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The conversion of initially squeezed laser light to another frequency by inserting a transparent 
parametric crystal is examined. Two kinds of parametric processes are discussed: degenerate 
downconversion and second harmonic generation. In the case of second harmonic generation, the 
initial laser light generated without the parametric crystal is assumed to be in the amplitude- 
squeezed state produced by regular pumping of the active medium. On insertion of the crystal, the 
amplitude squeezing, depending on the parameters ofthe system, either converts entirely to the 
second harmonic or remains partially at the fundamental frequency and converts partially to the 
harmonic frequency. In the case of downconversion the initial laser light is assumed to be in the 
phase-squeezed state. The theory shows that after insertion of the crystal the laser becomes a 
source of two perfectly squeezed optical fields (at the laser and subharmonic frequencies). Their 
photocurrent noise in the low-frequency range can be suppressed almost completely. 

The experimental realization of nonclassical states of 
the electromagnetic field which possess sub-Poisson photon 
statistics or squeezed states presents a number of new prob- 
lems, one ofwhich is the need for a study of the interaction of 
these fields with various physical systems. These questions 
have only begun to be considered,'-%ut it is already well 
known that nonclassical states can be easily destroyed. This 
is so for at least two reasons. One is the internal system noise 
with which the field interacts. One physical consequence of 
this turns out to be a limitation of the amplification possibili- 
ties of the nonclassical The second reason is light 
losses, which necessitates a high efficiency of the optical re- 
cording circuits. A less obvious manifestation of these losses 
is the destruction of the nonclassical states-or, at least, 
their inefficient generation-in some optical systems with 
nonlinear absorption.' 

The main purpose of this paper is to consider the possi- 
bility of converting squeezed light without destroying its sta- 
tistics. This question is discussed for the two cases of para- 
metric frequency conversion-second harmonic generation 
(SHG) (also known as frequency doubling) and subhar- 
monic generation (SG) (also known as downconversion). 
Parametric systems are now, it seems, the most popular ob- 
jects of investigation in quantum optics; however, so far for 
the most part they have not been considered or used as 
sources of nonclassical fields. The results of the analysis pre- 
sented below show that parametric systems show themselves 
to be promising for the conversion of nonclassical fields, for 
example, in problems where it is required to transform 
squeezed light of one frequency into squeezed light of an- 
other frequency. 

Since an exact solution of the quantum problem of the 
evolution of two parametric coupled modes is not known, 
approximate solutions have been pursued by various au- 
thors. Thus, for example, a number of papers on SHGX using 
the approximation of small propagation time in the paramet- 
ric medium have predicted weak squeezing of the fields. In 
papers on SG the pump field is usually taken to be external 
and classical,9-'' i.e., no use is made of its statistics. 

In the present paper we consider a scheme for paramet- 
ric conversion inside the laser cavity. We know of only one 

example in which quantum fluctuations during parametric 
conversion inside the laser cavity were considered. I' The au- 
thors of that paper studied the influence of SHG on the laser 
field near the generation threshold with SG adiabatically 
excluded, and did not detect any quantum features in the 
fluctuations at the laser frequency. We will analyze here the 
statistics of both parametrically coupled modes. The main 
approximation which we will use is the approximation of 
small fluctuations, with the exception of the last section 
(generation of squeezed vacuum during SHG), in which the 
pump field is taken to be classical and the approximation of 
small fluctuations is not used. 

The general picture of the formation of the statistical 
properties of the fields is defined by two parametric pro- 
cesses. These are two-photon (nonlinear) absorption, in 
which a pair of photons combine into one, and phase cap- 
ture. In the latter case, as is well known, the difference phase 
of the fields is rigidly fixed while undergoing small fluctu- 
ations around its mean value. 

The first of these processes is manifested in SHG, in 
which two-photon absorption takes place in a laser which 
generates radiation at the frequency w. Its statistical proper- 
ties therefore repeat the case of a laser with a two-photon 
absorption cell.' Thus, due to the nonlinear absorption the 
photons turn out to be antibunched, but over times signifi- 
cantly shorter than the lifetimes in the cavity. Therefore 
even though the state of the field becomes nonclassical, the 
spectral characteristics of its noise are practically Poisson. 
The second-harmonic light also turns out to be nonclassical. 
This has to do with the nature of the antibunching of the 
photons of frequency w: not only are the photons of a pair 
antibunched, but so are the pairs themselves. Because each 
such pair is converted into a second-harmonic photon, the 
latter are also antibunched. 

One feature of parametric interactions which is asso- 
ciated with phase capture is manifested in SHG. If a 
squeezed state of the field of the initial source is character- 
ized by anomalously small (in comparison with the field in 
the coherent state) phase fluctuations, then as a result of 
capture the phase fluctuations of the second-harmonic will 
also be small. The state of the second harmonic turns out to 

11 19 Sov. Phys. JETP 69 (6), December 1989 0038-5646/89/121119-08$04.00 @ 1990 American Institute of Physics 11 19 



be squeezed. Since the presence of the crystal in the cavity is 
associated with losses, the squeezed state of light at the fre- 
quency w will be destroyed. In this regard, it is of interest to 
consider the SHG regime with a small number of photons, 
which corresponds to small losses which leave the squeezed 
state of the field at frequency w almost intact. 

1. BASIC EQUATIONS 

The optical schemes which we will consider are shown 
in Fig. 1. The active medium generates light at  frequency w 
which is converted in the nonlinear crystal located in the 
cavity into radiation with frequency 2w (the second har- 
monic) or w / 2  (the subharmonic). The cavity is assumed to 
be high-Q only for the frequencies w and 2w or  w/2, which 
allows us to limit our analysis to the simple two-mode situa- 
tion. The initial source (the laser without the crystal) gener- 
ates squeezed light. For the scheme with SHG (Fig. l a )  we 
used the model of a source with regular pumping to the up- 
per working level of the active medium.13 For the scheme 
with SG (Fig. Ib )  the pumping of the active medium is ordi- 
nary and the squeezing of the initial light is realized by a 
parametric cell which is controlled by an external field.14 
The nonlinear crystal is assumed to be transparent, but can 
have dissipation losses, which, however, should be much less 
than the losses which accompany the exit of the radiation 
from the cavity. 

Letp be the density matrix corresponding to the state of 
the electromagnetic field in the cavity. We write the basic 
equation for p in the form 

assuming that the variation of the field in the cavity occurs as 
a result of its interaction both with the active medium (the 
term L , p )  and with the crystal (L,p) .  The last term de- 
scribes the departure of radiation from the cavity. For 
L, = 0 Eq. ( 1)  describes the initial source. Its explicit form 
is given in the Appendix. We will model the interaction with 

the transparent crystal by the customary effective Hamilto- 
nian, which describes the elementary act of the merging of 
two photons into one and the decay of one photon into two: 

Here a:, and a,,, are the creation and destruction operators 
of photons with frequencies w,,, and k is the interaction con- 
stant and is determined by the nonlinear medium. 

As a characteristic of the squeezed light, one usually 
introduces a quadrature operator of the form 

X ( 0 )  =a+ exp ( i 0 )  + h.c., (2 )  

whose normal variances 

D=( ( A x ( @ = o )  ) ' > N ,  F=(  ( A X ( @ = ~ / ~ ) ) ' ) N ,  
< ( b X ' ) Z ) ~ = ( X 2 ) - < X ) 2 - ' f  

are measured by a heterodyne detector, in which a reference 
wave interferes with the investigated wave. For a field in the 
coherent state we have D = F = 0, whereas in the squeezed 
state either D or F is negative. For D < 0 we speak of an 
amplitude-squeezed state of the field, and for F <  0 we speak 
of a phase-squeezed state of the field. Along with the var- 
iances of quadrature operator (2) ,  we will be interested in 
the spectrum of the photocurrent of the detector or the noise 
spectrum of the light i"'(R). This quantity depends on the 
field which is incident on the detector" ( f i  = c = e = 1 ) : 

itz) (Q) = dr<Et  ( r ,  t )  E (r, t )  ) 
0 

x d r  ciQ'<E+ (r , ,  t )  E+ ( r z ,  t + r )  E ( I .  t + r )  E  ( r t ,  f) ). 

( 3  

Here 

?* 
J Wu 

a 
FIG. 1. I )  active medium, 11) parametric crystal. Under each element is 
shown the corresponding level scheme; w is the laser frequency; the thick 
arrow indicates pumping of the active medium; a )  second harmonic gen- 
eration, b )  subharmonic generation; 111) parametric cell interacting with 

A ~ / 2  external coherent light 2w; T )  beam splitter; h )  heterodyne wave. 
- - - ,  /:-- , - 
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is the Heisenberg operator of the electromagnetic field inten- 
sity, w is the mean frequency of the radiation, 7 is the quan- 
tum efficiency of the detector. The integration in Eq. (3)  is 
over the area of the photocathode. The first term in Eq. ( 3 )  
is independent of frequency and is the photocurrent shot 
noise. The second is the excess noise. For a coherent field the 
excess noise component is equal to zero, and one speaks of 
the shot-noise or standard quantum limit of the sensitivity of 
the detector. For squeezed light the excess component can be 
negative, and the shot noise is either partially or completely 
compensated, so that the sensitivity of the detector can be 
substantially higher than the standard limit. 

To calculate the correlations in Eq. (3) ,  we use the 
characteristic functional (Ref. 16, p. 56): 

I 

Here the arrows under the operators indicate their disposi- 
tion with respect to the density matrix F of the complete 
"atoms + field" system, and the chronological operator T 
orders the time in the order of increase with respect to F. By 
functional differentiation we can obtain the entire set of nor- 
mally ordered correlation functions of the field from C. 
Thus, for example, 

<a,+ ( t i )  a ,  (t,) ) = - } . { 8y, (t,) 8yi* ( b )  ' ., =O 

Using Eq. ( 1 ), it can be shown that 

where A is the evolution operator (in our case nonunitary) 
which propagates the density matrix of the field: 
p ( t )  = A(t,O)p(O). Note that K ( t )  = p ( t )  holds for 
w, = 0. 

To solve Eq. (4) ,  we make use of the representation 
proposed in Ref. 16 ( p. 122) : 

~ ( t ) = j  b a R ( a , t ; s ) ~ ( a , - s ) ,  

R ( a ,  t ;  s )=Sp  {K( t )A(a ,  s ) ) ,  
1 

A (a. S )  = - j d2P exp ($ I I 2+pa+-B'n) exp (-pa'+p'a), 
n 

where the parameter s characterizes the type of basis over 
which the expansion is carried out. Thus, s = 1 corresponds 
to the expansion of K over the coherent states. Generaliza- 
tion of Eq. (5 )  to the two-mode case under consideration is 
trivial: a-a, = {a,,a,), s-s, = {sI,s2), etc. We write the 
equation for x, which follows from Eq. (4), in the diffusion 

approximation, i.e., keeping only terms up to second order in 
a ,  and a,: 

2 

a z  +- cij (a,) +M (ah) ] } R  + C.C. 
3aida; 

We assume that the fluctuations of the field are small. This 
allows us to linearize the coefficients of the derivatives about 
their classical values z, = {z,,~,): 

Bij (ak)  =Bij ( Z k ) ,  ~ i j ( % )  =cij j ~ k )  ( 7 )  

When we take Eq. ( 7 )  into account, Eq. (6)  admits an exact 
solution. Here one obtains the equations of the semiclassical 
theory z,,, = A ,,, (z, , y=O). Using the approximation of 
small fluctuations means that the variances should be not 
too large: ID ,,, I, IF ,,, I 4 It,,, I ', so that, for example, fields 
with Gaussian or super-Gaussian statistics cannot be ana- 
lyzed within the framework of these approximations. 

Solution of Eq. (6 )  gives rise to a closed system of equa- 
tions for the variance D ,,, and F,,, . These quantities corre- 
spond to the amplitude and phase fluctuations, which in the 
standard generation regime turn out to be independent and 
satisfy the following equations: 

Here the quantities Yd,f  describe the statistical coupling of 
the waves: 

The upper sign corresponds to Y, , and the lower one to Y, . 
The solutions of Eq. (6) ,  taking Eqs. (8)  into account, 

allow one to determine the characteristic functional C and, 
consequently, to calculate all the necessary correlations of 
the fields. Note that the resulting means characterize the 
field inside the cavity. Their coupling with the extracavity 
means is discussed in detail for the case of SHG. 

2. INTRACAVITY FREQUENCY DOUBLING 

In this section we will consider the scheme shown in 
Fig. la. In accordance with the accepted terminology in non- 
linear optics, we will call the field with frequency w the refer- 
ence radiation, indicating its variables by the subscript "1" 
and those associated with the second harmonic by the sub- 
script "2". We will assume that the initial laser can generate 
amplitude-squeezed light. 

2.1. Semiclassical equations: stationary generation regime 

For the complex amplitudes of the reference radiation 
and the second harmonic 
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where 

the semiclassical equations take the form 

Ar1 is=-- 2 1 k 1 rir2 sin ~ p - ' l ~ C ~ r ~ ,  
I f  firI' 

jz= 1 k lr12 sin Q - - ' / ~ C ~ ~ , ,  
. lk l  I) = - ( r i 2 - 4 r 2 Z ) ~ ~ s  $, Ip=2~p~-~p~+arg k .  

Here A and ,6 are respectively the linear gain coefficient and 
the saturation parameter of the laser transition, and C ,  and 
C, are the output fluxes of the reference radiation and the 
second harmonic from the cavity. The conditions of the sta- 
tionary regime for the dimensionless field intensities 
I, = fir: and I? = ,6r: and the difference phase $ reduce to 
the relations 

where the value $ = n-/2 is found to be stable under the con- 
dition that 

From Eqs. (8)  it can be seen that the intensity of the second 
harmonic becomes proportional to I:, and for the reference 
radiation, as in the case of a laser with a two-photon absorp- 
tion cell, nonlinear losses arise [the term II in the first of Eqs. 
( 9 ) ] .  Under condition (10) the intensity of the second har- 
monic is bounded: I, < (1/4)1,. This means that inside the 
cavity the power coefficient of conversion to the second har- 
monic cannot exceed 50%. 

2.2. Squeezing inside and outside the cavity; suppression of 
photocurrent noise 

In this section we will be interested only in the ampli- 
tude fluctuations of the fields since for the frequency dou- 
bling scheme (the scheme with SHG) one can expect 
smoothing effects specifically for the amplitude fluctu- 
ations. The stationary values of the variances D ,,, inside the 
cavity are calculated with the help of Eqs. (8) .  The values of 
the coefficients in Eqs. (8 )  are the following: 

The quantity Dl,, which appears here is the value of the vari- 
ance D l  in the initial laser without the parametric crystal and 
depends on the nature of the pumping of the active medium. 
For an ordinary laser 

For a laser with regular pumping to the upper level" 

Here yo and y, are the relaxation constants of the upper and 
lower levels of the working transition. 

From Eqs. ( 11) we obtain a relation between the sta- 
tionary variances of the amplitude fluctuations of the refer- 
ence radiation-D, and the second harmonic-D, 

Since 0 < t < 1, the value of D, is always closer to zero than 
that of Dl .  The value D = 0 corresponds to a coherent state 
of the mode and Poisson statistics of the photons in the cav- 
ity. Thus in the scheme depicted in Fig. l a  the photon statis- 
tics of the second harmonic will be closer to a Poisson distri- 
bution than the statistics of the reference radiation of the 
laser. Nonetheless, states of the field in the cavity are possi- 
ble in which both modes are squeezed: Dl,  D, <O. Since a 
transparent nonlinear crystal does not have any internal 
noise, the antibunched photon pairs of the reference radi- 
ation are conveited into antibunched photons of the second 
harmonic. 

Using Eqs. ( 12), we will first find the values of the var- 
iances for an ordinary laser with chaotic pumping 
(Dl,, = 0) .  The limiting value of the normal variance of the 
amplitude quadrature for the reference radiation is 
D ,  = - 3/8, and for the second harmonic, D, = - 1/8. 

For a laser with regular pumping (D,,, = - 1/2) the 
corresponding limiting squeezing is D l  = - 3/4, 
D2 = - 1/4. 

These limiting values of the squeezing inside the cavity 
are realized under the following conditions: the laser should 
operate in a substantially superthreshold regime I, $1, and 
the power of the second harmonic in the cavity should be 
close to the limiting stable value I, 5 ( 1/4)L2, but the inten- 
sity of the second harmonic leaving the cavity, due to trans- 
mission losses at  the exit mirror of the resonator, should be 
much smaller than the output intensity of the reference radi- 
ation, i.e., I i u t $ I y t .  I t  is found, however, that while such 
rigid conditions are necessary for intracavity squeezing, 
squeezing of light outside the cavity, which also determines 
the photocurrent noise under our conditions, can be 
achieved more simply. 

The photocurrent noise spectrum of the j th harmonic 
of the field ( j = 1,2) in the scheme in Fig. l a  is calculated on 
the basis of Eq. (3 )  

w 

The correlation function entering into this expression is cal- 
culated with the help of Eqs. (4)-(7) 

where n = 2 if j = 1, and vice versa. The constants y,,, are 
the temporal characteristics of the decay of the amplitude 
correlations in a cavity with two coupled quantum modes 

Dz=tDi, t=II(II+dl+dz)-',  ( 12) Substituting Eq. ( 14) into Eq. ( 13), we obtain 
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To analyze the statistics of the recorded light, we write the 
magnitudes of the spectral densities of the photocurrents in 
the low-frequency region 

The second term in braces (excluding the quantum effi- 
ciency 77) is the sub-Poisson parameter 5, of the recorded 
light or in the approximation of small fluctuations the nor- 
mal variance of the amplitude quadrature DJOUt of the jth 
mode outside the cavity, which characterizes the depth of 
the dip in the low-frequency region of the spectrum. Thus it 
can be seen that squeezing of the reference radiation outside 
the cavity depends not only on the squeezing of this mode 
inside the cavity, but also on the squeezing of the second 
harmonic inside the cavity. Squeezing of the second harmon- 
ic outside the cavity depends only on the squeezing of the 
same mode inside the cavity. 

Let us find the values of 6 ,,, which describe the noise 
spectrum of the detector in the low-frequency region. We 
assume, as before, that the laser is substantially above the 
threshold, I, $1. In this case 5, will depend only on the one 
parameter C , /n ,  which is the ratio of the probability of the 
direct departure of a photon of reference radiation from the 
cavity to the probability of its departure via conversion to 
the second harmonic. 

For an ordinary laser with chaotic pumping, calcula- 
tion based on formulas ( 12), ( 15 ) , and ( 17 ) gives for the 
second harmonic light 

The best suppression of second harmonic noise takes place 
when the cavity is almost completely blocked for light at the 
laser frequency (C, < n ) .  One then has{* = - 1/2, i.e., the 
photocurrent noise close to zero frequency is suppressed 
twice as well as the shot noise limit. 

For the reference radiation 

Its limiting value g, = - 1/8 is reached at C ,  = 2 n .  
For a laser with regular pumping 

It is clear that when the crystal is not present in the 
cavity (II = O ) ,  for a laser with regular pumping the photo- 
current noise at the laser frequency is completely sup- 
pressed: {, = - 1. In the second limiting case, when the 
cavity is blocked for the reference radiation ( C , < n ) ,  
g2 = - 1. There exists, however, conditions for which the 
laser radiates both waves in the squeezed state with sub- 

Poisson detector noise, which for both waves is twice as 
small as the shot noise limit (Fig. 2a). 

We show, finally the form of the photocurrent noise 
spectrum ( 16) for the second harmonic under the condi- 
tions C,  < n, I, $ 1, n 5 C2/2 (Fig. 2b). 

3. INTRACAVITY SG 

In this section we consider the scheme shown in Fig. lb. 
In accordance with the terminology of nonlinear optics we 
call the wave at frequency w which is generated by the active 
medium the pump wave, and the wave with frequency w / 2 ,  
the subharmonic. The characteristics of the pump wave will 
be labelled by the index "2" and those of the subharmonic, 
by the index "1". We now assume that the initial source 
generates phase-squeezed light. 

3.1. Semiclassical equations; stationary regime of SG 

For the complex amplitudes of the pump wave and the 
subharmonic 

the semiclassical problem of intracavity SG has the form 

Here the quantity m characterizes the mechanism which 
leads to squeezing of the phase of the initial source. For the 
chosen model this mechanism is intracavity parametric con- 
version provided by an intracavity parametric cell (see Ap- 
pendix) with which the external classical monochromatic 
wave interacts. 

For real amplitudes and phases system ( 18) takes the 
form 

FIG. 2. Second harmonic generation; a )  6, is the sub-Poisson parameter 
of the fundamental radiation, 4, is the sub-Poisson parameter of the sec- 
ond harmonic; b) photocurrent noise spectrum for the second harmonic. 

1123 Sov. Phys. JETP 69 (6), December 1989 V. N. Gorbachev and E. S. Polzik 1123 



ti=-2 I k lr,r, sin $-Clr,/2, 
iz=Arz/(1+Br22) + 1 mi r, cos $,+ I k Iri%in I$--C,r2/2, 

+ = I  kl (ri2--4rZ2) cos $/r2- I ml sin $,, 
$,=2 1 kl ri2 cos $/r2-2 1 ml sin I$,, 

$=2cp,-cp2+arg k*, $,=arg m-Zcp,. (19) 

Here C ,  and C ,  are the output fluxes of the subharmonic and 
the pump wave from the cavity. The stationary solution of 
the system (19) with nonzero pump-wave intensities 
I, = fir$ and subharmonic intensity I ,  = pr: is given by the 
relations 

2Al(1+12) =C,+n-21 m.1, 

In this case it is necessary to satisfy the inequality 

Analysis shows that solution (20) is stable under the condi- 
tions 

Along with solution (20), there exists a regime which is sta- 
ble for C ,  > 4 / k  I r, and for which the classical amplitude of 
the subharmonic is equal to zero ( r ,  = 0) .  This regime will 
be considered in the final section. 

3.2. Generation of two squeezed fields with suppression of 
the photocurrent noise 

Of greatest interest for SG are phase fluctuations of the 
fields whose variances F, and F2 satisfy system of equations 
(8)  with the coefficients 

ft=C,, fi=2[rnj-n/2, b,= (C,II/2)'", 

pi=-C,, p2= (0+1) (C,-II-2ln~l) 

-21ml. a=2y.(y,+y,)'Y2+1. 

Here y, and y,, are the widths of the upper and lower work- 
ing levels of the active medium. 

Let us first consider how the fluctuations of the pump 
wave vary with location of the crystal in the cavity. From 
Eqs. (8)  we obtain the following expression for the station- 
ary variance of the pump wave F2 

which for n = 0 corresponds to the variance of the phase of 
the initial source. The latter possesses maximum squeezing 
(F,  t - 1/2) [Ref. 141 for 

If the crystal is put into a source whose light possesses maxi- 
mum phase squeezing, then the squeezed state of the pump 
wave will be destroyed. This happens because the generation 
of the subharmonic introduces losses for the pump wave. In 
fact, under condition (22) expression (21) takes the form 

from which it is clear that F2 = - 1/2 at I'I = 0. The latter 
condition, however, is fulfilled not only when the crystal is 
not present in the cavity, but also for the generation regime 
with I ,  + 0. 

The phase fluctuations of the subharmonic and the 
pump wave in the stationary regime are connected by the 
relation 

Here, in the absence of SHG [see Eqs. (12)], an intrinsic 
mechanism appears which leads to squeezing of the subhar- 
monic independent of the state of the pump wave. Thus, for 
t ( l  or 

we have F, = - 1/2, but the quantity F2 does not play any 
role here whatsoever. This mechanism proves to be most 
efficient if the intensity of the subharmonic is small: as I ,  -0 
we have t z O  and F2 z - 1/2. 

The special features of the phase-squeezed states asso- 
ciated with an increase of photodetection sensitivity are 
manifested by heterodyne detection. Let there be placed in 
front of the detector a nonabsorbing mirror with transmissi- 
vity T (see Fig. lb),  mixing the coherent reference wave and 
the phase-squeezed light. If the phase difference in the re- 
cording channel is equal to ~ / 2 ,  then for the noise spectrum 
in the low-frequency region i j 2 ) (0 ) ,  j = 1,2, in the case of a 
strong reference wave we obtain the following expressions: 

Here the variances F , , ,  are determined according to Eqs. 
(21) and (23), and the time constants of the phase correla- 
tions, as in the case of SHG, are given by the roots of the 
equation 

We present expressions for the noise spectra of the 
pump wave and the subharmonic under condition (22), i.e., 
in the case in which the initial source possesses maximum 
squeezing. Thus, for the pump wave 

and for the subharmonic 

the shot noise component of both fields can be almost com- 
pletely suppressed during efficient photodetection 
(TIT I2z 1). This case is of the greatest practical interest 
since the sensitivity of the detector is now higher than the 
standard limit. 

Thus, for the SG process a regime can arise in which 
both generating fields-both the pump wave and the subhar- 
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monic-turn out to be squeezed and their noise components 
are almost completely suppressed. The main condition for 
this [see Eqs. (24) and (25) ] is that the quantity H be small, 
in which case the crystal introduces almost no losses to the 
pump wave and, consequently, does not destroy the 
squeezed state, and the squeezing of the subharmonic is 
formed under the action of an intrinsic mechanism. 

3.3. Generation of squeezed vacuum 

Strictly speaking, the regime with I, = 0 cannot be con- 
sidered within the framework of the considered approxima- 
tions of small fluctuations. The point is that the variance Dl  
of the subharmonic here turns out to be larger than for the 
case of a Gaussian wave. In order to consider the special 
features of this interesting regime, let us begin with the fol- 
lowing physical situation. Let the pump wave generated by 
the active medium be strong and have only small fluctu- 
ations: I ,%(n,) ,  la,--z21&iz2i, where (n , )  is the mean 
number of subharmonic photons in the cavity, and 
I, = p lz,1 is the dimensionless intensity of the pump wave. 
We can then neglect the influence of the weak subharmonic 
wave on the pump wave, assuming the latter to be given by 
the classical wave. Under these conditions the following 
equation follows from Eq. (6)  for the subharmonic 

a, (u,, 0; =mi(al, O; s ~ ) .  

Here the complex amplitude of the pump wave is determined 
from Eqs. ( 18 ) for z,  = 0, and the complex conjugate oper- 
ation does not act on s, .  The function @, (a,,O;s, ) is the s,-  
ordered quasiprobability, which corresponds to the initial 
state of the subharmonic. For y ,  = 0 K, (a,,t;s,) 
= @, (a ,,t;s, ) . This equation corresponds to the SG process 
with prescribed classical pumping. It is described by the ef- 
fective Hamiltonian 

but with damping taken into account since the formation of 
the subharmonic takes place in the cavity and the light then 
leaves the cavity. 

Equation (26) admits an exact solution, with the help 
of which it is possible to calculate the characteristic func- 
tional 

f $2 

X exp (-2icp2) + C.C. ) 

Here 
rp2=arg z2, I',.z=C, (IT%-')/2, Dl=(%-4)-i 

F ig -  (%+I)-', x=C1/41kz21. 

In this case the stationary generation regime with zero com- 
plex field amplitude of the subharmonic 
(a , )  = Sp{ P(t)al}  = 0 is established. The regime becomes 
stable for x > 1. Since (a , )  = 0 but F, < O  for the subhar- 
monic, this state is called the squeezed vacuum. We note 
some of its properties. Calculating the variance of the photon 
number, we find 

Hence it is clear that phase squeezing (F, < 0), like ampli- 
tude squeezing, leads to super-Gaussian photon statistics: 
6, > 2 (n , ) . Recall that for Gaussian statistics 6 = (n , ) . 

From the practical point of view, the squeezed vacuum 
of the subharmonic is of interest because by mixing it with a 
strong pump wave it is possible to lower the photocurrent 
shot noise. For mixing of the subharmonic with a strong 
coherent wave, we obtain the following expression for the 
photocurrent spectrum 

where the shot-noise component is,,, is determined by the 
power of the pump wave. In the low-frequency region T I  

Thus, for example, for x = 2 

i.e., under conditions of ideal photodetection the shot noise 
is suppressed by almost a factor of ten. 

In Refs. 9-1 1 SG was considered in a cavity irradiated 
by a strong external pump wave, and it was demonstrated 
that the subharmonic leaving the cavity can be found in the 
squeezed vacuum state. The fact that such a regime also ex- 
ists in our case is not surprisin&-since in the classical pump 
field the general nature of the fluctuations of the subhar- 
monic should not depend on where the pump source is locat- 
ed-whether it be inside or outside the cavity. However, in 
comparison with the extracavity scheme, obviously the 
characteristics of the stationary regime and the conditions of 
stability will be substantially different. 

APPENDIX 

The equation for the initial laser (in the absence of the 
transparent parametric crystal) according to the results of 
Refs. 13 and 14 is written as follows: 
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Hereg is the constant of interaction with the working transi- 
tion of the active medium, y, and y, are the longitudinal 
decay constants of the upper and lower levels of the working 
transition, yUb is the transverse relaxation constant, N, is 
the stationary population of the upper working level, the 
population of the lower level is set equal to zero, a+ and a are 
the creation and destruction operators of the field at the fre- 
quency w generated by the active medium, and we have writ- 
ten E = im/2 ,  where the quantity m is determined by the 
interaction of the parametric cell with the external field.14 
The arrows under the operators indicate their disposition 
with respect top. 

The case 5 = 1, p = 0 corresponds to a laser with sub- 
Poisson photon statistics which generates an amplitude- 
squeezed field. Such a source is used in the study of SHG. 
The case 5 = 0, p = 1 corresponds to a laser with a paramet- 
ric cell whose field can be phase-squeezed. This type of 
source is used in the study of SG. The outflow of radiation 
from the cavity is modeled in the following way: 

j-1.1 

The saturation parameter P arising in the defintion of 
the dimensionless field intensities is given by 
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