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It is shown that, in the field of randomly distributed Coulomb centers, besides Gaussian and 
Poissonian localized states there also exist hybrid states whose binding energy and properties are 
determined jointly by the quantum localization of electrons on small-scale Poissonian clusters 
and by the classical shift of the quantum level in the field oflarge-scale Gaussian fluctuations. A 
method ofcalculating the density of the hybrid states is proposed. It is established that, for all 
realistic values of the binding energy a, the optimal Poissonian fluctuations are not quasi-point 
nuclei, small in comparison with the radius of the first Bohr orbit, but, on the contrary, are large in 
comparison with the latter, by virtue of which the large-a asymptotic form of the density of 
Poissonian states in doped semiconductors significantly underestimates its value. For the 
example of a strongly doped semiconductor it is demonstrated that the spectrum of the density of 
localized states contains not only a Gaussian and a Poissonian part but also a broad energy 
interval in which hybrid states dominate. It is shown that the relatively rare repulsive hybrid 
states are distinguished by extremely small electron-capture coefficients and can have a 
substantial effect on nonequilibrium phenomena in doped semiconductors. 

1. INTRODUCTION 

A distinguishing feature of strong localization of elec- 
trons in a random Coulomb field is the important role of 
fluctuations of substantially different scales in the concen- 
tration of charged centers. Large-scale Gaussian fluctu- 
ations of a size of the order of the range r,,, of the Coulomb 
potential in the medium lead to the formation of states with a 
large binding energy determined by the classical localization 
of the electron" in deep wells of the potential relief. Strongly 
bound states in a random Coulomb field can also be realized 
in another, essentially quantum manner. We are speaking of 
the localization of electrons on Poissonian (substantially 
non-Gaussian) clusters of attractive centers of extremely 
small, quantum size. As has been shown in a whole series of 
papers devoted to the study of deep tails of the density of 
states in various systems (see, e.g., Refs. 1-3), it is principal- 
ly in these two limiting ways that localization of charge car- 
riers is realized. 

It is obvious that, besides states of these two types, there 
also exist states that are, in essence, hybrids of them, and 
arise in the localization of electrons on small-scale clusters 
that have fallen inside large-scale fluctuations. Such local- 
ization has not been considered previously, not because 
these states are extremely rare and the fluctuations corre- 
sponding to them are not optimal, but because, in the meth- 
ods used to calculate the density ofstates, a restriction on the 
range of scales to be considered has been implicitly assumed. 
But the optimal fluctuations that realize the hybrid states are 
characterized by at least two radically different (a  classical 
and a quantum) length scales. 

The method proposed here for calculating the density of 
states, which makes it possible to find not only the densities 
of the classical and quantum localized states but also the 
density of the hybrid states, is based on the following phys- 
ical considerations. Because of the large difference between 
the classical scale and the quantum scale, with good accura- 
cy we can regard the optimal hybrid fluctuation as a super- 
position of two independent fluctuations: a large-scale, 
Gaussian fluctuation, and a small-scale Poissonian cluster of 
centers. For this reason, the binding energy of a hybrid state 

is equal to the sum of the binding energies of the electron at 
each of these fluctuations separately, and the product of the 
probabilities of formation of these fluctuations gives the 
probability of formation of the hybrid state. 

These considerations can be confirmed without diffi- 
culty, starting from the expression for the density of states 
with binding energy2' a (see, e.g., Ref. 2): 

I V ( e ) = ~ ( ~ 6 ( e - e 1 ) ) ,  I (1) 

where a, is an eigenvalue of the one-particle Schrodinger 
equation for a localized particle of mass m: 

ti2 
- -Aql (r) 4- u(r-r,)@ (r) =-el$[ (r ) .  

2m (2)  
I 

Here, u(r  - r, ) is the potential energy of the particle in the 
field of a Coulomb center situated at the point rj, the symbol 
): denotes summation over all the centers, the symbol (...) 
denotes averaging over the coordinates of these centers, fl is 
the averaging volume, and I is the set of quantum numbers of 
a state. It is clear that the wave function of a particle local- 
ized near a certain point R, is substantially influenced only 
by very close charges that fall within a region of radius r, of 
the same order of magnitude as the characteristic quantum 
size. Therefore, with good accuracy the wave function is de- 
termined by the equation 

h2 i n t  

- - A ( 1  + u (r-rj) $1 (1) =-80141(r). 
2m 

(3) 

where 8'"' denotes summation over the internal charges of 
the region under consideration. Taking the effect of the ex- 
ternal charges on the magnitude of a, into account in first- 
order perturbation theory, we have 

where Zext... = Z... - 8'"' ... . From formulas (1)  and (4a), 
using the identity 
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we obtain an expression for the density of states: 
0 

(5)  
where the symbols ( . . . ) I n t  and (...)'"' denote averaging over 
the coordinates of only the internal and only the external 
charges, respectively. In deriving ( 5 ) we have assumed the 
distribution of charges to be uncorrelated and taken into 
account that E ~ ,  does not depend on the coordinates of the 
external centers. 

The choice of r, is made in the framework of the solu- 
tion of a specific problem. Here it should be borne in mind 
that if r, is significantly greater than the quantum size it is 
just as complicated to solve Eq. ( 3 )  as to solve Eq. (2).  But if 
r, is smaller than the quantum size, the corrections to the 
binding energy of the second (E,,  ) and higher orders become 
significant and formula (4a) becomes incorrect. Even if r, is 
such that E*,  <E,,, formula (5)  is correct, generally speak- 
ing, only with logarithmic accuracy, since the density of 
strongly bound states depends exponentially on the energy. 
And only when the energy correction E,, changes the expo- 
nent of this exponential by less than unity does formula (5)  
have absolute accuracy. 

Henceforth, we study exclusively the bulk properties of 
semiconductors. Since, in the three-dimensional case, 
the overwhelming contribution to the quantity 
(S (E  - E' - E , , ) ) ~ ~ '  is made by the largest-scale fluctu- 
ations, the size of which is considerably greater than the 
quantum size, this quantity does not depend on the quantum 
numbers and is P ( E  - &')-the probability of the classical 
shift of the position of the allowed bands by an amount3' 
E - E'.  Then formula (5)  takes the form 

m m 

where 

pqu(E)= 2- (&(E-cot)) i n t .  

1 

(6a) 

Here N(E,E') is the density of states with total binding ener- 
gy E and quantum energy E',  and p,, ( E )  is the density of 
quantum states. 

Formula (6) is a generalization of expressions obtained 
earlier for the density of states. Thus, for example, neglect- 
ing the effect of the charges on the electron wavefunction, 
i.e., setting I+&, - elkr,&,, = - fi2k 2/2m,~' < 0, we find that 

and formula (6)  goes over into the well known quasiclassical 
expression that arises directly from the original ideas of 
Bonch-Bruevich, Kane, and Keldysh: 

~onsiderablk difficulties arise in the calculation of 
p,, ( E )  for strongly localized Poissonian states in a random 
Coulomb field. Previously, in the solution of this problem 
given in Ref. 4, only the contribution made to the binding 
energy by the long-range part of u(r)  was taken correctly 
into account. Later, in Ref. 5, in which, in essence, the con- 
tribution of the singularity of u ( r )  was assumed to be domi- 

nant, a more accurate expression for p,, ( E ) ,  asymptotically 
correct for large values of E,  was obtained. Below, in Sec. 2, it 
is shown that for all realistic values of E it is important to take 
into account both singularities of the Coulomb potential. 
Thus, in a more exact (than in Ref. 5) calculation of the 
energy and wave function of the ground state of an electron 
on a Poissonian fluctuation, because of the long range of 
u(r)  the decrease of the binding energy with increase of the 
size of the fluctuation occurs much more weakly. As a result, 
the size of an optimal fluctuation is considerably greater 
than the radius of the first Bohr orbit of a point nucleus with 
the same charge, and not considerably smaller than it as 
shown in Ref. 5. As a consequence of the considerably 
greater probability of such fluctuations, the lower bound ob- 
tained in Sec. 3 for the quantity p,, (E)  is greater by many 
orders of magnitude than the values obtained in Refs. 4 and 
5. 

By replacing P(E - E ' )  in (6) by 6(& - E'), we have 
another well known expression N(E) = p,, (E)  (see Refs. 4 
and 5) for the Poissonirin part of the spectrum. However, 
since in the case of the Coulomb potential the characteristic 
energies of the funq,~ions p,, (E)  and P(E) are commensur- 
ate, generally speaking, m d  since these functions decrease 
exponentially ,vith increase of their arguments, the principal 
contribution to the deep tail of the density of states can be 
made hy hybrid states for which E' and E - E' are large posi- 
tive quantities, i.e., in the spectrum N(E) one can distinguish 
not only a Galissian and a Poissonian part but a'so a hybrid 
part, as is illustrated in Sec. 4 for the example of a strongly 
doped semiconductor (SDS). 

Formula (6)  introduces a classification of states by two 
independent parameters-the binding energy E and the 
quantum energy E' ,  and this significantly extends the range 
of states that can be studied. These include not only those 
that make the principal contribution to N(E).  The properties 
of states with the same binding energy but with different 
contributions from the classical and quantum energy can 
differ substantially. Also different will be their influence on 
the properties of the semiconductors. Of special interest are 
the relatively rare strongly localized states with a small or 
even negative binding energy that are formed by small-scale 
clusters of attractive centers that fall within large-scale re- 
pulsive fluctuations. Change of the charge state of such clus- 
ters (charge exchange) is an extremely lengthy process, 
since it is necessary for an electron to pass through a high 
and wide potential barrier. The barrier height, which, by 
virtue of the substantial difference in the scales of the attrac- 
tive and the repulsive fluctuation, is close to E - E' ,  serves as 
the main factor governing the effective coefficient y(&, E ' )  

for capture into such states, which are similar to repulsive 
capture centers. As shown in Sec. 4, Y ( E ,  E ' )  decreases steep- 
ly with increase of the barrier height, as a consequence of 
which it is precisely the relatively rare states with high bar- 
riers that can have the decisive influence on nonequilibrium 
phenomena in semiconductors. 

2. THE OPTIMAL POlSSONlAN FLUCTUATIONS 

As the first step, we shall consider charge fluctuations 
in the approximation of a uniformly charged sphere (UCS). 
In this approach the problem is reduced to solving the Schro- 
dinger equation with a potential produced by a UCS of radi- 
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us R and with total charge Zand then calculating those opti- 
mal values R, and Z, for which the probability of formation 
of fluctuations with the ground-state energy E is a maximum. 
Deep in the forbidden band, where the density of states is 
exponentially small, it is the optimal fluctuations that deter- 
mine the leading term of the logarithmic quantity pqu (&) 

(Ref. I ) ,  and 

where P(Z, ,RE ) is the probability of an optimal cluster. 
The potential energy of an electron in the field of a UCS 

at a distance r from its center is equal to 

In solving this problem we measure all energies in units 
of the ground-state energy of a point nucleus with charge 
Z - Z 'E, ( E ~  = me4/2fi2x2), and lengths in units ofthe Bohr 
radius a, = a, /Z of such a center (a, = fi2x/e2m). The 
Schrodinger equation with the potential (8)  can be solved 
exactly. It has been considered earlier by a number of au- 
thors (e.g., in Ref. 6).  Its wave function p, (r,R) in the S- 
state has the form (see, e.g., Ref. 7) 

c ,~ -Y" [  F (a ,  2, y )  ln  y 

I'(aSt) y (a+t) -y (ti-2)-g(t+l) 
(t+l)!t! iff . 

1 Y (a-l)  r>R 

where W is the dimensionless binding energy, 
a = 1 - ~ - " ~ , p  = j (3 - 3, + WR It2), = 2w1I2r, 
F(a,y,y) is the confluent hypergeometric function, T(x)  is 
the gamma function, and $(x) = d lnT(x)/dx. From the 
conditions for the continuity of the wavefunction and its de- 
rivative at r = R there follows a relation connecting the con- 
stants C,  and C2, and an equation for the dependence W(R ) : 

a F (a ,  2.2H W'") 
In (2RW") F (a+l, 3,2R W")- + 

2 2R W'" 

1 + -(2R W " ) '  =( ln (2R Wbh)  F (a ,  2, 2RWth) 
I-a 

1 
x (2RW")t--(2RW'h)-i) 1-a 

The solution of this transcendental equation for the ground 
state is given in Fig. 1 (curve 1 ). Its asymptotic forms are 

We now find Z, and R,. If the concentration of charged 
centers (for definiteness, donors) in the semiconductor is 
equal to N,, the probability that Z centers are found in a 
sphere of radius Ra, is determined by the Poisson formula 
and (for Z$1, E) can be written in the form 

where E = RR 3/Z and n = 4?rNdaA /3. At the points of the 
extrema of the right-hand side of ( 13) for a given binding 
energy, by virtue of the condition 

(here and below, the energy is measured in units of E,), Z, 
and R, are related by the equation 

In (Ze4/RR;) =3 (-2W(R,)/R,WR1 (R,)-I) . (15) 

Since the minimum of the right-hand side of ( 15) is approxi- 
mately equal to 3, the above neglect of corrections TR : / Z :  
is always justified. From ( 14) and (15) follows an equation 
for the dependence R, (E): 

'h &-"=Re W (Re)  exp13/, (-2W(R,) /ReWRr (R,) -1) 1, ( 16) 

which is shown in Fig. 2. The right-hand side of (16) is a 
minimum at R ,  = 5.8, where it is equal to 18. For 
E > E,,, = 18N 'I2, Eq. ( 16) has two solutions; one of them, 
with R, > R ,, corresponds to the minimum of the right-hand 
side of (13), while the other, with R, > R,, corresponds to 
its maximum. It is the latter which determines the radius of 
the optimal UCS. The absence of roots of Eq. (16) with 
E is explained by the fact that, for small E ,  in the UCS 
model only large-scale Gaussian fluctuations with Z Z  Ti and 
R $ R , are optimal. 

It can also be seen from Fig. 2 that the use of the approx- 
imation of a quasi-point nucleus (R, & 1) in the determina- 
tion of the scale of the optimal fluctuations is possible only 

FIG. 1. I-Dependence of the binding energy Wof an electron in the field 
of a UCS on the radius R; 2-graph of the modulus I Wk (R)I  of the 
derivative; 3-dependence W(R) for a UCS in the model of Ref. 5; 4- 
graph of the function W(R) calculated using formula (12); 5-depend- 
ence of the binding energy on the size of the fluctuation in Kane's model. 
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for unrealistically large values of E. This result cannot be 
obtained if, in the determination of the binding energy, we 
take into account only the quadratic correction for the non- 
point nature of the nucleus (in the UCS approximation, 
curve 3 on Fig. 1 for the dependence W(R) corresponds to 
this). However, the use of the small-R asymptotic form with 
allowance for the cubic correction [substitution of formula 
( 11 ) into ( 16) ] leads to the result that the argument of the 
exponential in the right-hand side of ( 16) is very large for all 
values of R,. Its minimum is reached at RE sz 1/3 and is ap- 
proximately equal to 45, i.e., it is possible to me (1 1) if 
In (ER - ' I 2 )  > 45. 

The graph given in Fig. 1 for the modulus 1 WL (R)  I of 
the derivative (curve 2) shows that at R =; $ the growth of 
( W; (R) ( slows appreciably, while at R > 1/2 the quantity 
I W; (R)  I even falls sharply and then decreases gently. The 
slow fall-off of W(R) reflects the fact that upon dispersal of 
a cluster of Coulomb centers the potential energy V(R ) of an 
electron in the field of this cluster decreases appreciably 
more slowly than the field attracting the electron toward the 
center of the cluster, as a result of which the kinetic energy 
T(R) of the electron decreases with increase of R just as 
rapidly as the potential energy, and their difference 
W(R) = V(R) - T(R) decreases slowly. Therefore, it is 
because of the rapid increase of the probability of finding the 
Z charges in a sphere of larger radius that, for values of E of 
practical interest, fluctuations with R, % 1 are optimal. 
From Fig. 2 it can be seen that, in a wide range of variation of 
m, values of RE in the range 3.5 < R, < 5.5 correspond to 
realistic values of&. We note that the determination of W(R) 
from the asymptotic formula ( 12), which is correct if the 
region of localization of the electron is small in comparison 
with the size of the fluctuation, also leads to considerable 
errors in R, andp,, ( E ) .  This is connected with the fact that 
the given approximation (see curve 4 in Fig. 1)  becomes 
highly accurate for R > 9, while for R < 6 it appreciably un- 
derestimates W(R) and, especially, I WL (R)  I. The binding 
energy in the Kane model4 is an even stronger underestimate 
(curve 5 in Fig. 1 ). 

From the formulas (7), ( 13), and ( 14) there follows an 
expression for p,, ( E )  : 

In [P,, (&) /pqU (0) I 
=-W'" (E/W(R.)N"')'~ In [e2/eRR,3W2(R,)] , (17) 

where RE is a function of EN - 'I2 [see formula ( 16) 1. The 
universal curve 1 for the dependence of the quantity 
N -'I4 In [p,, (E)/P,, (0) ] on ER - ' I2 that follows from for- 
mulas (16) and (17) is given in Fig. 3. We recall that it is 
correct if E > 18X - 'I2 and E )  1. For comparison, we give in 
the same figure the analogous dependences that follow from 
the results of Refs. 4 and 5 (curves 2 afid 3). Although the 
ratio of.the logarithms does not exceed 2, the estimate of 
p,, (a) on the basis of curves 2 and 3 is an underestimate by 
several orders of magnitude. 

Up to now, we'have not taken screening into account, 
i.e., we have assumed that 

It is clear that for %< 1, and, in the case of strong compensa- 
tion of impurities, for N% 1 as well, when r,,, is substantially 
greater than a,, the results of this section are applicable 
without restriction. In an SDS the screening length 

can be much smaller than a,. Then our results are correct 
only for very large values of E and Z,, satisfying [as follows 
from ( 18) 1 the equivalent inequalities 

Ze>2R, (97V/4n2)"1, e">2R,W (R,) (9A7/4nz)"*. ( 19) 

For small E, when the condition ( 19) is violated, i.e., when 
the characteristic length scales of the fluctuation and of the 
wavefunction are of the order of r,, screening of the charge of 
distant centers accelerates the decrease of W(R) with in- 
crease of R. This leads to a decrease ofp,, (&) at small values 
of a in comparison with the values given by curve 1 in Fig. 3. 
In order that, for m% 1, this curve be correct in the entire 
range in which it is determined, the condition ( 19) should 
also be fulfilled for the most weakly localized states with 
R, = 5.8 and Z Fin = 7.4% 'I4; this is possible if 

Thus, in reality, in SDS the characteristic scale of weakly 
localized Poissonian states cannot be assumed to be small in 
comparison with r,. Since the wavefunctions of Gaussian 
states are even less localized, it may be expected that for 
m% 1 the condition for applicability of the results of the cal- 
culation of the density of Gaussian states in the approxima- 
tion of strong localization of the wavefunction relative to the 
screening length will be even more stringent than (20) (see 
Ref. 8). 

If the condition ( 19) is not fulfilled, the separation of 
the charges into internal and external charges [see formulas 
(3)-(6)], the basis of which was a substantial difference in 
these scales, becomes inappropriate. The concept of hybrid 
states then also becomes meaningless. 

3.THE DENSITY OF QUANTUM STATES 

FIG. 2. Dependence of the optimal radius of a UCS on E / N  '". 
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Although the quantity p,, ( E )  that follows from ( 17) is 
substantially greater than the values obtained previously, it 
is not the case that it is even logarithmically close to p r  (a) 
-the true value of the density of quantum states. The point 
is that in the derivation of ( 17) we considered charge distri- 
butions of one class-uniform, or almost uniform inside a 
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certain sphere. When the contribution of all possible distri- 
butions and the point nature of the charge centers are taken 
into account, the quantity pqu ( E )  should increase signifi- 
cantly, as we shall see below. 

We shall define pqu ( E )  by formula (6a). For a given 
distribution of charges we shall calculate the energy E,, in 
first-order perturbation theory, using as the zeroth approxi- 
mation the solution p, ( ( r  - R, (,RE ) [see formula (9)  1 of 
the Schrodinger equation for a UCS with charge Z, ,  radius 
RE, and center at the point R,.  Writing all energies in units of 
E ~ ,  and lengths in units of azC = a,  /Z , ,  we have 

eol=e + x in' El ( 1  rj-Rl 1 ) -VO (e). ( 2 1 )  
j 

Here, 

V. (e) =Z.' dr rp.~ (r, R.) VRa ( r )  =Z;X., 

2 
( 2 2 )  

Ei(/rj-Rll)=Z8 jdrq.'(]r-~~l,~~)- Ir-rjI ' 

and V R r ( r )  is determined by formula (8).  The position of 
the point R, is determined from the condition for the maxi- 
mum of E,, . Henceforth, to simplify the calculations we as- 
sume that the number of charged centers in the internal re- 
gion is close to Z, ,  and find R, from the condition 

In a 'calculation of pqu ( E )  with logarithmic accuracy, this 
introduces only slight errors, by virtue of the spherical sym- 
metry of the optimal fluctuation and the closeness of its 
charge to Z,,  as is easily verified later. 

Then, from (6a)  we have 

int  

x ~ 6 ( v 0 ( e ) - ~  ~ ~ ( ~ ~ j - ~ ~ l ) e ( ~ ~ - ~ ~ j - ~ ~ l ) )  
1 j 

FIG. 3. Dependence of the density of quantum states on E/  
r112, 

where 0 ( x )  = 1 for x>O and 0 ( x )  = 0  for x<O. Making the 
change of variables r, = r, - R, and taking into account that 
Id R, = R, and then expanding the 6-functions in Fourier 
integrals, we have 

where 7; = Z,r,/a, . Since the main contribution to this inte- 
gral for Z,  % 1 is made by relatively small values of x  such 
that xra , /Z;  < 1, setting sin x  = x  - x3/6 and performing 
the integration over x  in ( 2 4 ) ,  we have 

1 
Pw (8) = me 

{ 
- R S  x exp ixZ, + 3N 

2, - 
x 're dyyz[exp (-is (g. ( y )  + 1)) - I ] ]  . ( 2 5 )  

0 

Here we have introduced the notation 

0 

for the average value of E, ( r )  within a sphere of radius RE, 
and 

and have made the change of variable x  = AE,, . The inte- 
grand in ( 2 5 )  has a  sharp maximum, which, as will be shown 
below, lies near the point 

xA=i In (2,lIiVR.S). 

By displacing the integration contour into the upper half- 
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plane, so that it passes through the point of the maximum, 
and taking the integral in ( 2 5 )  by the method of steepest 
descent, we obtain 

where 

and x,,, is the solution of the equation 

In deriving ( 2 6 )  we replaced x by x:,, in the pre-exponen- 
tial factor under the integral in ( 2 5 ) ,  since, by virtue of the 
sharp change of the exponential near x,,, , this introduces 
into p,, ( E )  only relatively small corrections, allowance for 
which would constitute an excess of accuracy. [In deriving 
formula ( 2 3 )  we also neglected corrections of the same or- 
der of smallness.] In addition, in the pre-exponential factor 
we replaced 

which also does not introduce substantial errors into p,, ( E ) .  
The reason for this, and for the fact that the quantity x,,, 
from ( 2 7 )  differs little from x;,, (as a consequence of which 
the second derivative of the argument of the exponential at 
the saddle point is close to Z, ) is the smallness of the quanti- 
ty gE ( y )  for O<y< 1, where it varies from a small positive 
valueg, ( 0 )  to a still smaller (in magnitude) negative value 
g 1 and the sharp decrease of the function 
exp{ - ix,,,g, ( y ) )  for y >  1. Typical examples of the be- 
havior of the functions g, ( y )  and expi - ixm,,gE ( y ) )  are 
shown in Fig. 4. If in ( 2 6 )  we replace exp{ - ix,,,gE ( y ) )  by 
unity for y< 1 and by zero for y  > 1, then x,,, from ( 2 7 )  is 
equal to x:,, , and, to within the pre-exponential factor, for- 
mula ( 2 6 )  coincides with ( 17) .  When the actual behavior of 
g, ( y )  is taken into account, the integral in ( 2 7 )  is, to within 
principal-value corrections, equal to 

In the square brackets in ( 2 8 ) ,  the term 1  and the smaller 
second term, quadratic in x,,, , are the result of expansion of 
the exponential under the integral in ( 2 7 )  in a power series 
on the segment O<y< 1. There is no linear term in ( 2 8 ) ,  since 
it follows from the definition of gE ( y )  that 

1 

J dy Y'&?*(Y)=O. 
0 

The contribution of the remaining terms of the series is negli- 
gibly small; i.e., although exp{ - ix;,,gE ( 0 ) )  is consider- 

FIG. 4. I-Graph of the function g, (y )  for ~ = 2 0 % ' / ~  
(R, = 5.5);  2-graph ofthe function exp [ - ix;,, ( ~ ) g ,  ( y )  ] for 
E = 203 ' I 2  ( R ,  = 5.5); 3-graph of the function 
exp[ - ixi,,  ( ~ ) g , ( y ) ]  for E = 270N1/ '  ( R ,  = 3.5). 

ably greater than unity, the principal contribution to the 
growth of p,, ( E )  on account of fluctuations inside the 
sphere of radius R E  is made by Gaussian fluctuations of the 
charge about its mean density.   he third term is equal to 
unity for E = l 8 p  ' I 2 ,  and decreases with increase of E. This 
term describes the increase ofp,, ( E )  on account of charges 
positioned at r > R E ,  and arises as a result of the integration 
over y  from 1 to ?,/RE with fulfillment of the conditions 

(which is the case) and 

Thus, the radius ?, must be chosen to be slightly greater than 
R E .  Using ( 2 8 ) ,  from ( 2 7 )  we obtain 

Although the corrections to ix:,, are always small, their 
contribution to p,, ( E )  for Z,, , turns out to be important: 

The behavior of the right-hand side of formula ( 3 0 )  is illus- 
trated by curve 4 in Fig. 3. The quantity p, ( E ) ,  measured in 
units of N 3 / 4 / a i ~ o ,  varies from 4 at E = 187?"2 to 34 at 
E = 1 2 0 R ' / ~ .  

We note that Eq. ( 2 7 )  for the saddle point has not only 
the purely imaginary root, equal in the zeroth approxima- 
tion to x:,,, but also an infinite set of complex roots xg",', . 
Therefore, p,, ( E )  from ( 2 5 )  is equal to the sum of the con- 
tributions made by integrals taken in the neighborhoods of 
all the saddle points. For relatively small values of n, these 
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roots, in the zeroth approximation, are equal to xg;; = x:,, 
+ 2m, where n = 1, * 2 ,..., and, with allowance for the 

first corrections, are determined by formula (29) with 
- i 2m added to the right-hand side and with xk,, replaced 

by xz',',O. Using this expression for x;",', , it is not difficult to 
convince oneself that the factor exp{ix~~, Z,) in the formula 
for the density of states falls off rapidly with increase of n, 
and 

exp (ix,d.) exp (ixzJa, 2.) , 

i.e., the contribution to (26) from all the complex saddle 
points is negligibly small. 

As regards the accuracy and the limits of applicability 
of formula (30), it is necessary to note the following: It  can 
be shown that the density of quantum states that is described 
by this formula produces principally donor-concentration 
fluctuations of the form 

and that, in shape and magnitude, these fluctuations are 
close to the optimal fluctuation (determined in the frame- 
work of the optimal-fluctuation method proposed in Refs. 
8-10) of the concentration of scattering centers. The density 
of statesp;Et(~) produced by the optimal concentration fluc- 
tuation exceeds the value ofp,, (E) from formula (30) rela- 
tively weakly, when the two are compared using logarithmic 
accuracy. Allowance for the discreteness of the distribution 
of point charged centers shows that p;Et(&) for large values 
of 2, is smaller than py,"'(~) only in proportion to the pre- 
exponential factor, and is significantly smaller than this 
quantity for a low concentration of centers in the optimal 
fluctuation. On the basis of the requirement that the spacing 
between centers be small in comparison with 
a, - 2, % (R,/Z, )3, using the dependence R, (E) in Fig. 2 
we find that the optimal-fluctuation method is applicable in 
real situations if Z, > 3-4. A detailed discussion of these 
questions goes beyond the scope of this article. 

4.THE HYBRID STATES 

The hybridpart of the spectrum. Below, with SDS as the 
example, we show that for Coulomb localization of electrons 
the spectrum of the density of states contains not only a 
Gaussian and a Poissonian part but also a part in which the 
main contribution to N(E) is made by hybrid states. For 
large E, formula (6)  can be written in the form 

N (e) = j ds'po (8') 
0 

[ -'I, ( " TI. (e-e')z 
x exp -N f m,, - 

6 (2rtlB) '"TI (32) 

Formula (32) is true if the quantum-binding energy satisfies 
the condition ( 19). In this ~ a s e f ( e / N ' / ~ )  is described by 
formula (30) (curve 4 on Fig. 3). The expression used in 
(32) for the Gaussian probability P(E - E') of the classical 
shift (see, e.g., Ref. 1) is valid under conditions of linear 
screening, which are fulfilled for 

The growth of f(x)  with increase of its argument is slowed 

(s(x) = c3 ln f (x) /d ln  (x) ,  s(20) ~ 2 ,  s(70) z 1, S(W ) 
+ 1/2) in comparison with the quadratic growth of the argu- 
ment of the Gaussian exponential. Therefore, the integrand 
in (32) has a sharp maximum at the point E,,, = VE, where 
7 is the solution of the equation 

A(.) f b q )  S(xl). 1=q +-- 
21 f (") 

Here, 

Then, 

For the situation when A(x)s(x)/2< 1 (which is always 
true for sufficiently large x) ,  it is not difficult to find from 
Eq. (34) that 

q=i-'/zA (x)s(x), (36) 

and from (35) that 

ln{N(e)/p0(e) )=-N'"f (elm")+ ' / ,B(elP)  

i.e., here the main part of the binding energy in an optimal 
hybrid fluctuation is due to quantum localization, and only a 
small fraction [ y (x)s(x)  ] is due to the classical shift. How- 
ever, the energy ~EA (E/R ' I 2  )s(E/N ' I 2 )  ofthis small fraction 
is large. And so long as it is much greater than the root- 
mean-square Gaussian deviation we have 
i B ( x ) [ A ( x ) ~ ( x ) ] ~ % l ,  since for large x, when 
~ A ( x ) s ( x )  9 1, we have B(x)  % 1. Therefore, up to excep- 
tionally large E < E,, , where E,, is the solution of the equation 

(for R= 10 we have E,,/N ' 12~300) ,  the density of states 
that is produced by hybrid fluctuations incorporating a 
small-scale Poissonian and a large-scale (Is) Gaussian fluc- 
tuation is considerably greater than the density of Poisson- 
ian states. 

With decrease of E the classical-shift fraction in the 
binding energy increases. In principle, it can become the 
main contribution. However, in an SDS this is possible for 
unrealistically large values of v ,  even for the smallest admis- 
s ib le~ .  Thus, from (34) and curve 4 in Fig. 3 it is not difficult 
to find that 7 = 1/2 for E = 40v  ' I 2  (in this case, EL,, 
= 20v  'I2, i.e., lies near the lower boundary of the region in 

which curve 4 in Fig. 3 is determined), if ' / I 2  = 4.3. Inci- 
dentally, as follows from (19), only for such values of is 
formula (30) suitable for the calculation of the density of the 
most weakly localized quantum states, and only for such 
values ofNin an SDS does there exist a Gaussian part of the 
spectrum on which ln(N(&)/N(O)) a - E ~ .  We note also 
that for E' = EL,, the condition (33) for linear screening 

1067 Sov. Phys. JETP 69 (5), November 1989 N. M. Storonskirand B. I. Fuks 1067 



takes theformx-tf (x)s(x)  <N'/12, and, fornot toolargex, 
is fulfilled only for large x. 

Repulsive states. The effect of the relatively rare repul- 
sive hybrid states with a large potential-barrier height e' - e 
on nonequilibrium phenomena can be decisive only if the 
effective capture coefficient y ( ~ ,  E') for capture in these 
states decreases with increase of the barrier (increase of E') 

much more rapidly, up to large values of e', than the two- 
parameter density N(E,E'). The point is that, when factors 
violating the equilibrium occupation of localized states by 
electrons are included, the smallest deviations Sf (e,ef) of 
the degree of occupation, as follows from the equations of 
the charge-exchange kinetics, will be associated with the fas- 
test states, to which correspond the largest values of ~ ( E , E ' )  : 

Sf (&,el) - y-I(e,er). The density of the charge that arises 
in these states is 

If the maximum of this function lies at large values of e', the 
principal contribution to the formation of nonequilibrium 
charge in localized states is made by the slow states, and it is 
their parameters that will determine the magnitude of this 
charge and the rate of its changes in nonstationary processes. 

First we shall estimate the value of the capture coeffi- 
cient for capture by repulsive states and convince ourselves 
that y(e, E') falls sharply with increase of e'. If the charging 
of the repulsive states occurs in a thermally activated way, it 
is implemented only by free carriers with energy greater than 
the barrier height. The fraction of these carriers at large val- 
ues of e' - e is very small and is determined primarily by the 
factor exp[e0(& -ef) /T] .  Therefore, the effective coeffi- 
cient for thermal-activational capture ~'"(E,E') in the zeroth 
approximation is equal to 

where yo is the capture coefficient at an attractive center. In 
view of the logarithmic accuracy of the formula (39) the 
dependence of yo on e and E' (i.e., on the distribution of the 
potential near the attractive nucleus) is unimportant here. 

In the tunneling of carriers the capture coefficient 
y'(e,el) depends in an essential way not only on the height of 
the barrier but also on its width and shape. Below, the quan- 
tity yf(&,e') is calculated for a nondegenerate compensated 
semiconductor-the only object for which the characteris- 
tics of potential barriers of large ampwude are known. As 
shown in Ref. 1, if in the semiconductor there are not only 
donors but also acceptors, the concentration ofwhich is such 
that 0 < K = (N, - No )/No < 1, the probability of raising 
the bottom of the conduction band through a height 
u $N "'K - ' I 3  ( U  is measured in u n i t s o f ~ ~ )  is, with logarith- 
mic accuracy, 

and the barrier shape in an optimal fluctuation of this ampli- 
tude has the form u ( r )  = u( 1 - r/r, ) 2. Here, r and r, 
= (u/3~7?)  ' I 2  are measured in units of a,. The tunneling 

transmissivity of such a barrier for low-energy electrons is 
equal to 

D = exp (,- 2 dr u"(r) )= exp (-u/ (3K;N) %). 

0 

Therefore, for repulsive states with a positive or small nega- 
tive binding energy, y'(e,el) is described by the expression 

i.e., the quantity Y'(E,E'), like yra(e ,~ ' ) ,  is determined pri- 
marily by the height of the potential barrier. It can be seen 
from formulas (39) and (41) that at high temperatures 
T >  TI = ~ ~ ( 3 ~ 8 ) " ~  the principal capture mechanism at 
repulsive states is thermally activated, while for T <  T, it is a 
tunneling mechanism. Also, the fact that yo is evidently ap- 

preciably greater than y, can have a slight effect on the value 
of TI .  Thus, in doped semiconductors, near the allowed band 
or even inside it there exist localized states for which the 
exchange times with delocalized states [proportional to 
y- ' (&,el) ] are spread over an exceptionally wide range of 
values and can be very large. 

We now elucidate the conditions under which repulsive 
states can have a substantial influence on nonequilibrium 
phenomena in weakly doped compensated semiconductors. 
For the case of low temperatures ( T < TI ) , using formulas 
( 6 ) ,  (30), (40), and (41), we have 

N ( E ,  & ' ) / y f  ((E, 8') a e x p [ ( ~ ' - ~ ) / ( 3 K m ) ' ~  
- ( & I - & )  K'b/3Y:m'h- N"'f - ( ~ ' / m ' ~ )  1. (42) 

Here we are using the expression obtained earlier for p,, (e) 
for a noncompensated semiconductor, since for N< 1 we 
need not take the compensation into account. The maximum 
of (42) is reached at a value el' satisfying the equation 

i.e., for small K and 8, by virtue of the previously noted 
distinctive features of the behavior of f (x)  and its logarith- 
mic derivative s(x) ,  the quantity el' - e$ 1 for all e. In ac- 
cordance with (41 ), such values of e" correspond to excep- 
tionally small capture coefficients. Therefore, the influence 
of the slow states on the nonequilibrium phenomena in com- 
pensated semiconductors should be extremely important. 

For T >  T, the condition (43) takes the form 

i.e., the quantity el' - e decreases with increase of the tem- 
perature, and, by virtue of (39), there is a sharp decrease in 
the characteristic times of the slow states. Finally, for those 
values of T, N, and E for'which 

the role of the repulsive states is unimportant. 
It is necessary to note that an important role in the fact 

that the slow states can have a substantial influence on the 
nonequilibrium properties of semiconductors is played not 
only by the large magnitude of the density of quantum states 
but also by the relatively large probability of potential bar- 
riers as a consequence of their weak electron screening. In 
addition, with increase of the amplitude of the barriers their 
characteristic spatial scale increases. For these reasons, the 
probability of high barriers decreases comparatively slowly, 
and this makes it much easier for the equalities (43) and 
(44) to be fulfilled. 

"If the quantity r,,, is large in comparison with the characteristic scale of 
the electron wavefunction. 

''Here and below, the energy is measured downward from the unper- 
turbed position of the bottom of the conduction band. 
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3'If fluctuations of all scales smaller than r,, make equal contributions to 
the classical shift of the bands, as occurs in the two-dimensional case (see 
Ref. 3 ) ,  it is not possible to go from (5)  to (6)  in this way. 
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