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The structural instability of the isotropic Kolmogorov spectrum of weak wave turbulence is 
discussed. The universal two-flux spectra of weak acoustic turbulence, transporting fluxes of both 
conserved quantities (energy and momentum), are derived. 

The universality hypothesis in the theory of developed 
turbulence is usually formulated as follows: in the interval of 
scales intermediate between the source and the sink, the tur- 
bulence is isotropic and the energy distribution over the 
scales depends on a single external parameter-the energy 
flux in k-space.',' In accordance with this hypothesis iso- 
tropic one-parameter spectra (usually called Kolmogorov 
spectra) have been obtained for both hydrodynamic eddy 
turbulence'-' and weak wave turbulence in hydrodynamics, 
plasma physics, and  acoustic^.^ It should be pointed out, 
however, that in all cases the interaction of both waves and 
eddies conserves, aside from the energy, the total momen- 
tum. Any real source of turbulence is, however, anisotropic 
and asymmetric, which causes the system to have a nonzero 
momentum. 

Stationary corrections an, , transporting a small mo- 
mentum flux R, to weakly-turbulent Kolmogorov solutions 
n, , carrying an energy flux P, were constructed by Kats and 
K o n t o r o ~ i c h . ~  For waves with power-law dispersion w a k" 
these so-called drift corrections have the simple form 

6nklnk a(Rk) o , l ( P k 2 )  ~ c o s  O k ( o d k )  ka-' cos Oh, ( 1 ) 

determined by the fact that y = (Rk)w, / ( P k 2  ) is the only 
dimensionless parameter which can be constructed from the 
quantities under study. 

In the case of decay dispersion laws we have a > 1 and 
the relative contribution of the anisotropic part of the spec- 
trum increases as k increases, i.e., in a direction from the 
source of waves into the inertial interval. In the nondecay 
situation an analogous effect arises for Kolmogorov solu- 
tions transferring a flux of wave action Q into the long-wave- 
length region. In  this case the relative contribution of the 
drift correction 

also increases in the direction into the interior of the inertial 
interval, i.e., towards small values of k. 

In accordance with the results obtained by Kats and 
Kontorovich the drift corrections cause the collision inte- 
gral for waves, which is linearized with respect to an isotrop- 
ic Kolmogorov solution, to vanish. The following question 
arises: are the solutions 1 and 2 established when the source 
of waves is anisotropic? 

Fal'kovich and Shafarenko6 and Zakharov and Balk7 
found that the drift corrections are established against the 
background of spectra with an energy flow for capillary and 
sound waves and are not established for spectra of gravity 
waves with an action flux. Starting from the general criterion 

derived by Zakharov and Balk for the stability of isotropic 
Kolmogorov spectra the following theorem can be proved: 
drift solutions can be established only in the case when the 
momentum flux transported by them in the scale space is 
directed in the same direction as the flux of the main integral 
of motiomx Indeed, it is easy to verify by direct calculation 
that in the three cases mentioned above the momentum flux 
is directed toward large values of k, in the same direction as 
the energy flux for capillary and sound waves and in a direc- 
tion opposite to the action flux for gravity waves. 

Thus there exist cases when drift corrections are estab- 
lished and their relative contribution to the spectrum in- 
creases as the distance away from the source in k-space in- 
creases. Therefore the isotropic solution becomes 
structurally unstable: a small anisotropy of the source leads 
to a substantially anisotropic stationary distribution of 
waves in the inertial interval. The existence of structural in- 
stability of the isotropic Kolmogorov solution indicates that 
the simplest universality is absent-one parameter ( the en- 
ergy flux P or the action flux Q)  is not sufficient to obtain a 
stationary distribution. How many parameters are neces- 
sary? 

The answer to this question is probably least obvious for 
turbulence of sound waves with small positive dispersion 
wk a k It', ~4 1. In this case, as shown in Refs. 6 and 7, in 
the presence of a small anisotropy of the source not only the 
drift solutions (1)  which transport a momentum flux but 
also the stationary anisotropic corrections constructed by 
L'vov and Fal'kovich" corresponding to angular harmonics 
of highest order 

are established in the inertial interval. Here P,,, are Legendre 
polynomials. Form = 1 the expression ( 3 )  is identical to the 
expression ( 1 ) . 

As one can see from the expression (3 )  the higher the 
number of the harmonic the more rapidly its contribution to 
the spectrum increases as k increases. Thus the turbulence of 
weakly dispersed waves is an example of the structurally 
most unstable system-for this system the largest number of 
angular harmonics is excited by a weakly anisotropic source 
( m  Z E -  ). For the remaining systems studied (see Ref. 7 )  
harmonics with numbers greater than unity are not excited. 
A set of anisotropic stationary solutions of the kinetic equa- 
tion was also constructed by L'vov and Fal'kovichY and 
Fal'kovichio for weakly dispersed waves: 
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These solutions were constructed within the framework of 
the differential approximation in angular variables and are 
valid only in the regions where P,, (cos 8 )  > 0. They describe 
the set of noninteracting jets with constant (with respect to 
k )  angular width of order r / m .  

The existence of the solutions (4) and ( 3 )  led previous- 
ly to the assumption that in the region of large k the angular 
shape of the spectrum can be irregular with a scale of the 
order of the small angle of interaction [see the relations (7 )  
below]. This would indicate, essentially, the absence of any 
universality of the spectrum of turbulence in the inertial in- 
terval. As we shall now show, for acoustic turbulence with 
positive dispersion a universal stationary solution of the ki- 
netic equation, depending on two fluxes of conserved quanti- 
ties (energy and momentum), can be constructed analytr- 
cally. Of course, this solution will be anisotropic. 

The kinetic equation for weakly dispersed waves has the 
following form4: 

Ek= j kk,  k -k ,  1 [6 ( o k - o k . - ~ k - k t )  

a t  

Assuming that the dispersion law is scale invariant 
w, a k ' +'and is virtually identical to theacoustic spectrum 
( E <  1 ), we integrate ( 5 )  over the polar angle and obtain the 
following equation in the stationary case ( x  = k , /k ) :  

J ( ~ - ~ t + a )  ( z - a ) / ( i + a )  z x (ntnz-ntnk-nznk) dx dlp 

Here n , = n [k, , O,,, ( k , , p )  ] must be taken, in accordance 
with the S function in Eq. (5 ) ,  on the surface given by the 
relations 

C0s e k k t =  [ i f  x'- ( I - X ~ + ' ) ~ / ( ~ + ~ ) ] / ( ~ X )  
= l + e [ x  l n x + ( l - x )  In ( I - x )  ] ( I - x ) / x  (7a)  

in the first integral and 

in the second integral. As regards n2 = n ( k  , , Oh, ) , we have 
8 A A ~  = - x8,, , /( 1 - x ) .  As one can see, the angles 
between the interacting waves are small, with the exception 
of narrow regions near x = 0 and 1 and also in the limit 
x - co . However because the integrals in the kinetic equation 
converge [see Eq. (9 )  below] these regions do not contrib- 
ute to the interaction of the waves. We shall seek the axisym- 
metric solution, depending on k, P, and (R-k) ,  of Eq. (6 ) .  In 
accordance with the dimensional relation Pk a Rw, this so- 
lution should have the following form: 

jzk=P'"k7"*f[(~.k)ok/ ( P k Z ) ]  =PLhk-'laf ( y )  . (8 )  

Here f is an unknown function of the dimensionless param- 
eter y. The weakness of the dispersion makes it possible to 
employ the differential approximation in the variable y, 
since 

y,= ( R k t )  a , /  (Pkt") = ( k , / k , )  "0s ( k i R )  - (klk,)  " [cos ( k R )  

+sin (kR) sin cp&,-cos ( k R )  8 : , / 2 + ~  cos ( k R )  In ( k , / k )  1, 

i.e., I y ,  - yl <y. We expand the functions f(  y , )  and f(  y2)  
in ( 6 )  up to second order in E;  next, separating the second 
integral into two identical terms, we make the substitution 
x - - x  I ,  in one term and the substitution x-  (1  - x )  - ' in 
the other term (the Zakharov transformation). After this, 
since n, a k "" is an exact solution of Eq. (6 ) ,  we obtain 
the following equation to first order in E: 

The equation for f( y )  appears as a factor in front of a 
converging integral. The solution is found trivially: 

According to Eqs. (8 )  and ( 10) nh should vanish on some 
surface in k-space. Indeed as y - - b /a the derivatives of the 
function f(  y )  grow rapidly and the conditions for the differ- 
ential approximation to be applicable no longer hold in a 
narrow neighborhood of the surface (with y + b /a 5 E"' ). 
The solution of the complete equation ( 6 )  should lead to a 
smooth, but rapidly decaying on the scale of the characteris- 
tic interaction angle (i.e., E"' ), function f( y ) .  The function 
f (  y )  should converge to zero as y--Mm. The constants of 
integration a and b can be incorporated into the definition of 
the fluxes R and P. In so doing the constant a should be 
regarded as positive, since the substitution a- - a  simply 
means that the coordinate system undergoes the rotation 
8 - T- 0. At the same time the two opposite signs of b give 
two different families of solutions: 

nk=k-"z[ (Rwk cos B)lk-tP] 'la, ( 1 l a )  

n,=k-"z[ ( R Q ~  cos f3)lk--P]'h. (lib) 

The first of the solutions, Eq. ( 1 l a ) ,  corresponds to a spec- 
trum that becomes narrower as k increases. In particular, it 
should describe a stationary distribution, engendered by a 
weakly anisotropic source with a weak momentum flux 
(Rw, <Pk) .  In this case, expanding ( I l a )  in powers of 
Rw, / (Pk) ,  for small k we obtain an isotropic Kolmogorov 
solution in zeroth order, the drift correction ( 1) in first or- 
der, and higher order harmonics ( 3  ), whose relative contri- 
bution increases as k increases, in subsequent orders. For 
large values of k practically all waves are concentrated in the 
right hand hemisphere. The solution ( 1 l b )  describes an ex- 
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panding spectrum. Its width A8(k) increases with k accord- 
ing to the law 

RmA cos A 0  (k) =Pk. 
If at the boundary of the inertial interval (at  k = k,,) we 

have Rw( k,,) =. Pk,,, then the starting width of the spectrum 
A8(k can be very small. The quantity AO(k,,) is bounded 
from below only by the angle of interaction because for 
this width the differential approximation, on the basis of 
which the solutions ( 11 ) were found, becomes meaningless. 
Thus one would think that the solution ( 1 l b )  must be en- 
gendered by narrow sources, whose width satisfies 
0 < A8 < a/2. They could also include extremely narrow 
sources with A8 of the order of or even less than the angle of 
interaction & I / * .  In particular, a source function that is 
strongly irregular as a function of the angle can engender a 
solution which in the intermediate asymptotic range con- 
tains a collection of narrow, but expanding jets ( 1 l b )  which 
for large values of k merge into one smooth distribution of 
the type ( 11 ). It is significant that in the limit of large k and 
- a/2 < 8 < a/2 both solutions ( 1 l a )  and ( 1 l b )  become 

identical. The spectrum is determined solely by the momen- 
tum flux and consists of one wide stream, whose angular 
shape does not depend on the form of the boundary condi- 
tions: 

In order to determine which stationary solution is es- 
tablished in the inertial interval under the action of a con- 
crete source-the multistream solution (4)  or  the universal 
solution ( 11 )-it is necessary to solve a transient problem, 
which falls outside the scope of this work. 

It appears, however, that the existence of the solutions 
( 11 ) indicates that in the inertial interval the spectrum can 

have a universal form. The fact that the solutions ( 1 1 ) admit 
a wide set of boundary conditions for small k (in the region 
of the source)-ranging from an isotropic collectian up to 
extremely narrow with scale E"~-evidently means that the 
stationary spectrum engendered by an arbitrary source in 
the region of large k has the universal form ( 1 1 ) . Thus the 
existence of structural instability of the isotropic Kolmo- 
gorov solution by no means indicates absence of universal- 
ity. It simply means that the spectrum in the inertial interval 
should, generally speaking, depend on the fluxes of all inte- 
grals of motion. 

We thank V. E. Zakharov, E. A. Kuznetsov, and A. M. 
Rubenchik for useful discussions of the questions discussed 
in this paper. 
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