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We consider the chaotic behavior of an electron plasma in a one-dimensional superlattice and in a 
semiconductor with a Kane dispersion law, located in an external magnetic field and excited by an 
electromagnetic wave. The cause of the chaotization is the nonparabolicity of the carrier 
dispersion law. The stochasticity conditions are obtained. The ensuing stationary state and the 
possible experimental manifestations are described. A general computational scheme is presented 
for semiconductors with arbitrary nonparabolicity. 

INTRODUCTION 1. GENERALSCHEME 

Various nonlinear dynamic systems exhibit a chaotic 
behavior when taken out of equilibrium. The direct cause is 
formation, due to nonlinearity, of closed phase-space re- 
gions filled with unstable equilibrium positions. It is just the 
internal instability of these fully determined systems which 
leads to an empirical non-repetition of the trajectories. 

Each unstable point near which the system trajectory 
actually passes increases the sensitivity of the system to the 
initial data. It was assumed for a long time that this leads 
only to a technical complication of the determination of the 
initial conditions. However, to determine uniquely the tra- 
jectories in a region which is everywhere closed it is neces- 
sary to identify them with absolute accuracy. In other 
words, an infinite volume of information is necessary, a most 
important problem. By now, the understanding of the im- 
possibility in principle of determining with absolute accura- 
cy the initial data, as an additional fundamental law of na- 
ture, has led to the development of constructive concepts1 
and permits these phenomena to be described in practically 
any medium. 

The present paper is devoted to an investigation of the 
above phenomenon in the electron plasma of a semiconduc- 
tor. The nonlinearity of this system has many physical 
causes: nonparabolicity (non-quadratic dependence) of the 
carrier dispersion law2; inconstancy of the interaction pa- 
rameters of various subsystems (electrons, phonons, and 
others) with one another and with external  field^^,^; depend- 
ence of the kinetic coefficients of the medium on the intensi- 
ties of the macroscopic field,5 as well as feedback in the spe- 
cific semiconductor device.' Many e ~ ~ e r i m e n t a l ~ - ~  and 
theoretical (see, e.g., Ref. 7) publications deal with various 
aspects of the problem. We confine ourselves, however, to 
the cause which in our opinion has been least investigated- 
the nonparabolicity of the dispersion law. In this case chaoti- 
zation is observed on a microsco~.: level,' in the motion of 
an individual electron, and can be considered by a Hamilto- 
nian approach.' 

In Sec. 1 we develop and discuss a general scheme that is 
subsequently (Sec. 2) specifically formulated for one-di- 
mensional superlattices (SL) and semiconductors with 
Kane dispersion (K) .  The ensuing stationary state is ana- 
lyzed in Sec. 3, where a method of calculating the microscop- 
ic properties of a semiconductor is discussed. In Sec. 4, the 
proposed method is used to obtain the magnetic-bremsstrah- 
lung spectra of the considered specific semiconductors. The 
possibility of diagnosing a chaotic plasma is discussed. 

It is usually assumed' that a regular behavior is the con- 
sequence of the explicit or implicit presence in the system of 
a symmetry of special type. Chaotization of motion requires 
both nonlinearity of the dynamic system and impossibility, 
in principle, of reducing it by some canonical change of vari- 
ables to an aggregate of noninteracting subsystems with one 
degree of freedom and with a dynamics known9 to be deter- 
ministic by virtue of the Liouville theorem. These conditions 
are realized in a semiconductor2 placed in an external con- 
stant magnetic field and irradiated by the electromagnetic 
wave. 

We consider the motion of an individual electron. We 
describe the corresponding dynamic system by a Hamilto- 
nian of the form 

with the following gauge of the vector potential: 

Here P = (Px,P,,Pz ) is the quasimomentum vector, 
r = (X, Y, Z )  is the radius vector of the conduction electron 
with charge q and effective mass m; He,, is the intensity of 
the external constant magnetic field with direction chosen 
along the X axis; E, , a,, and k, are respectively the ampli- 
tude, frequency, and wave vector of the ith harmonic of the 
electromagnetic wave; E is a dimensionless parameter intro- 
duced for convenience. The term AoU(Pz ) specifies the ex- 
plicit form of the dispersion law along the Z axis. A more 
general form of the dispersion law is unnecessary in the pres- 
ent paper. The law can, however, be included in the proposed 
scheme by standard nonlinear-mechanics methods9 without 
affecting the method used to analyze the system-chaotiza- 
tion conditions. 

At E = 0 the equations of motion with the Hamiltonian 
( 1 ) have an exact regular solution. For E # 0 one can count 
on being able to construct approximate solutions that are 
analytic in the parameter E; this corresponds to preservation 
of the regularity of the motion. The conditions for the pa- 
rameters of a problem in which such an approximation is 
impossible in principle are obtained by a scheme proposed by 
Chirikovl0 and used in the present paper. It is just these 
conditions which determine the boundaries of the chaotic 
regions. 

We regard the system ( 1) as weakly perturbed, i.e., we 
put E (  1. All the calculations here and henceforth are car- 
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ried out accurate to first order in E inclusive. If E = 0 and the 
Hamiltonian is unperturbed, a canonical replacement of the 
variables permits their complete separation (see the Appen- 
dix). The equations of motion can then be integrated exact- 
ly. 

Since the chaotization is due only to the nonlinearity of 
the oscillations in the (P,, Z )  plane, to analyze the condi- 
tions for its onset we consider a Hamiltonian of general form 
in terms of those variables in which the substitutions indicat- 
ed in the Appendix have already been made: 

~ = H ( J ) + E ~  H.,,(I)erp[i(w,t+nO) 1, 
n.k (2)  

o ( I )  =dH/dl.  

Here (J, 0 )  are the "action-angle" variables of the unper- 
turbed system, and o(J) is the natural-oscillation frequency 
[dO/dt = w (J) 1. In the nonresonance case, i.e., for 
wk f nw(J) #O, an analytic series in E can always be con- 
structed and takes, to first order in E, the form 

e=e0-&i  ~ d H n s h ( l o )  ( n u  (I.) +oh)-' eap[i(u.t+n@) I ,  
n,h+O dJo 

which excludes chaotization. 
It follows from ( 3 )  that the solution ceases to be analyt- 

ic near the resonances rw (J,) + wj = 0, where rare integers. 
Following a procedure that has become traditional,'' we in- 
troduce near resonance in place of @ the slow phase 

Averaging over the fast variable w, t with allowance for E < 1, 
and assuming a rapid decrease of the amplitudes H,,, of the 
harmonics in (2)  with increase of their number, we have 

where P, is the canonical momentum conjugate to the new 
phase q. 

It is convenient for our purposes to choose the natural- 
oscillation frequency as the new canonical momentum: 
P, = w(J),  corresponding to a generating function 
F = - w(J)@. We obtain ultimately for the maximum fre- 
quency change 

1SP,=6~=2[21 H,, j ( J o ) / ( d Z H / d o 2 )  I ]  lh. (4)  

Two variants are possible.' If the closest resonances are far 
enough apart, Sj + 6, + < Iw, - wj + 1, the considered 
averaging method is correct and leads to series that are ana- 
lytic in E. Otherwise the resonance regions overlap and two 
conditions, incompatible in general, should be simulta- 
neously satisfied in their common part. This means loss of 
the perturbation-theory series analyticity in E.  The realiza- 
tion of the second alternative is in fact fixed by the Chirikov 
criterion: 

The factor 2/3 takes into account the influence of higher- 
order resonances. 

We emphasize that actually there are no "overlapping" 
resonances whatever in the chaotic region (5).  They have 
been used only to derive analytically a criterion based on the 
fact that the assumption of their existence in the chaotic 
region leads to a contradiction. 

2. REGION OF DYNAMIC CHAOS IN SEMICONDUCTORS 

As examples of the realization of the described scheme, 
we consider the two most widely used models of nonlinear 
semiconductors: one-dimensional superlattice8 and semi- 
conductor with a Kane dispersion law.'' 

Superlattice. The dispersion law for the electrons in the 
lower miniband can be approximated with sufficient accura- 
cy by the expression 

A o U ( P z )  =-Ao c o s ( P Z d / h ) ,  

where d is the superlattice period and A, is the miniband 
half-width. The corresponding unperturbed motion (see the 
Appendix) is described by the expressions8 

kZ= (AO-4-H) /2A0,  
A0 d 0 0 

pI=2--- k en(- 8,  k ) ,  
0 0  fi (HI  

(6)  
Here K(k )  and E(k)  are complete elliptic integrals of first 
and second kind, respectively. In these variables, the Hamil- 
tonian of the considered system takes the form 

Note that the solution ( 6 )  is strongly nonlinear and 
contains many harmonics near the separatrix k+  1. A mono- 
chromatic perturbation produces therefore in the system 
more than one resonance. The separatrix of the Hamiltonian 
(7)  corresponds in the superlattice to the top of the mini- 
band (k-. I, H-+ A,, see Fig. la) .  The resonances condense 
therefore near A, and it is there that the chaotization region 
is located. One can point to an energy boundary with chao- 
tized electrons above but not below. Figure la  shows sche- 

FIG. 1. Electron chaotization region in superlattice (crosses): a-ar- 
rangement in miniband, b--Chirikov criterion; f (H)  and f,--left and 
right sides of (9) ,  respectively. 
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FIG. 2. Electron chaotization region of narrow-gap semiconductor 
(crosses): a-location in conduction band; &Chirikov criterion, f ( H )  
and&-left and right sides of ( 14), respectively. 

matically the location, in the miniband, of the "new elec- 
tronic phase," which is the region of dynamically chaotized 
particles. 

At the top of the miniband the Hamiltonian ( 7 )  takes 
the form 

where w,  = qH,,, /mc is the Larmor frequency and it is tak- 
en into account that k Z / o t  5 hod /&- lo-'. Near the reso- 
nance aw (H) = w the leading term of the Hamiltonian (8)  
is 

E OL I % ~ , , ( J )  )= 28-(mcZAo)'"---- 
He,, o K ( k )  

X O  - 
x sech [zw o ~ ( v l - k 2 ) ] .  

The Chirikov criterion ( 5 ) takes near the separatrix ( k  -t 1 ) 
the final form 

wr ( y: ) '" sech (fw), (9)  f ( H )  e x  ln3 x G 7 2 n e  -- - 
Hext o 4 00 

where x = (A, - H )  /A, is the "distance" from the separa- 
trix (see Fig. 1 ) . 

It follows from (9) and from Fig. 1 that a region of 
irregular motion exists near the separatrix as H-+ A, for any 
amplitude of the external field. The reason is that the differ- 
ence between the frequencies of the unperturbed oscillations 
tends to zero at the separatrix. The presence of overlap in 
this region is therefore determined not by the amplitude of 
the forced oscillations but by the presence of resonances, i.e., 
by the perturbation frequency. The amplitude f, determines 
only the width of the chaotization region (see Fig. lb )  and 
by the same token the possibility of its observation in experi- 
ment. 

Narrow-gap semiconductor. A characteristic feature of 
the Kane dispersion law 

E ax =' [ ( 1 + 2 1 P ( 2 / m e , ) ' h - 1 ]  
2 

( E ~  is the band gap) is the interrelation between the motions 
in all the phase-space planes. However, the expression for 
the particle velocity 

V = P / m ( l + 2 1  P I Z / m ~ , )  " (10) 

is similar to that in the case of a quadratic dispersion law if 
the denominator is regarded as a new effective mass M. In 
the absence of a perturbation M is an integral of the motion, 
but varies from one trajectory to another. This is what makes 
this system nonlinear. 

At the assumed accuracy, the total Hamiltonian can be 
represented in the form 

The energy of motion along the magnetic field, the energy of 
the Larmor oscillations, and the total energy are respectively 

Thus, for a Kane dispersion law we have U(P, ) = P:, 
A, = 1/2M, and the unperturbed motion is described by the 
expressions (see the Appendix) 

H 00 QH-, 
J ( H )  =- o ( H )  = o0=or. = - a 

o (HI ' I+2hle ,  ' mc 
E= (2HM)"  sin 0, P E = [ 2 H / M o 2 ( H ) ]  " cos O, 

(d2H/dco21 = o o e 8 / 0 3  ( H )  . (12) 

The natural oscillations in this system are linear. The pertur- 
bation needed to organize the interacting resonance must be 
at least biharmonic. 

Generally speaking, strictly linear systems can also be 
chaotized in this manner." Their oscillation frequency is 
independent of the amplitude, and "resonance overlap" 
takes place simultaneously in the entire region of motion 
when the excited oscillations (5)  reach a sufficient ampli- 
tude. The case considered is intermediate between linear and 
nonlinear systems. On the one hand, motion on each Larmor 
orbit is linear and chaotization requires correspondingly a 
polyharmonic perturbation. On the other hand, by virtue of 
the relativistic change of the mass M in ( 10) the oscillation 
frequency varies from orbit to orbit and depends on the am- 
plitude of the oscillations. The chaotization criterion is 
therefore met only in a limited layer of the conduction band, 
in analogy with the superlattice considered above. 

We confine ourselves to the simplest case of a two-fre- 
quency perturbation: 

Integrating near both resonances w,,, = w(Hl,, ) with re- 
spect to the fast phase wi t, we separate the principal terms in 
the Hamiltonian ( 13): 

la,, 2-%(J0) I = ( q E i / 2 0 i )  (2HilMi)'" ( 1 + 2 h / ~ ~ ) .  

Here i = 1, 2 marks a resonance with the first and second 
harmonics of the perturbation. Assuming for simplicity that 
the amplitudes of the harmonics are equal, E l  = E, = E, and 
introducing the notation w  = w ,  and A = w, - a , ,  we ob- 
tain the Chirikov criterion in final form: 

The chaotization region is shown schematically in Fig. 
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2. It can be seen that chaotization is possible only under the 
condition f, 5 f, , i.e., if 

Figure 2 illustrates the difference between the consid- 
ered system and either the superlattice or a purely linear 
system. In the former case, owing to the presence of a separa- 
trix, the chaotization takes place at any amplitude of the 
external fields. In the opposite case the chaotization, having 
a threshold, takes place in all of phase space. 

3. STATISTICAL PROPERTIES OF STATIONARY STATE 

We develop here a meaningful description of the elec- 
tron dynamics in the regions obtained above. Formation of 
phase-space layers filled with unstable equilibrium positions 
leads to mixing.' This means that the initial correlations in 
the Hamiltonian system vanish with time, a property strong- 
er than ergodicity. The Birkhoff fundamental ergodic 
theoremI3 guarantees here satisfaction of the ergodic hy- 
pothesis. Mixing leads thus to equipartition over the canoni- 
cal variables J and O in the entire chaotized region. 

It follows from the foregoing that in the steady chaotic 
regime the distribution function takes the following form: in 
"action-angle" variables 

df ( I ,  8 )  =NdJd@/V 

or in "energy-angle" variables 

df ( H ,  O) =NdHdBlVo  ( H )  , (16) 

where Vis the phase volume of the irregular region and Nis 
the number of chaotized electrons. Since the considered sys- 
tem is Hamiltonian, the boundaries of the chaotic regions 
are in themselves regular trajectories "impermeable" to the 
particles. Their number can therefore be calculated with the 
aid of a Fermi distribution function, since the boundary of 
the chaotic region locks in all the electrons that are actualy 
contained in it. 

It is important to note that the distribution (16) of a 
chaotized group of electrons is not a Fermi function and is 
determined not by thermodynamic parameters but by purely 
dynamic ones. The reason is that the energy His  no longer an 
integral of the motion in view of the new internal symmetry 
ofthesystem ( I ) ,  ( 7 ) ,  and (11). 

The state of a system with mixing is "coarse" (Ref. 14). 
This means that small additional perturbutations do not dis- 
turb the established motion and its statistical properties. 
Since equipartition in phase is equivalent to equipartition in 
the quasimomentum direction, it is natural to expect, for 
example, no drift of chaotized electrons in external weak 
magnetic fields. A chaotic electronic phase that is equiparti- 
tioned with respect to the quasimomentum is a dielectric 
even in the presence of external weak fields.' 

The change of the macroscopic properties of a semicon- 
ductor with a nonquadratic dispersion law through chaoti- 
zation of the electron dynamics can be correctly calculated 
in two cases: 

1. For setups operating in a ballistic regime. Their mac- 
roscopic manifestations coincide, roughly speaking, with the 
microscopic ones.I5 Therefore calculation of any physical 
quantity reduces to averaging it with the aid of the distribu- 

tion function ( 16) in the chaotic and the Fermi function in 
the region of the regular motion. 

2. To analyze the properties of semiconductors de- 
scribed by a kinetic equation in the T approximation it is 
convenient to use a chaotized distribution function. The ki- 
netic equation is then linear, of first order, and can be solved 
by the method of characteristics. The dynamics of the char- 
acteristics themselves is then completely separated from the 
establishement of an equilibrium state along them under the 
influence of the collision integral. The equation for the char- 
acteristics coincides with the Hamilton equations for an 
electron moved by the action of the field actually existing in 
the system, but without allowance for particle collisions. 
This is precisely the situation considered above. 

All the arguments advanced above concerning the dy- 
namics of an individual electron are fully applicable to the 
characteristics of the kinetic equation, which are chaotized 
under the same conditions and for the same initial data (9), 
( 14 1, and ( 15 ) . This leads to corresponding'changes of the 
total distribution function. 

4. DIAGNOSTICS OF CHAOTIZED PLASMA 

Let us examine the macroscopic manifestations of the 
change of the character of the carrier motion. It was shown 
above that in the case of a semiconductor this alters the sta- 
tistics of the electrons, and can be manifested by changes in 
the conductivity of the medium,' of their emission and ab- 
sorption spectra, of their thermodynamic properties, etc. 
Let us calculate by way of example the magnetic bremsstrah- 
lung of a superlattice and a Kane semiconductor. Generally 
speaking, when a magnetized chaotized electron plasma of a 
semiconductor is irradiated by an electromagnetic wave, 
two possible radiophysical effects are possible: magnetic 
bremsstrahlung of the electrons chaotized by the incident 
wave, and Raman scattering of the incident wave by the elec- 
trons it has chaotized. Both phenomena alter the corre- 
sponding spectra and make it possible in principle to study 
the chaotization processes in a semiconductor. Since, how- 
ever, the perturbation is assumed small, the relative magni- 
tude of the Raman scattering is small and will therefore not 
be considered here. 

For the purpose of demonstration, let us consider the 
simplest experimental situation. A semiconductor film with 
a superlattice is placed in an external constant magnetic field 
perpendicular to the superlattice axis. For a narrow-gap 
semiconductor, the magnetic-field direction is immaterial. 
The object is irradiated by an electromagnetic wave normal- 
ly incident on the sample. The radiation receiver is placed 

t 

FIG. 3. Geometry of problem: I-incident wave, 2-sample, 3-radi- 
ation receiver. 
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FIG. 4. Schematic frequency dependence of cyclotron-radiation intensity 
of a superlattice (a)  and of a narrow-gap semiconductor (b): l-irregu- 
lar-motion region, 2-plot of regular motion in the entire band, 3-plot 
#ith allowance for dynamic chaotization. 

perpendicular to the plane of the film at a distance L (Fig. 
3 ) .  

The intensity of the electromagnetic field emitted in the 
receiver by one electron is equal to 

Or, using ( 6 )  and (12), we get 
m 

The expressions obtained must be averaged with the distri- 
bution function in the chaotic region and with the Fermi 
function in the regular region. Both cases include an averag- 
ing over the phase O, so that the mean values of the intensi- 
ties are zero. 

The quantities finally calculated are the intensity spec- 
tra of the magnetic bremsstrahlung: 

6 (b- ( 2 n + l )  o ( H ) )  

n-0  

q20'H 
In ( 0 )  = 6 ( 0 - o  ( H ) ) .  

16n2e02c4L2M 

Averaging (19) with the aid of the Fermi function and 
expression ( 16), we obtain for the superlattice: 

0 0  x exp [- n -(2n-t1)  ] 
(I) 

where n is the electron density, S is the sample area, I is its 
thickness, ,F, is a hypergeometric function, and the super- 
scripts R and S label respectively the regular and stochastic 
cases. 

For a narrow-gap semiconductor we have 

Oa E 
xexp [- (- o - I ) + ]  

2 k l  ' 

A comparison of (20) and (21) (see Fig. 4) shows that 
both the fact that the electron plasma is chaotized and the 
boundaries of the chaotized region can be established by 
measuring the magnetic-bremsstrahlung spectrum. 

To obtain the specific values shown in Fig. 4b we used 
for InSb a band gap E, = 0.18 eV. It can also be seen that in 
the case of a narrow-gap semiconductor the onset of electron 
chaotization, namely the change of their statistics in the 
form of a singularity on the spectrum profile, occurs near the 
maximum of the curve. This case should therefore be regard- 
ed as most suitable for experiments. 

The real shape of the curve is made complicated by the 
presence of regular-behavior islands in the chaotic region. In 
fact,' the chaotized layer is generally speaking not homoge- 
neous. The presence of the stability islands and of the imper- 
meable boundaries between them introduces also some order 
in the motion of the chaotized phase of the electrons. Our 
analysis was made for a negligible relative volume of the 
islands in the chaotized layer of the conduction (mini)band 
of the semiconductor. 

We have also disregarded here the interaction of the 
magnetic bremsstrahlung with the plasma. In the general 
case it can lead to spectrum distortion by wave absorption. 
In particular, if the radiation manages to reach thermody- 
namic equilibrium with the plasma before it reaches its sur- 
face, the resultant spectrum should correspond to absolute 
blackbody equilibrium radiation. The characteristic length 
at which this phenomenon is substantially manifested, 
meaning the skin-layer depth, is assumed thus to be much 
larger than the film thickness I. For the same reason, the 
damping of the incident wave in the semiconductor plasma is 
also disregarded. On the other hand, the electron and 
phonon subsystems are assumed to be in equilibrium, so that 
the film thickness is much larger than the mean free path. 
For the most popular semiconductors we have: 

m n, cmp' p, C ~ ' . V - ' . ~ - '  1, cm 
For InSb: -10-2 me - 10% ~ 1 0 5  10-3 -10-2 
For Ge: lo-' me - lo i3  N 103 N10-3.-10-1 

CONCLUSION 

Mixing, or "deterministic chaos," constitutes motion 
with a principally new topology. This form of dynamics is 
typical in nature, while regularity corresponds to a degener- 
ate case of explicit or implicit linearity of the system, or to 
smallness of the deviation from an equilibrium position. It is 
natural to expect in a medium substantial changes of most 
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physical properties making up a subsystem that has been 
chaotized. 

The electron dispersion law can actually be much more 
complicated than those considered above. In our opinion, 
the scheme described permits effective calculation of the 
conditions for the existence of chaotized regions and of their 
boundaries in an arbitrary case. Such calculations, however, 
can be made only with a computer. 

We have considered only one of the possible macro- 
scopic manifestations of a chaotized electron plasma of a 
semiconductor. We assume, however, that the results of Sec. 
3 are effective in calculations of arbitrary macroscopic prop- 
erties in a chaotic regime if the regular-behavior islands can 
be neglected. 

APPENDIX 
i .r 

We rewrite the initial Hamiltonian ( 1 ) 

with the aid of the generating function 

in the more convenient form 

where only terms of first order of smallness in E are retained. 
Since the variables have been separated, a generating 

solution can be obtained merely by changing to the "action- 
angle" variables corresponding to the coordinates (Pt ;l): 

In the new variables, the Hamiltonian takes the form 

where H i s  the total energy of particle motion in the ( Y, 2) 
plane and is an integral of the motion if E = 0. 

The solution of the transformed system at E = 0 is ob- 
vious: 

Px=Pxo=const,  P,=P,,=const, 
J=J,=const, X=Pxot/m, q=qo=const,  

@=a ( H )  t, o ( H )  =dH ( I )  / d l .  
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