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It is shown that internal conical refraction ofacoustic and electromagnetic wave beams is 
characterized by distributions of the polarization vectors with disclination-type singularities 
("polarization disclinations" ) representing lines of zero amplitude of the field such that the 
angular rotation of the polarization vector is a multiple of 2.ir when it goes around such a line. 

INTRODUCTION 

The topology of acoustic and electromagnetic wave 
fields is being investigated extensively at present. The most 
general concepts which can be used to describe the charac- 
teristic features of the spatial distribution of the polarization 
and phase of a large class of wave processes can be found in 
Refs. 1-7. Theoretical and experimental investigations of 
various specific physical situations leading to the occurrence 
of such characteristics are reported in Refs. 8-14. We shall 
show that under the conditions of the classical effect of inter- 
nal conical refraction the fields of the polarization vectors of 
acoustic and optical teams exhibits disclination-type singu- 
larities. 

Plane elastic and electromagnetic waves in crystals are 
characterized by a singular dependence of the orientation of 
the unit polarization vectors a = u/u  and d = D/D ( u  and D 
are the elastic displacement and electrical induction vec- 
tors) on the direction of propagation near the acoustic or 
optic axis, respectively, i.e., close to the direction of degener- 
acy of the phase velocity of isonormal elastic or electromag- 
netic waves." If the relevant polarization vector a or d goes 
round the wave normal m = k/k along such a degeneracy 
direction m following a cone with an infinitesimally small 
vertex angle, this vector is rotated by an angle 2 ~ n ,  where n 
is the PoincarC index of a singular point m, of the vector field 
a(m) or d(m). In the case of the waves that propagate exact- 
ly along an acoustic or optic axis m,, the polarization vectors 
( a  and d, respectively) can have any orientation in certain 
planes. The optic axis corresponds to n = 1 if the medium is 
uniaxial, n = 1/2 if the medium is biaxial. In the case of 
acoustic axes we can have the values n = 0, _+ 1/2, and _+ 1. 
A classification of the polarization singularities, corre- 
sponding to acoustic axes of different types in crystals of 
arbitrary anisotropy, is constructed in Ref. 11. A similar 
investigation of the vector characteristics of a quasistatic 
electric field, which accompanies the propagation of sound 
in piezoelectrics, is reported in Ref. 12. 

When we replace the plane-wave approximation with 
packets of elastic or electromagnetic waves, we have to an- 
swer the following natural question: how do such polariza- 
tion singularities in the k space affect the wave fields in r 
space for beams propagating along the acoustic and optic 
axes? We investigate from this point of view the phenome- 
non of internal conical refraction of ultrasonic and optical 
beams. It is known that such refraction occurs in the direc- 
tions of acoustic axes of the conical type and optic axes of 
biaxial crystals. Either type of axis is characterized by a junc- 
tion ("contact") of isofrequency sheets where the splitting 

of the sheets is linear as a function of the tilt away from the 
degeneracy direction. In this case the polarization singulari- 
ties of weakly diverging wave packets should be manifested 
particularly strikingly. 

It should be pointed out that in solving the problem in 
question the initial relationships are the results of Refs. 15 
and 16, where analytic expressions are obtained for the wave 
fields of the beams propagating along the acoustic and optic 
axes of different types. 

ACOUSTIC BEAMS 

We consider a'monochromatic ultrasonic beam of fre- 
quency w propagating along an acoustic axis of the conical 
type, parallel to a threefold symmetry axis, 

u (r, t )  =CA (r) ei(Xz-et),  (1 

where z is directed along the threefold symmetry axis; 
K = w ( d  /c,,) ' I 2 ;  d is the density of the investigated crystal; 
c, is an elastic modulus. We assume that at the crystal 
boundary (z = 0) the displacement field is given by the Lo- 
rentz distribution 

0 
A (r) ( , - o = ~ o  - (02f x 2 f  yZ) -%, 

2n 
(2)  

where a, is perpendicular to the z axis. The last condition 
relating to the orientation of the polarization a, makes it 
possible to represent a weakly diverging wave packet 
(OK> 1 ) by a superposition of transverse plane waves char- 
acterized by a polarization singularity with a PoincarC index 
n = - 1/2 near the acoustic axis (see Ref. 1 1 ) . The expres- 
sion for the vector amplitude of the beam A(r) ,  perpendicu- 
lar to the z axis, is obtained in Ref. 16 without allowance for 
the diffraction divergence and can be represented in the form 

1 
z- 

3g 
2n p - % { [ o  COS?+ PI sin 2 s i n 6 ( c p )  2 Is, 

where the radius vector r is defined in a cylindrical coordi- 
nate system [p = (x2 + y Z )  tan p = y / x ]  , 

1105 Sov. Phys. JETP 69 (6), December 1989 0038-5646/89/121105-04$04.00 @ 1990 American Institute of Physics 1105 



and @ is the angle at the base of a circular refraction cone 
with its axis parallel to the z axis. 

We shall determine whether there is a planar vector 
field A ( r )  described by Eq. (2 )  or any orientational singu- 
larities [i.e., singular points of the field of unit vectors with 
the polarization a ( r )  = A/JA/  1. Clearly, if we allow for the 
requirements of continuity of the function A ( r ) ,  we find that 
such singularities can exist only in the vicinity of the points 
where A( r )  = 0. We shall write down the beam polarization 
of the crystal boundary z = 0 in the form a, = (cos R, sin R, 
0). Analysis shows that the equation A( r )  = 0 may be satis- 
fied only in the x'z plane, where the x' axis is obtained by 
rotating the x axis about the z axis by an angle p,, = a/ 
2 - 2R. In this plane the equation A ( r )  = 0 can be written 
in the form 

'b 'b a cos - + ( X I - p z )  sin - = 0. 
2 2 (8 )  

The relationship (8 )  reduces to the cubic equation 

which has only one root satisfying the condition z > 0: 

The solution (10) defines in the x'z plane the line 
z = z (x l )  (Fig. 1 ) on which the amplitude of the beam A(r )  
vanishes. Additional analysis of Eq. ( 3 )  for A ( r )  shows that 
a displacement field in any plane characterized by 
z = const > z, (Fig. 1 ) has orientational singularities with 
the Poincart indices n = & 1 in the vicinity of the points 
where the z = z (x l )  line found above intersects this plane 
(Fig. 2a). As z approaches z,, the singularities come closer 
together and at z = z, they merge to form a point with the 
index n = 0 (Fig. 2b). In the case of sections defined by 
z = const <zo the amplitude of the displacement field does 
not vanish in the beam and the field does not have orienta- 
tional singularities. 

It therefore follows that the line z = z ( x f )  can be inter- 
preted as a polarization disclination. The wave field u ( r )  

FIG. 1. Shape of a polarization disclination line in an acoustic beam. The 
figure shows profiles of the beam amplitude in the zx' plane in different 
z = const sections (a, b, c, d ) .  The dashed lines are the generators of an 
internal refraction cone. Here and in Figs. 2 and 3 it is assumed that the 
value ofB = tan @ is p = 0.31, which represents quartz. 

FIG. 2. Displacement field in an acoustic beam in transverse sections 
shown in Fig. 1. Figures 2a and 2b identify the points where the field 
vanishes; Fig. 2a shows separately the images of the polarization singular- 
ities on an enlarged scale. 

vanishes at any point on such a disclination" and it is char- 
acterized by an orientational singularity with the index 
n = 1 or n = - 1 in each z = const > z, plane. We recall 
that the sign of the index n is regarded as positive if the 
directions of rotation of the vectors r and A ( r )  coincide and 
it is assumed that the orientations of the normals (the ends of 
which determine the directions of such rotation) meet at an 
acute angle. It therefore follows that the sign of n depends on 
the selection rule applicable to a plane R in which the radius 
vector r goes round a singularity of the field A( r )  . The plane 
R is selected above to coincide with the rotation plane A ( r ) ,  
i.e., it is assumed to be orthogonal to the z axis. In this case 
the point z = z, separates a disclination line into two 
branches with different signs of the index n = + 1. An alter- 
native rule would specify orientation of this rotate plane R 
relative to the z(xl )  line: for example, the R plane may be 
selected to be always orthogonal to the z(x')  line. We can 
easily see that in this case the sign of the index n along the 
whole z ( x f )  line remains constant (positive or negative de- 
pending on the accepted convention relating to the "direc- 
tion" of a disclination line), with the exception of the point 

FIG. 3. Profiles of an acoustic beam obtained in the z / u  = 3.6 case (sec- 
tion a in Fig. 1 ) along the directions shown in the inset: 1 ) Ox; 2 )  Ox'; 3) 
OY. 
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z, where the sign of n can be found from the condition of 
continuity. 

Figure 3 shows distributions of the scalar amplitude of 
the beam lu(r) I at z = const for different values of the azi- 
muth p. An amplitude maximum occurs in the vicinity of the 
direction of the group velocity corresponding to the polar- 
ization a, specified on the entry plane of the crystal (see Ref. 
17). 

In a piezoelectric an induction wave of a quasistatic 
electric field, which accompanies the propagation of sound, 
is related to a field of mechanical displacements of Eq. ( 1 ) in 
the vicinity of the threefold axis: 

(2 is the tensor of the piezoelectric coefficients). Therefore, 
the relevant vector field D ( r )  also includes a polarization 
disclination z ( x f )  defined by Eq. (10) and singularities of 
the field D ( r )  located in its vicinity are characterized by the 
same values of the index n as the singularities of the field 
~ ( r )  (see Ref. 12) because of the condition 
det e,,, >O(i, j =  1,2). 

OPTICAL BEAMS 

We consider the distribution of the electrical induction 
in a beam of electromagnetic waves, 

D (r) =CDo (r) ei(Kz-*t  ), (12) 

which propagates along an optic axis lying in a symmetry 
plane x ,  = 0 of a transparent nongyrotropic nonmagnetic 
crystal with the monoclinic symmetry. The direction z rep- 
resenting the optic axis makes an angle 0, with the x, crys- 
tallographic axis; K = w~:, /c, where c is the velocity of light 
in vacuum; E~ represents here and later the components of 
the permittivity tensor expressed in terms of the crystallo- 
graphic coordinate system x , ,  x,, and x , .  In this case the 
direction of the axis of a circular refraction cone (cone of 
rays) lying in the symmetry plane is tilted, relative to the 
z axis which is one of the generators of the cone, at an 
angle q5 = tan-ID, where 0 = [ ( E ; '  - &&')sin 219, 
+ 2~23 'COS 24, ] / ~ E G  (Ref. 15). We shall assume that the 
wave field of the beam along the z = 0 boundary of a crystal 
is described by a Lorentz distribution of the form (2)  with an 
initial polarization do = (cos R,sin R,O). The expression for 
Do ( r )  obtained in Ref. 15 can be represented in a form simi- 
lar to Eq. (3) .  Then, instead of Eq. (4)  we have 

and, moreover, there is a change in the meaning of the pa- 
ramete rs~  and p, which should now be measured from the 
direction of the refraction cone axis, i.e. (see Fig. 4)  

Using this relationship between the expressions for the 
acoustic and optical beams, we can readily find the shape of a 
disclination in an optical beam [i.e., we can find the solution 
of the equation Do ( r )  = 0]  using the results of the preceding 
section. We can easily see that Do ( r )  = 0 when q, = 21R, i.e., 
in the52 plane (Fig. 4 ) ,  where the t axis is directed along the 
refraction cone and the 2 axis is obtained by rotation of the x 
axis about 2 by an angle x corresponding to the condition 

X 

FIG. 4. Geometry of the problem in the case of an optical beam. 

tg x=cos @ ctg 251. (15) 

In this plane a disclination line i = t ( 2 )  is described by an 
equation which is obtained from Eq. ( 10) by the substitution 
(Fig. 4 )  

where 

sin y=sin 0 cos 251. (17) 

CONCLUSIONS 

Results show that internal conical refraction of ultra- 
sonic and optical beams creates polarization disclinations, 
which are lines of orientational singularities in the fields of 
the vector amplitudes A ( r )  and D,(r) .  We considered 
beams with a Lorentzian profile for which an answer can be 
obtained in an analytic form. On the other hand, we can 
expect that in the case of "topologically continuous" 
changes in the beam profile these disclinations are suitably 
deformed but are not destroyed. It should also be mentioned 
that the geometric locus of singularities of the planar vector 
field A(r  ) or D, ( r  ), defined in three-dimensional space by 
the equation A(r )  = 0 or D, ( r )  = 0, is generally a line,'' 
i.e., under the conditions considered here the wave field of 
any linearly polarized acoustic or optical beam should have a 
linear (and not point or planar) stationary "defect" in the 
vector amplitude distribution. 

We shall point out one general difference between the 
orientational singularities of the wave fields in the k and r 
spaces. In the k space each direction of the wave normal 
m = k/k corresponds to its "own" plane wave with a unit 
polarization vector a or d, defined apart from the sign. Con- 
sequently, in the field of the polarizations of plane waves the 
vectors a ( m )  or d (m)  can rotate by an angle which is a mul- 
tiple of .rr when m follows a path around a singularity m, 
where the orientation of the polarization is arbitrary in the 
degeneracy plane, i.e., the PoincarC index of a polarization 
singularity in the k space can be a half-integer. In the r space 
the wave fields of beams u ( r )  or D ( r )  should be continuous, 
because in this case the orientational singularities appear in 
the vicinity of the points A ( r )  = 0 and D, ( r )  = 0, and can 
be represented only by integral (or half-integral) PoincarC 
indices (see Refs. 4-7). In particular, in the situation consid- 
ered in the present paper the singularities in k space charac- 
terized by the indices n = - 1/2 in the case of acoustic 
beams and by n = 1/2 in the case of optical beams "gener- 
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ate" in r space singularities with the indices n = + 1 in sec- 
tions of wave beams. 

In the case of absorbing and gyrotropic media the topo- 
logical samples described above should be modified in the 
spirit of Ref. 6, bearing in mind that in such media the wave 
polarization is generally not characterized by vectors but by 
ellipses. 

The first experimental attempt to analyze the distribu- 
tion of the polarization field in a section of an acoustic beam 
undergoing conical refraction was made in Ref. 17. The re- 
sults obtained suggested that it should be possible to detect 
experimentally the disclinations described above in acoustic 
beams. And even more promising is the possibility of observ- 
ing such polarization singularities in optical beams. 

The authors are deeply grateful to B.Ya. Zel'dovich for 
drawing their attention to the problem discussed above. 

"For simplicity, we ignore the spatial dispersion and absorption, i.e., we 
consider the case of the linear polarization waves. 

"It should be noted that such a disclination is stationary (time-indepen- 
dent ), in contrast to a topological model of a disclination of an elliptical- 
ly polarized wave field discussed in Refs. 4, 5, 7. 

"The codimensionality of a manifold of zero vectors on a plane is 2 and, 
consequently, the dimensionality of the corresponding inverse image in 
the three-dimensional r space is unity. 
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