting here Eq. ( 16) for Y, we obtain 

rlf 4 = L .  
17 15n2 

It should be stressed that in Eq. (16) there is a sum 
7 = 7" + rlfl of the inherent and fluctuation viscosities. The 
ratio vfl/vO is universal and it depends logarithmically on 
the scale. Clearly, in reality the ratio %/vo is small because 
of the smallness of the numerical factor in Eq. (32).  

4. SPECTRUM OF A LIQUID-CRYSTAL FERROMAGNET IN 
THE EXCHANGE APPROXIMATION 

In this section we shall generalize the results obtained in 
the two preceding sections to the case of a liquid-crystal fer- 
romagnet. A distinguishing feature of the liquid-crystal state 
is its anisotropy. It results, firstly, in an anisotropy of the 
exchange interaction, and secondly, in the appearance of rel- 
ativistic (spin-orbit) terms. In this section we shall discuss 
only the consequences of the exchange interaction anisotro- 
py. The relativistic effects will be dealt with in the next sec- 
tion. 

In the case of a nematic, instead of the gradient energy 
of Eq. ( 1 ), we have to use the following expression 

where n is the director. A similar expression applies also to 
type A smectics, where the role of the director n is played by 
the normal to the smectic layers. Equation (2 )  then becomes 

Consequently, the dispersion law of spin waves becomes an- 
isotropic: 
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where 

and thez axis is directed along the equilibrium orientation of 
the director n. In view of the strong anisotropy of real nema- 
tics, we have to assume that g, -g2 and, consequently, A ,  
- A 2 .  

We now consider the fluctuation damping of spin waves 
in the exchange approximation. 

First of all, we have to discuss the contribution, de- 
scribed b ~ t h e  diagram in Fig. 1, made to the polarization 
operator I1 introduced in Eq. ( 11 ) .  In the case of a liquid 
crystal the structure of the triple vertices (governed by the 
convective term in the equation for m) is the same as for a 
liquid. The correlation function of Eq. (7)  for a liquid crys- 
tal has the same structure [Eq. (8 )  1,  apart from the anisot- 
ropy, as in the case of a liquid. Finally, the correlation func- 
tion (9 )  for any liquid-crystal phase includes contributions 
ofthe type described by Eq. ( 10) and associated with viscous 
modes describing the velocity relaxation process (such 
modes are absent only in the case of crystals). 

An explicit calculation of n,,, is difficult because of the 
anisotropy. However, the law of proportionality II,,. a kS,i,, 
remains valid. Therefore, the dispersion law of Eq. ( 17) ap- 
plies also to a liquid crystal, but now Y is a function of the 
angle between the director and the wave vector. As an esti- 
mate of Y it is reasonable to use Eq. (16),  which is justified 
forA 5 q/p. Clearly, this condition is satisfied by liquid crys- 
tals characterized by a high viscosity which usually exceeds 
the viscosity of the corresponding isotropic phase. 

Let us now discuss in detail the nematic phase. This 
phase exhibits an additional fluctuation mechanism ensur- 
ing a contribution which competes with the contribution to 
the spin wave damping discussed above. This mechanism is 
associated with the anisotropy of the gradient energy of Eq. 
(33) and of the Landau-Lifshitz equation (34). In view of 
this anisotropy the effective action generalizing Eq. (5 )  now 
includes the following interaction term: 

Here, Sn is the deviation of the director from its equilibrium 
value. 

The interaction term of Eq. (36) gives rise to a contri- 
bution to the polarization operator II,,,, described by the dia- 
gram shown in Fig. 3. In this diagram the continuous curve 
represents the correlation function of Eq. (7) ,  the dashed 
curve represents the correlation function 

and the points represent a triple vertex governed by the con- 

FIG. 3. 

tribution of Eq. (36) to the effective action. The Greek in- 
dices in Eq. (37) identify the components along the x and y 
axes (we recall that in equilibrium the director is assumed to 
be oriented along the z axis). The explicit expression for this 
contribution to IT,,, is 

The correlation function D,,,, should be described by 
Eq. (8)  when calculating the integral of Eq. (38). The corre- 
lation function dO8 is given by 

2T7, kaka + das ( o ,  k )  = --- k a k ~  
2 T y r  .(haB -c) . 

y,'o2+KZ2k4 k12 y,202+K,2k' 

(39) 
Here, k : = k - k :; y, and y, are certain combinations of 
the viscosities of a nematic; K ,  and K ,  are combinations of 
the Frank elastic moduli. These quantities depend in a com- 
plex manner on the angle between the director and the wave 
vector. 

In view of the weak spin wave damping, we can replace 
w in Eq. (38) with the value given by Eq. (35). Moreover, 
we shall assume that the condition A 2 K / y ,  is satisfied and 
this condition is clearly obeyed by a nematic because of the 
high viscosity (including the torsional viscosity). It is diffi- 
cult to calculate the integral in Eq. (38) explicitly because of 
the anisotropy of the quantities occurring in the integrand. 
An estimate of n,,, taking into consideration all the above 
comments yields the following result: 

gTA n,,- 0.1 - kSUv. 
K (40) 

Allowing now for the fluctuation-dissipation theorem 
of Eq. (12) (which in the case of a nematic must be general- 
ized to allow for the anisotropy), we reach the conclusion 
that the mechanism in question (it is natural to call it the 
anisotropy mechanism) ensures a spin wave damping which 
is again proportional to k'. Therefore, in the case of nematics 
we must take into account not only the isotropic but also the 
anisotropic mechanisms of the fluctuation!induced spin 
wave damping. 

We thus find that in the case of nematics the same dis- 
persion law (17) applies to spin waves and in this law we 
have now Y = Y, + Y2 . The quantity Y, is given by the ap- 
proximate expression in Eq. ( 16), whereas in the case of Y ,  , 
because of Eq. (49),  the corresponding estimate is 

The two quantities Y, and Y, exhibit a nontrivial depend- 
ence on the angle between the wave vector and the director, 
which dependence can be found analytically. We can expect 
Y2 to exceed Y, because of the high values of the viscosities 
of a nematic. 

The proposed anisotropy mechanism is unimportant in 
smectics. In smectics A and B we find that instead of fluctu- 
ations of the director we must consider fluctuations of the 
normal to the smectic layers. The corresponding correlation 
function is even more stringent. In the case of a smectic C 
there is a correlation of the same type [Eq. (37)]  as for a 
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nematic. However, the corresponding contribution of Y 
should be small because of the weak anisotropy of a smectic 
layer in real smectics C .  

The fluctuation contribution to the viscosity of a liquid 
crystal does not differ qualitatively from the situation in a 
liquid ferromagnet. Fluctuations of the vector m give rise to 
logarithmic corrections to the viscosities (the number of 
which is governed by the symmetry of the liquid crystal and 
is greater than for an isotropic liquidi').  These fluctuation 
contributions are described by Eq. ( 3  1 ) . 

It is known that in the case of a nematic there are not 
only the usual viscosities governing the dissipation associat- 
ed with an inhomogeneous flow of a liquid crystal, but there 
is also a torsional viscosity y ,  governing relaxation of the 
director. In a study of the fluctuation contribution to y ,  we 
have to consider the contribution to the effective action asso- 
ciated with the director dynamics. This contribution is 

Here, y is an auxiliary Bose field which must satisfy the con- 
dition y.n = 0. 

The gradient energy of Eq. (33) creates the following 
contribution to the effective action: 

which is obtained from the second term in Eq. (42).  The 
expression (43) governs the third-order vertex used to find 
the contribution to y ,  given by the diagram shown in Fig. 2. 
The explicit expression for the correction y ,  is 

dv d3q 
-7u1 =,j - 

2g2 (2n)' 
qa2q.2D,,Z (v, q) . 

The integral in the above expression, like that in Eq. (28),  is 
logarithmic. An analysis of Eq. (44) gives an estimate of y ,,, 
described by the same expression (3  1 ) as in the case of the 
conventional viscosities. 

5. ROLE OF RELATIVISTIC EFFECTS IN A NEMATIC 

The anisotropy of liquid crystals means that in the fer- 
romagnetic state at sufficiently low frequencies an impor- 
tant role should be played by the relativistic effects. For a 
nematic the main relativistic (spin-orbit) term in the energy 
can be written in the following way: 

The upper-sign in Eq. (45) applies to the easy-axis anisotro- 
py, whereas the lower sign corresponds to the easy-plane 
anisotropy. In the former case under equilibrium conditions 
both m and n are collinear, whereas in the latter case they are 
perpendicular. The quantity q,,, in Eq. (45) plays the role of 
a characteristic wave vector because the relativistic effects 
become important beginning from this vector. 

The relativistic contribution (45) to the ferromagnetic 
energy of a nematic means that the coupling between orien- 
tational and spin modes exists even in the linear approxima- 
tion. Therefore, in a study of the If spectrum we have to 
consider simultaneously the dynamic equations form and n. 

We shall show below that in the case of m it is sufficient 

to consider only the nondissipative equation which, subject 
to Eq. (45),  is 

The convective term of Eq. ( 2 )  is omitted above, because it 
makes no contribution to the linear equations. The first term 
on the right-hand side of Eq. (46) is due to the gradient term 
of Eq. ( 33), whereas the coefficient A contains the depend- 
ence on the angle between the wave vector and the director 
given by Eq. (35).  The second term on the right-hand side of 
Eq. (46) is due to the contribution of Eq. (45) to the energy 
and the coefficient Z is now given by 

The equation describing relaxation of the director n can 
be written in the form" 

dn; 6.E T 
-7-=---= 

d t  6ni (6ik-ninb) [KP '~ ,  * - &elmk (mn) I. 
g1 

However, we must bear in mind that the coefficients y and K 
in this equation for nematics are functions of the angle be- 
tween the orientations of the wave vector and the director, 
and they also differ for two independent components of the 
fluctuations of the director. " 

We first consider the easy-axis anisotropy correspond- 
ing to the upper signs in Eqs. (45)-(47). In this case the 
vectors m and n are collinear under equilibrium conditions. 
We assume that they are directed along the z axis. The devia- 
tions from equilibrium are then described by the compo- 
nents m, and n,, (where the Greek index identifies the com- 
ponents along the x and y axes). Linearization of Eqs. (46) 
and (47) with respect to m,, and n, yields a system of four 
linear scalar equations. The solution of this system allows us 
to find the dispersion law for all the eigenmodes of the sys- 
tem. 

In the long-wavelength limit, i.e., when k <q,,, , this sys- 
tem of equations describes two zero-gap modes and two 
modes with a gap. The appearance of the gap is due to the 
anisotropic relativistic contribution of Eq. (45) to the ener- 
gy of a ferromagnet. The dispersion law of these modes is 
very special: 

where y ,  is the torsional viscosity. Therefore, the frequency 
of these modes has a real part, associated with the spin dy- 
namics, as well as an imaginary part, associated with the 
director dynamics. 

The occurrence of zero-gap modes in the spectrum is 
related simply to the total rotational invariance of the system 
When these modes are excited the vectors m and n become 
collinear, i.e., ma = n,. The dispersion equation for the 
modes in question is cumbersome, but we can assume that 
w cc k2. We give the dispersion laws of these modes on the 
assumption (in accordance with the reality) that the tor- 
sional viscosity is high: 
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Here, the indices I and t represent the components n,  direct- 
ed along and across the wave vector k [compare with Eq. 
(39) for the correlation function]. Therefore, the modes in 
question are very similar to the orientational modes and 
their dispersion laws are of the same diffusion nature. The 
spin degrees of freedom increase the effective Frank con- 
stant of a ferromagnetic nematic. 

We now consider the easy-plane anisotropy which cor- 
responds to the lower signs in Eqs. (45)-(47). In this case 
the vectors m and n are perpendicular to one another in equi- 
librium. Linearization of Eqs. (46) and (47) in terms of 
deviations of m and n from equilibrium yields a system of 
four scalar equations from which we can find the required 
mode dispersion laws. Among these modes three are zero- 
gap and associated with inhomogeneous rotations of m and n 
conserving their perpendicular mutual orientation. One 
mode associated with the change in the angle between m and 
n has a gap. 

The dispersion law of the latter mode considered in the 
long-wavelength limit is 

In contrast to Eq. (48), this dispersion law describes simple 
attenuation. Out of three zero-gap modes, two describe si- 
multaneous relaxation of n and m. If we allow for the large 
value of y, we find that the dispersion law of these modes is 
given by an expression of the type described by Eq. (49). 

Finally, the last zero-gap mode is related to rotation of 
m by n. For the wave vectors 

the dispersion law of this mode is acoustic: 

Re a=* (AS)'"k.  (51 )  

The damping is then 

Im w- Tqretlgiy. (52) 

For k g  Tq,,, /g, yA this mode becomes diffusive type and we 
have 

An analysis of the dispersion laws of these modes is 
difficult when the wave vectors satisfy k-q,,,. In this case 
an increase in the wave vector results in a smooth conversion 
of the modes discussed in the present section into a pair of 
orientational modes and into spin waves which in the k>)q,,, 
case can be considered in the exchange approximation. 

All the modes discussed in the present section exhibit 
the damping associated with relaxation of the director even 
in the linear approximation. A fairly cumbersome analysis 
shows that the fluctuation-induced damping of spin waves 
discussed in the preceding sections plays no significant role 
in the case of the wave vectors k 5 q,,, . On the other hand, 
the linear damping (associated with relaxation of n )  be- 
comes unimportant at short wavelengths. We shall now esti- 

mate the limiting wave vector at which these two types of 
damping become equal. 

In the limit k% q,,, the damping of spin waves associat- 
ed with relaxation of n is described by the following expres- 
sion if yA R K: 

Comparing Eqs. (54) and ( 17), we obtain the following esti- 
mate for the limiting wave vector: 

We recall that in the case of a nematic we have Y = Y, + Y2 , 
where Y, and Y2 are given by Eqs. ( 16) and (41 ). 

We thus find that for k < k *, the spin wave damping is 
governed by relaxation of the director which is coupled lin- 
early to spin waves because of the relativistic effects. In the 
limit k$ k * these effects are unimportant and the spin wave 
damping is of purely fluctuation origin. 

6. ROLE OF RELATIVISTIC EFFECTS IN A SMECTIC 

A smectic is a much more rigid system than a nematic. 
Therefore, in the case of a smectic the relativistic (spin-or- 
bit) terms affect much less the spin wave spectrum (the ef- 
fect is approximately the same as in the case of solid uniaxial 
crystals). Nevertheless, the spin wave spectrum of a smectic 
exhibits a number of special features, which make it neces- 
sary to consider this spectrum in greater detail. 

The contribution made by the relativistic effects to the 
energy of a ferromagnetic smectic is described by Eq. (45) 
derived for a nematic (subject to the substitution n-1, 
where 1 is a unit vector along the normal to the smectic lay- 
ers). We assume that under equilibrium conditions the 
smectic layers are perpendicular to the z axis, so that the 
vector 1 is directed along this axis. In the case of a slight 
deviation from equilibrium the variation of the vector 1 is 
related in the following way to the displacement vector u of 
the smectic layers along the z axis: 

Here, the Greek index means the components along the x 
and y axes. 

The task in this section will be to investigate the com- 
bined system of dynamic equations for the magnetic vector 
m and the variable u describing the displacement of the 
smectic layers. The equation for the vector m is of the same 
form as Eq. (46), derived for a nematic (provided the substi- 
tution n - 1 is made). The equation for the vector u (obtained 
after eliminating the velocity and other hydrodynamic vari- 
ables of a smectic A)  can be written as follows" 

Here, B is the bulk modulus of the smectic layers and 
V: = V* - V:. The symbol v5,,, is used to denote a combina- 
tion of the viscosities characterized by a dependence on the 
angle between the wave vector and the z axis. 
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Equation (57) describes propagation of the second 
sound in a ferromagnetic smectic. The last term on the right- 
hand side of Eq. (57) modifies the dispersion law of the 
second sound (compared with the case of a nonmagnetic 
smectic A ) ,  which becomes 

This dispersion law is derived for the easy-axis anisotropy 
whereas in the case of the easy-plane anisotropy the quantity 
k,  in the radicand should be replaced with k,, where the x 
axis is selected along the equilibrium direction of the vector 
m. Equation (58) is derived on the implicit assumption that 
the damping is much less than the real part of the spectrum. 

We can thus see that there is an effective shear modulus 
of the smectic layers, which affects the form of the dispersion 
law of Eq. (58). However, this is true only if the frequency is 
sufficiently high. The point is this: Eq. (58) is derived as- 
suming that the vector m is fixed, which is true only for w >) = 
in the case of the easy-axis anisotropy and for w > Z k  /q,,, for 
the easy-plane anisotropy. In the opposite limiting case we 
return to the usual dispersion law for the second sound in 
smectic liquid crystals'' (we recall that E = SoTq:el /g ,  ). 

In an investigation of the spectrum associated with the 
spin degrees of freedom we can in most cases assume that the 
vector 1 is fixed. It then follows from Eq. (46) for m (where 
we have to replace n with 1 = const) that we obtain again the 
familiar dispersion laws 

The dispersion law of Eq. (59) applies to the easy-axis ani- 
sotropy, whereas Eq. (60) applies to the easy-plane anisot- 
ropy. 

Now we are interested in the contribution made to the 
dispersion law of spin waves by relaxation of the vector u. In 
calculating this contribution we shall need Eq. (57) for the 
vector u. We assume from now on that 

which allows us to ignore the term with the second derivative 
with respect to time in Eq. (57). It should be noted that w in 
Eq. (61 ) is described by Eqs. (59) or (60), depending on the 
nature of the anisotropy of a ferromagnetic smectic. 

Usng Eq. (56) and going over to the Fourier compo- 
nents, we find that the following relationship applies in the 
case of the easy-axis ansotropy: 

In the derivation of Eq. (62) we assume that the imaginary 
part of I, is much less than the real part. Moreover, it is 
postulated that 1, <<ma. Both assumptions are justified only 
if k ,  and k ,  are not very small, so that the inequality (61 ) is 
satisfied and the second sound does not split into two diffu- 
sion modes. 

Now substituting Eq. (62) into Eq. (46) for m (and 
replacing n with l ) ,  we find the correction to the dispersion 
law of Eq. (59). The real part of Eq. (62) gives rise to an 
unimportant correction to the real part of the dispersion law, 

whereas the imaginary part is responsible for the damping 
Im w of spin waves in a ferromagnetic smectic: 

Similarly, in the case of the easy-plane anisotropy, we abtain 

Here, the x axis is selected along the equilibrium direction of 
m. 

The damping described by Eqs. (63) and (64) should 
be considered together with the fluctuation-induced damp- 
ing discussed in Secs. 2 and 3. Consequently, it is necessary 
to generalize the expression obtained in the exchange ap- 
proximation to the case when the relativistic effects are im- 
portant. The corresponding contribution to II,,,, is still de- 
scribed by the diagram shown in Fig. 1. In the case of the 
velocity correlation function we have an expression of the 
form (10). The correlation function of Eq. ( 7 )  is modified 
because instead of Eq. (8)  we now have a similar expression 
where the argument of the 6 function is governed by the 
dispersion law of Eq. (59) or (60). 

An analysis shows that if k Sq,,, , the integral of Eq. 
( 14) is governed by the wave vectors q-q,,, . Therefore, in- 
stead of Eq. ( 15), we obtain 

where the quantity Yis described by Eq. ( 16). If the relativ- 
istic terms are present, then instead of Eq. ( 12) we obtain 

2 
q r s ~  ~ r n  X,, - - - H,,- (Yqr.lk2) 611~. (66) 
g 

It is this expression that describes the fluctuation-induced 
spin wave damping when k 5 q,,, and it applies to both types 
of anisotropy. Such damping should be added to the damp- 
ing deduced from the linear theory and described by Eqs. 
(63) and (64). 

Some comment should be made about the cases outside 
the framework of the discussion in the present section. If the 
condition (61) is disobeyed, the damping described by Eqs. 
(63) and (64) of the linear theory is suppressed and it clear- 
ly should be ignored. 

It is known" that in the case of sufficiently small values 
of k,  and k ,  we find that two diffusion modes appear in the 
smectic instead of the second sound. This case requires spe- 
cial analysis, but in our opinion it is not relevant to the situa- 
tion under discussion. Some idea of the resultant effects can 
be obtained from the analysis given in the preceding section 
for nematics, because the situation in nematics and smectics 
is similar in this range of wave vectors. 

7. CONCLUSIONS 

We now draw some conclusions. The main effect dem- 
onstrated above is the leading role of the fluctuation-induced 
spin wave damping in a liquid-crystal ferromagnet. In the 
exchange approximation this damping is proportional to k3. 
This dependence of the spin wave damping on the wave vec- 
tor gives rise to logarithmic corrections to the viscosities. 

In the If range the relativistic terms play an important 
role in a liquid-crystal ferromagnet. In a nematic the pres- 
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ence of these effects results in a drastic modification of the If 
spectrum and this is due to the softness of the director dy- 
namics. In a ferromagnetic smectic relativistic effects alter 
the real part of the dispersion law of spin waves [see Eqs. 
(59) and (60) 1 and the damping of these spin waves is clear- 
ly governed mainly by fluctuations and is proportional to k 
in the long-wavelength limit. When spin waves propagate 
along the layers or along the normal to them, we can expect a 
modification of the spin wave spectrum because of the linear 
coupling to a mode associated with relaxation of displace- 
ments of the smectic layers. 

Some comments are due about the effects ignored 
above. As shown in Ref. 7, fluctuations of the vector m are 
responsible for logarithmic corrections to the inherent (pro- 
portional to k4) spin wave damping considered in the ex- 
change approximation. This effect is negligible compared 
with the fluctuation-induced (proportional to k" damping 
considered above. Moreover, it is demonstrated in Ref. 7 
that the fluctuation contribution to the spectrum of a mode 
associated with relaxation of the magnitude of the spin 
smears out the inherent diffusion pole, which should be ob- 
tained in the exchange approximation. Such smearing is as- 
sociated with a weak (proportional to k4) spin wave damp- 
ing. This smearing does not occur when the spin wave 
damping is proportional to k3. Therefore, in the case of a 
liquid-crystal ferromagnet considered in the exchange ap- 
proximation we should observe a diffusion pole associated 
with relaxation of the magnitude of the spin. Antiferromag- 
netic liquid crystals should be analyzed separately. We sim- 
ply mention that because the spin wave spectrum is harder in 
antiferromagnets than in ferromagnets, the fluctuation ef- 
fects are unimportant. 

All that we have said so far about ferromagnetic smec- 
tics applies directly to smectics A and hexatic smectics B 
(hexatics). Smectics C exhibit an orientational (in fact, ne- 
matic) order in a layer. The role of the corresponding soft 
degree of freedom in the formation of the If spectrum may be 
important. However, this is unimportant at the present stage 
and is therefore ignored here. 

The spectrum of spin waves is modified by a magnetic 
field H. If the Larmor frequency exceeds the characteristic 
relativistic frequency Aqfe , ,  it is the Larmor frequency that 
determines the lower cutoff of the integral governing the 
fluctuation-induced spin wave damping. It should be 
stressed that in this situation it is the fluctuation mechanism 
of the damping that predominates. In the long-wavelength 
limit the spin wave damping obeys the proportionality law 
Im w a H 'I2k 2. It should also be noted that formally all the 
results of the present paper apply also to colloidal solutions 
of ferromagnetic particles in isotropic liquids and liquid 
crystals. However, the corresponding contributions to the 
mode spectrum associated with the interaction of the ferro- 
magnetic and "liquid" degrees of freedom are small because 
the concentration of ferromagnetic particles in such liquids 
is usually low. 
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