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The problem of the influence of the interaction of quasimolecular states on the profile of the wing 
of a spectral line is solved subject to assumptions typical of the Landau-Zener model. The 
expressions obtained include averaging over the impact parameters and over the Maxwellian 
distribution of the colliding atoms. Quasicrossing of terms (levels) leads to the appearance of 
either two maxima (satellites) or a maximum and a minimum in the wing; separation between 
them depends on the nonadiabaticity parameter. This circumstance makes it possible to use the 
experimental data on the satellites in the wing of a spectral line in determination of the matrix 
element of the interaction between states and also the cross section of the corresponding inelastic 
transition. The expressions obtained are used to describe the absorption experiments and inelastic 
transitions in K-He and Cs-He quasimolecules. 

1. INTRODUCTION 

The interaction between quasimolecular states results 
in nonadiabatic transitions in collisions of atoms and mole- 
cules, which can be frequently described by the Landau 
-Zener equation.'.* The main difficulty in calculation of the 
transition probability and reaction cross section is in this 
case associated with calculation of the matrix element of the 
interaction between the states. Therefore, the inverse prob- 
lem is frequently solved: the experimental differential cross 
section of the process is used to find, with the aid of the 
Landau-Zener model, the nonadiabaticity parameter (Mas- 
sey) parameter, which includes also the matrix element of 
the interaction. This approach represents essentially the 
content of the "collision spectroscopy" (discussed in the re- 
view given in Ref. 3) in the part which uses the Landau- 
Zener model. 

The states participating in the investigated process very 
often have a quasisteady width associated with the possibil- 
ity of emission of photons or electrons. The question there- 
fore arises whether the interaction of states in the course of a 
collision affects the form of the electron or photon spectrum 
and if so, how? An analysis shows that the interaction of 
terms does indeed give rise to singularities in the s p e c t r ~ m ~ ' ~  
and the singularities associated with the crossing of terms 
are in typical cases so characteristic that they provide a new 
way for determination of the parameters of the nonadiabatic 
interaction of states based on a study of quasimolecular spec- 
tra (which should give the answer to the question formulat- 
ed above). 

We shall derive analytic expressions describing the sin- 
gularities in a spectrum which is formed in the region of the 
Landau-Zener interaction between quasimolecular states. 
With the aim of application to optical spectra, which are 
usually investigated using a gas cell, these expressions are 
averaged over the impact parameters and over the Maxwel- 
lian distribution of the velocities of the colliding atoms, 
which distinguishes the treatment given below from those 
reported in Refs. 6 and 7. The proposed theory generalizes 
the results of the ordinary quasistatic theory of broadening 
of spectral lines8 to the case of interacting states. 

Allowing for the stages of approach and separation of 
atoms in the process of formation of a spectrum and for the 
averaging procedures described above makes the expres- 

sions for these spectra so simple (in the case of absorption) 
that a simple procedure can be used to determine the nona- 
diabaticity parameter from the data on singularities in opti- 
cal spectra. This circumstance is associated with the fact that 
the form of the spectrum and the probability of a nonadiaba- 
tic transition in the case when the Landau-Zener model is 
valid depend on the same parameter. The results obtained 
are applied, by way of illustration, to Cs-He and #-He qua- 
simolecules. 

2. FORMULATION OFTHE PROBLEM AND MAIN RESULTS 

The problem of finding the emission (or absorption) 
spectrum of a system of two interacting quasimolecular 
terms is considered in its general form in Refs. 5 and 6. In a 
classical description of the motion of colliding atoms on the 
assumption that their velocities have a Maxwellian distribu- 
tion the frequency profile of a wing of a spectral emission line 
is given by the following expressiong (in the atomic system of 
units) : 

where d is the dipole moment of a quasimolecule; $ ( t )  and 
+b0 ( t )  are the wave functions of the initial and final states of a 
quasimolecule; the symbol ( ( . . . ) ) denotes summation over 
the directions of polarization and escape of an emitted pho- 
ton; Q ( E )  is the Maxwellian distribution function of the rel- 
ative energies of a collision; p is the reduced mass of the 
colliding atoms; T is the absolute temperature; n is the im- 
pact parameter. The interatomic distance R (v,p,t) is as- 
sumed to be parametrically dependent on time and v is the 
relative velocity of the colliding atoms. 

When two states interact, the wave function $(t) can be 
represented in the form 

t 
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where Je, ,., ) are the electron wave functions of the investi- 
gated states, 2/ ,,, ( t )  and a,,, ( t )  are the diabatic energies 
and amplitudes of the states dependent parametrically on 
time. The wave function $, ( t )  can be represented in an anal- 
ogous form: 

t 

* ( t ) = e x p  (-1 J 41. a t ' )  I q.). ( 3 )  

This situation is illustrated in Fig. 1. 
Substitution of Eqs. (2)  and ( 3 )  into Eq. ( 1 ) gives 

Assuming next that the nonadiabatic interaction of the 
states is described by the Landau-Zener model,ls2 we shall 
postulate that the diabatic energies Q,,,,, depend linearly 
on time in the region where the terms cross and the matrix 
element ofthe interaction V, ,  is constant. It is known that in 
this case the amplitudes a,,, ( t )  can be calculated in a closed 
form2 in terms of the functions of a parabolic cylinder. The 
time integral in Eq. (4)  reduces to one of the tabulated inte- 
grals (Ref. 9). Subsequent integration with respect t o p  is 
carried out analytically by introducing a new variable 
E * = E [  1 - p2/R - U,,, (R,)/E] and integrating the re- 
sult by parts '' The final expression for the profile I,, (w) is 

Ui (Ro) 1:;) (0 )  =2~c'~~R? exp (- kT) 
dx exp  (-x) 

0 

where R, is the coordinate of the point of intersection of the 
terms: F,, = Fi - F, (i = 1 or 2) is the difference between 
the forces at this point; r,,, = +03d ,,, ,/c3 are the widths of 
the diabatic state; D, (2) is a parabolic cylinder function9; 

The parameter R is a dimensionless frequency (fre- 
quency in units of the splitting of the difference adiabatic 
terms at the point of term crossing). The quantity w, repre- 

FIG. 1 .  Characteristic pattern of terms in the case of formation of absorp- 
tion and emission spectra in region of pseudocrossing of terms. The con- 
tinuous curves represent the diabatic terms and the dashed curves repre- 
sent the adiabatic terms. 

sents the energy of an emitted photon at the point of crossing 
of the R, terms (Fig. 1 ) . The values R = + 2 correspond to 
extrema (at F,, and F,, with opposite signs) of the adiabatic 
terms. The quantity { represents the Massey parameter of a 
given nonadiabatic process. 

Equations (5) and (6)  apply to the case when the initial 
term is either repulsive or attractive subject to the condition 
U, (Ro) < k T  (i.e., we can ignore the orbiting effects). The 
index 1 in Eq. (5)  for I::)(@) reflects the fact that these 
expressions correspond to the initial condition when the dia- 
batic state l is occupied in the limit R -+ a. The correspond- 
ing expressions for If:) (w) are obtained from Eqs. (5)  and 
(6)  by reversing the sign of the quantities fl and s and trans- 
posing the indices 1 ~ 2 .  

The probability of a single nonadiabatic transition in 
the case under discussion when v, = ( 2 k ~ / ~ ) ' / ~  is 
P = exp( - 2 ~ 6 ) .  

The quantity s in Eq. (6) is described by 

Let us consider in greater detail the meaning of the param- 
eters. In the derivation of Eqs. (5)  and (6)  it is assumed that 
the states 1 and 2 have the same quasimolecular symmetry 
(pseudocrossing of terms is possible only between such 
states). In this case we have s = 1 and the sign of s is 
governed by the signs of the radial matrix elements encoun- 
tered in calculation of (q, ,,, Idle,,) and depends on the spe- 
cific quasimolecular system and states being investigated. 

As pointed out above, the states 0, 1, and 2 correspond 
to specific values of the modulus of the projection of the total 
electron momentum of the quasimolecule along the interato- 
mic axis, i.e., these states may be degenerate only with re- 
spect to the sign of such projection. This circumstance does 
not affect the final result for the I:;)(@) profile since the 
interaction V,,  is independent of the sign of the projection of 
the total electron momentum. 

Equations (5)  and (6)  are valid in the case of single 
passage through the pseudocrossing region. Optical spectra 
of quasimolecules are investigated as a rule in a gas cell, 
which corresponds to a situation when the nonadiabatic in- 
teraction region is crossed twice in the course of a collision 
(on approach and separation of the colliding atoms). In the 
case of such double passage through the pseudocrossing re- 
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gion in the absence of other crossings, the expressions for 
j::' ( 0 )  become ( - above a symbol denotes double passage 
through the term pseudocrossing region) 

e x - )  W -  - ,  2,  x )  } c 10) 

7:;) ( Q )  ST::) (-Q,  - ~ , 2 *  1). (11) 

The expressions for I " ' (0)  and I"'(w), where i = 1 
and 2, can be rewritten in a clearer form if we note that the 
quantities 4n-R (Ti/(&, ( )exp( - Ui (R,)/kT) are identi- 
cal with the usual spectral line profiles predicted by quasi- 
static theories of the broadening8 in the case of the diabatic 
terms 1 and 2 in the vicinity of the point of their crossing 
(without allowance for the interaction). We therefore repre- 
sent the quantities I"'(fi) [Eqs. (5) and (6)  1 as follows: 

( )  exp (-U,. (Aje) /kT) , ( 13 'P8-451Rfol ( dd UjoldR I n j c  

AUfl = U, - U,, Rj, ( w )  is the "Condon" point found 
from the condition AUp (Rj, ) = fi(w - w,); Uin (R) is the 
potential of the initial state [ U, (R ) for emission and U, (R)  
for absorption], whereas the functions L+ (a) and L ?(a) 
are described by 

3n E'"Q 
X 1: -D-if/xlh-l ( exp ( i-  )x,,, - )I = L i 1 ( Q ) - f ( 8 ~  (15a) 

and the remaining LU ( 0 )  functions obey the relationships 

tained in the case of two interacting states when the width of 
one of them vanishes ( r, = 0)  is related to I F  also in Ref. 7. 
The difference between the expression (12) and that ob- 
tained in Ref. 7 lies not only in the greater generality and an 
allowance for interference, but also in the fact that the coeffi- 
cients L,, are obtained in Ref. 7 by numerical integration of 
the Fourier-transformed system of equations for the Lan- 
dau-Zener model followed by averaging over the velocities 
assuming that the impact parameter is zero. In the case of L, 
which occur in Eq. (12), this integration of the system of 
equations and the subsequent double averaging reduces to 
integration of a known special function. In the final analysis 
this circumstance provides an opportunity for deriving con- 
venient analytic expressions for the spectral profile in differ- 
ent limiting cases (see Sec. 3 ). 

It follows from Eqs. ( 14)-( 17) that only two out of the 
six functions in Eq. ( 12) are independent. This can be select- 
ed to be L , ,  (a)  andLYt(0), which arediscussed in Sec. 3. It 
should be noted that writing down Eqs. (5) and (6) for 
I',: (a) in the form of Eq. (12) makes it possible to widen 
the range of validity of the expressions obtained if I y i s  cal- 
culated at the Condon point R,, [Eq. ( 13) 1 and not at the 
point R,, as should be done in accordance with Eqs. ( 5 )  and 
(6).  In this case Eq. (12) represents "matching" of the 
I:: (a) profile in the vicinity of the crossing point to the 
profiles IF far from this region where the behavior of the 
potentials U, (R ) and U, (R and of the widths T, (R ) may 
be quite arbitrary. 

Following the above procedure used to obtain Eqs. (5) 
and (6) and to go over to Eqs. ( 12) and ( 13 ), we find that 
expressions for double passage given by Eqs. ( 10) and ( 11 ) 
transform similarly: 

where 

LZ2 ( Q )  =Lll  ( -Q)  , LZI ( Q )  =Liz ( - Q ) ,  The remainingZ, functions are related by expressions simi- 

Lli"' ( Q )  =-L,'"' ( -Q)  lar to Eq. ( 15 1. only two Zu functions are independent (for 
( I7)  e x a m P l e , Z , , a n d t ~ ' ) .  . . 

It should be noted that the form of the spectrum ob- The above expressions are valid in the case of emission 
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spectral line profiles. The profile of an absorption spectral 
line is described by a simpler expression: 

It therefore follows that the absorption profile I,, (a) 
obtained for the case of the Landau-Zener crossing of terms 
can be expressed in terms of the quasistatic absorption pro- 
files I,? for the diabatic potential curves and in terms of two 
universal functions L , ,  ( R )  and L  ? (a )  such that the com- 
bination L , ,  ( R )  + L , ,  ( - f l )  is an even function of R, 
whereas L  ';'(a) - L  ;"'( - R )  is an odd function. The pres- 
ence of an interference term [ - ( I  fSI y )  ' I 2 ]  leads (in those 
cases when it differs from zero) to an additional increase in 
I,, ( w )  in one of the ranges of 0 ( f l > < O )  and a reduction in 
the other range (R><O) .  The last circumstance is related to 
the singularities of the behavior of the adiabatic state widths 
in the case of quasicrossing of two terms.4 For example, for 
T I ,  # O  and s = 1 the width of one of the adiabatic states 
increases in the vicinity of the crossing point to 
j(I':/2 + r:/2)2, whereas the width of the other decreases to 
t(r;'' - T : / 2 ) 2 .  It is this redistribution of the widths of the 
adiabatic states which is reflected by the function 
L  ? ' ( a )  - L  I"'( - R )  which is odd relative to 0. 

3. PROPERTIES OF THE FUNCTIONS L,(O) and L:"'(O) 

Let us consider the properties of the functions L , ,  ( R )  
and L';'(o) describing singularities in the absorption spec- 
trum associated with the Landau-Zener interaction between 
two states. If asymptotic expressions for the parabolic cylin- 
der functions in the case when the argument of the function 
is large9 are substituted into Eqs. ( 14) and ( 16) for / R J  $ 1 ,  
we find that 

The corresponding asymptotic expressions for the remain- 
ing L,, and Ev functions are obtained from Eqs. ( 15 ), ( 17),  
and ( 2 0 ) .  

It follows from Eqs. ( 2 5 ) ,  ( 2 5 ) ,  and ( 2 2 )  that, in par- 
ticular, far from the nonadiabatic interaction region 
( ( 0 l $ l ) ,  we have 

I,, (0) =IIQ6 ( a )  +IZQs (a), ( 2 6 )  

which is identical with the result obtained employing the 
usual quasistatic theory8 to describe the absorption by two 
noninteracting states. 

In the limit 6% 1 the functions L , ,  ( R )  and LFt(w)  can 
be described by simple analytic expressions. These expres- 
sions can be obtained using asymptotic equations for the 
parabolic cylinder functions occurring in Eqs. (14) and 
( 16), which are obtained by the method of comparison with 
a standard when f $1: 

where Ai(z )  is the Airy function and 
Z1 

h ( Q )  = 1 d x  (x2-4) *. 
2 

The asymptotic form of the function 7 7 ' l ' e x p ( i 3 ~ / 4 )  
X D  i, I ( e ~ ~ ( i ( 3 ~ / 4 ) ~ ' ~ ~ R )  is obtained from Eq. ( 2 7 )  
by reversing the sign in front of the second term within 
braces. An analysis of the second term in the braces of Eq. 
( 2 7 )  shows that its contribution is negligible compared with 
the contribution of the first term in the region R=. 2, where a 
satellite forms in the f > 1 limit under consideration. We 
need to allow for the contribution of this term only in the 
range f l  2 2 ,  where asymptotic expressions for the Bessel 
function j+ ,,, ( v h  / 2 )  can be used. Substituting Eq. ( 2 7 )  
into Eqs. (1 I ) - (  16) we find that the functions L , ,  ( 0 )  and 
L  )"'(a) become 

I 

where z, = ( t g h ( f l )  ) 2 1 3  and 2 ( z )  is a function tabulated which appears in the description of a satellite of a spectral 
in Ref. 1 1 and defined by line associated with an extremum of the difference poten- 

OI tial. " This is not accidental, because in the case f > 1, atoms 

P ( a )  - J $ c-*/P ~i ( -au) ,  (30) move in adiabatic potentials and the probability of a transi- 
o tion between these is exponentially low. In the case under 

1130 Sov. Phys. JETP 69 (6), December 1989 A. Z. Devdariani and Yu. N. Sebyakin 1130 



FIG. 2. The function L,  , ( R )  plotted for different values of the parameter 
{. The continuous curves are the results of a numerical calculation based 
on Eq. (14),  and the dashed curves are calculated from Eq. (28) .  1) 
{=l.0;2){=0.5;3){=0.l;4){=0.06;5) {=0.02.  

discussion when FIO F20 < 0 each of the difference adiabatic 
terms has an extremum, which accounts for the appearance 
of the function 23 ( z )  in Eqs. ( 2 8 )  and ( 2 9 ) .  The deviation 
from the dependence ofz, on SZ compared with Ref. 11 is due 
to the fact that the adiabatic terms in the region of a Landau 
-Zener crossing depend hyperbolically on R and not quadra- 
tically, as in Ref. 11. It should be noted that in Eqs. ( 2 8 )  and 
( 2 9 )  an allowance is made also for the change in the widths 
of the adiabatic states in the vicinity of the point of term 
crossing. 

In general, the values of the functions L ,  , and L I"' and 
others can be found by numerical integration employing 
Eqs. ( 1 4 ) ,  ( 1 6 ) ,  ( 1 9 ) ,  and ( 2 1 ) .  Figures 2  and 3  gives the 
results of such calculations for the functions L , , (0 )  and L';"' 
( R )  carried out for different values of the parameter f .  
These figures include also the results of calculations based 

FIG. 3. The function (I/s)L;"'(fl) plotted for different values of the pa- 
rameter {. The continuous curves represent numerical calculations based 
on Eq. (16), whereas the dashed curves are calculated from Eq. (29).  1 )  
6 = 1.0; 2)  6 = 0.5; 3) { = 0.1; 4 )  6 = 0.06; 5)  { = 0.02. 

FIG. 4. Dependence of Rm,,{1'2 on 6. The continuous curve represents 
the results of a numerical calculation and the dashed curve is calculated 
from Eq. (3 1 ). The dotted curve is the function .rr1'Tf(6). 

on Eqs. ( 2 8 )  and ( 2 9 ) .  Such a comparison shows that calcu- 
lations carried out using the approximate expressions ( 2 8 )  
and ( 2 9 )  agree well with the results of a rigorous calculation 
even for 6 2 0.1. It follows from these plots that an increase 
in 6 which occurs for 0 2 2  makes the maximum more 
prominent. The function f ( f )  is plotted in Fig. 4. 

Using Eqs. ( 2 8 )  and ( 2 9 )  and the numerical values of 
the function 2? (z) (Ref. 1  1 ), we can readily obtain analytic 
expressions for the position of the maximum of the functions 
L , ,  ( a )  and L y t ( f L )  when 6 2  1. Since the maxima of these 
functions are close to R = 2, the second terms in Eqs. ( 2 8 )  
and ( 2 9 )  can be ignored and we can assume 
z ,  = f213(fl--2).Then, 

It follows from Eqs. ( 3  1 )  and ( 3 2 )  that for 2 1, we have 
R z 2.2L, ,  z L  ',"'/s, so that according to Eq. ( 2 2 )  we now 
find 

which describes the behavior of the widths of the adiabatic 
states discussed at the end of Sec. 2. 

4. SPECTROSCOPY OF LANDAU-ZENER CROSSINGS; K-He 
QUASIMOLECULE 

Our analytic expressions and the results of the numeri- 
cal calculations make it possible to describe a spectral line 
profile at frequencies corresponding to pseudocrossing of 
two quasimolecular terms (levels) or to obtain from an ex- 
perimental spectrum some information on the nature of the 
nonadiabatic interaction of states in the pseudocrossing re- 
gion. The parameter which represents this interaction is 
- 6. 

On the whole, when the spectrum is formed in the vicin- 
ity of the Landau-Zener crossing of terms we can have two 
characteristic situations. The first corresponds to the case 
when I $z I and both these quantities depend weakly 
[compared with L , ,  ( S Z )  and L y ( S Z )  ] on R. Under the con- 
ditions indicated above, the presence of an interference term 
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in Eq. (22) within one of the wings of an absorption line 
[corresponding to the positive value of the interference term 
in Eq. (22) ] gives rise to a maximum (satellite), whereas in 
the other wing there is a dip (representing a fall practically 
to zero at I $ = IF for 6> 1 ) . The second case is realized for 
I $<IF (or vice versa). In this limit the contribution of the 
interference term can be ignored so that the absorption spec- 
trum exhibits two maxima (satellites) corresponding to 
maxima of the function L,  , ( Cl ) + L , , ( - 0 ) .  This limit is 
typical of a situation in which a radiative transition to one of 
the diabatic states is forbidden (i.e., the corresponding value 
of r is zero). 

Determination of the parameter 6 from the experimen- 
tal data on the I,, (w) profile is generally based on selecting 
the variable parameter 6 which gives the best agreement 
between the experimental profile and the theoretical curve 
described by Eq. (22). If the quantities I depend weakly 
on Cl compared with L,,  (a) and L ';"'(a), in the vicinity of 
the frequency w, , a rapid estimate of the parameter 6 can be 
obtained using a simpler procedure. In this case the experi- 
mentally determined separation Sw,,, between the maxima 
ofI,, (w) (or between the maximum and minimum) is relat- 
ed to the dimensionless frequency a,,, at which the func- 
tions L,, (a) and L ';"'(a) reach an extremum (for a given 
<I : 

Figure 4 shows a trace of the dependence of a,,,{ 'I2 on f 
[the values of n,,, (6) are found by numerical calculation 
(Figs. 2 and 3) and for <> 1 they are calculated from Eq. 
(3111. 

The forces F,, and F2, can either be found in the usual 
way from the experimental spectrum (using the monotonic 
part),'2 or can be estimated theoretically. The latter task is 
much simpler than calculation of the matrix element of the 
interaction V,, . Next, we can use the graph in Fig. 5 to find 
the value of f at which the function a,,, 6' is equal to the 
quantity (So,,,, /2) ( IF,, - F2,1/u, IF,$2,,I ) I" deduced 

FIG. 5. Quasimolecular terms of the 5W and 3DX states of the K-He 
system calculated by the pseudopotential method (continuous curves). 
The dashed curves represent the difference terms U, ,  - C,, and U,,, 
- U,,, . The chain curves are the diabatic potentials. 

from the experimental data, and then f obtained from Eq. 
(8) is used to calculate V,, . 

Let us illustrate this method of determinating the nona- 
diabaticity parameter 6 by considering a specific example 
involving a study of the absorption spectrum of a K + He 
mixture at wavelengths in the range 4080 AGA ~ 4 6 4 0  A. The 
experiments were reported in Ref. 13 and, in particular, two 
satellites with maxima at A ,  = 4093 A and A, = 4360 A 
were observed in the absorption spectrum. These satellites 
are associated with pseudocrossing of terms (at R, =:7ao ) 
correlated with the 5PZ and 3 0 2  states of the K-He quasi- 
molecule (in this case the absorption occurs from the 452 
ground state). Figure 5 gives the results of a calculation of 
the terms of the 5PX and 3 0 2  states of the K-He molecule in 
the range of the internuclear distances of interest to us. The 
calculation was carried out using the pseudopotential meth- 
od (see Refs. 14 and 15) allowing for the 4p, 5s, 3d, 5p, 4d, 6s, 
4f, and 6p configurations of the K atom. It follows from the 
calculated results that the terms of the 5PI: and 3 0 8  states 
have a minimum (R = 7 . 3 ~ ~  ) and a maximum (R = 6 . 7 ~ ~  ), 

respectively, and these may be interpreted as forming 
through crossing of the corresponding diabatic terms (chain 
curves in Fig. 5). We shall now determine which value of V , ,  
should be deduced from the experimental results. According 
to Ref. 13, at T = 525 K, the positions of the satellites in the 
absorption coefficient are such that a,,,l 'I2 = 3.5. Ac- 
cording to Eq. (31) this corresponds to the values f z 2 . 6  
and V12 ~ 6 8 6  cm-'. The latter agrees well with the results 
of calculations plotted in Fig. 5 ( V,, s 5 14 cm- I ) .  

5. SlNGULARlTlES OF THE ABSORPTION COEFFICIENT AND 
THE INELASTIC TRANSITION CROSS SECTION, Cs-He 
QUASIMOLECULE 

The above method for determining the nonadiabaticity 
parameter f makes it possible to employ the characteristic 
singularities (satellites) in the wing of a profile of a spectral 
line to determine the rate constant and cross section of the 
corresponding nonadiabatic process, because in the Landau- 
-Zener model these quantities also depend basically on the 
parameter 6. We illustrate it by considering the Cs-He sys- 
tem for which the absorption spectrum was recorded experi- 
mentally in the range 5000 A < A G ~ O O O  A in work reported 
in Ref. 16. This range of wavelengths corresponds to transi- 
tions from the 6SE quasimolecular ground state to the 7SX 
and 5DX states. The absorption spectrum has two satellites 
(A, =: 5600 A and A, ~ 5 8 8 0  A)  the appearance of which is 
attributed in Ref. 16 to the presence of extrema of the differ- 
ence potentials of the 7=, 50D8, and 6SE states. However, 
the formation of extrema can be described using the concept 
of pseudocrossing of diabatic terms, which are correlated 
with the 752 and 5DX states. If the forces F,,,,, are estimat- 
ed using the potentials in Ref. 7, we find that at the experi- 
mental temperature T = 630 K O,,,f 'I2 z 2, which on the 
basis of the plot in Fig. 5 gives lz  0.53 and V,, z 350 cm- '. 
A comparison with the numerical solution (discussed 
above) made in Ref. 7 therefore gave the value 220 cm - I .  

Analytic expressions for the rate constant K q ( T )  of a 
Landau-Zener process when the terms have different rela- 
tive positions in the initial and final states and the points of 
their quasicrossing are obtained in Ref. 17. In particular, in 
the case of the situation in the Cs-He system a nonadiabatic 
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transition from the 75'2 to the 5DB state makes the expres- 
sion for K,,- ( T) 

where 5 = ( 8 k ~ / n ~ )  ' I 2 :  Ui (Ro) is the potensial energy at 
the point R, of crossing of the terms, measured from the 
energy of the original quasimolecular term when R + CO; 

.7({ * ) is a function tabulated by Moisei~itsch'~; the func- 
tion (P-) is the average probability calculated in Ref. 17, 
and the parameters f * and T * are related as follows to (: 

The quantity (Ro) for the 75'2 - 5DZ transition is 
calculated in Ref. 19, which gives 200 cm - I, whereas the 
experimental data on the absorption p r~ f i l e ' ~ . ' ~  give 
Ui (R, ) ~ 5 0 0  cm-'. The coordinate is R, - 6 . 6 ~ ~  (Ref. 19) 
Using the above value of ( = 0.53, we find from Eq. (35) 
that T*~0 .09and f~5 .0 -3 .0 fo r  Ui(Ro) = 200-500cm-'. 
For these values of the parameters T * and f * we can use Eq. 
(34) [and employ the values of the functions 7(6 *) and 
(P- (f * , T * ) )  tabulated in Refs. 17 and 181 to obtain the 
following expressions describing the cross section of the 
7SZ-5DB nonadiabatic transition: 

The quantity obtained is in agreement with the experimental 
value a,, ,, -- 5 A2 (Ref. 21 ), which confirms indepen- 
dently the correctness of the proposed method for finding 
the interaction between terms. 

6. CONCLUSIONS 

An analytic investigation of the spectrum formed in the 
case of the Landau-Zener quasicrossing of terms has made it 
possible to determine the characteristic features in the pro- 
files of the spectral line wings which appear in this case. It is 
shown that in the wing of an absorption line there are either 
two maxima (satellites) or one maximum and a dip (mini- 
mum). The formation of two satellites which accompanies 

the crossing of terms makes it possible to employ the experi- 
mental data on the positions of such satellites to determine 
quite simply the Massey parameter of the corresponding 
nonadiabatic transition (i.e., precisely the quantity which is 
most difficult to determine by other experiments and calcu- 
lations) and to estimate the cross section of the correspond- 
ing process. The results obtained in this way for the Cs- 
He system are in good agrement with the experimental data 
on the 7SX-5DX transition cross section. 
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