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Paramagnetic resonance is considered in magnetically dilute systems of dipole-interacting spins 
for arbitrary polarization and under the condition 1~3 ( < 1, wherepis the reciprocal temperature 
of the dipole subsystem and Eis  the spin interaction energy at average distance. Kinetic equations 
are formulated for the saturation theory. The thermodynamics of a quasi-equilibrium two- 
temperature system and the resonance-line shape are investigated for the first time ever for a real 
dipole-dipole interaction. The thermodynamic study is based on a concentration expansion of the 
thermodynamic potential. The resonance-line shape is analyzed by a concentration expansion of 
the memory function and by a cumulant expansion. The thermal mixing (in a rotating coordinate 
frame) is determined for a system with arbitrary initial Zeeman and high-dipole initial 
temperatures. Analytic expressions are obtained in some limiting cases, while the intermediate 
regions are investigated numerically. Cooling the dipole reservoir alters greatly both the 
thermodynamic and the dynamic properties of the disordered spin system. 

1. INTRODUCTION 

The study of quantities that describe magnetic reso- 
nance in a system of dipole-interacting spins is one of the 
most fundamental problems of microwave spectroscopy. 
The need for calculating or at least estimating the line shape, 
the thermodynamic properties, and the rate of magnetic re- 
laxation is encountered in practically all theories aimed at 
the study of multiparticle systems. Two approaches have 
been used mainly to estimate the linewidth and line shape in 
magnetically dilute substances: the method of moments and 
Anderson's statistical method.ls2 The former had been 
strongly criticized,'~~ and the latter,%fter a number of gen- 
eralizations, is suitable for the description of the absorption 
of the energy of a high-frequency magnetic field by a weak- 
nonequilibrium spin system in the high-temperature ap- 
proximation (HTA), when T>) w,, w, (w, is the central fre- 
quency of the magnetic resonance and w, is the frequency of 
the local field due to the dipole-dipole interactions). The 
thermodynamk properties and the magnetic relaxation have 
been well investigated in the HTA. 

Of recent interest, however, is the study of the spin sys- 
tems at low temperatures down to that of magnetic order- 
ing.'-'' Dynamic cooling of the spin-spin interaction reser- 
voir is used and, in accord with Provotorov's theory, the 
system is in a two-temperature quasi-equilibrium state. This 
theory, however, holds for high temperatures of both the 
Zeeman subsystem and the spin-spin interaction subsystem. 
Development of a low-temperature theory of saturation calls 
therefore for corresponding theories of the line shape, of the 
magnetic relaxation, and of the thermodynamic properties. 

The line-shape statistical theory was extended to in- 
clude the case of a low Zeeman temperature for spins 
S = 1/2 in Ref. 1 1 and for S = 3/2 in Ref. 12. The influence 
of spin-polarization efYects on the phase relaxation was stud- 
ied in Ref. 13. A high-temperature interaction subsystem 
was implied in these studies. Steps towards the development 

of a low-temperature saturation theory were made in Refs. 
14-16, but none include an analysis of the line shape and of 
the thermodynamic properties of regular as well as dilute 
systems. A rather effective method of allowing for nonlinear 
effects in low-temperature thermodynamics is given in Ref. 8 
(Ch. 5). Nonlinear effects in the moments of the NMR line- 
shape function are considered in Ref. 17. For systems with 
low spin density, however, this method is much less useful, 
since it is valid only for 0E0 < 1, where Eo is the interaction 
energy of two nearest spins and p is the reciprocal dipole 
temperature. 

We have previously developed'' a correlation-expan- 
sion method that makes it possible to construct, in the An- 
derson model (i.e., with account taken of only the anisotrop- 
ic part of the dipole-dipole interaction), a statistical theory 
of the magnetic resonance line shape (RLS) in a magnetical- 
ly dilute spin system, for arbitrary cooling of the Zeeman 
subsystem and during that stage of dipole-subsystem cooling 
for which BE < 1, where E is the spin interaction energy at 
average distance. A direct extension of the method to in- 
clude systems with a more realistic interaction encounters 
many mathematical difficulties. 

We consider in the present paper the case of arbitrary 
temperatures of a Zeeman spin subsystem and of moderately 
low (BE < 1 ) dipole temperatures, for disordered systems 
with secular spin-spin interaction. Starting from a concen- 
tration expansion of the ~bse rvab l e s ,~~~~ ' '  we have obtained 
convenient expressions for the thermodynamic quantities, 
analyzed the RLS by two methods, and investigated the so- 
lution of the ensuing equations (that describe the mixing of 
Zeeman and dipole subsystems by an alternating field, i.e., 
establishment of a single spin temperature in a rotating coor- 
dinate frame). 

In the actual calculations we have confined ourselves to 
a spin S = 1/2, to an ellipsoidal sample, and to an uncorre- 
lated distribution of the spins over the lattice sites. 
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2. ABSORPTION SIGNAL FOR TWO-TEMPERATURE QUASI- 
EQUILIBRIUM. SATURATION-THEORY EQUATIONS 

The Hamiltonian of the system considered is 

where Xd is the secular part of the dipole-dipole interac- 
tion Hamiltonian, w, = yH, (H, is the amplitude of the field 
rotating around the z axis at a frequency w). Under quasi- 
equilibrium conditions the density matrix is described by the 
expression 

p=exp (-p.%.-p%d) /Sp erp (-Pz%z-P%d). (2)  

The general expression for the absorption signal under these 
conditions, at a distance A from the Larmor frequency w,,, 
can be represented in the linear-response approximation in 
the formX 

rn 

where the temporal evolution is determined by the operator 
X d ,  and 

An essential role in what follows is played by a 
transition from the commutator mean value 
C(t)  = ( [ S ,  ( t)  ,S- ] ) to the anticommutator mean 
A ( t )  = ( [ S ,  ( t )  ,S- ] + ). We rewrite (2)  in the form 

where 

We change over in S+ ( t )  to the Hamiltonian %: 

S+ (t) =exp ( - i ~ , o , t / ~ )  exp ( i g t )  S+ exp (-iat) . 

We have then 

where E( t)  corresponds formally to total equilibrium with a 
temperature fi - '  and a Hamiltonian %. Using the known 
connection19 between the spectral representations of the 
equilibrium correlation functions e ( t )  a n d J ( t )  and chang- 
ing next from %to the initial Hamiltonian, we get 

27 p z ~ o - P A  
<S, (A) )= - o i A  (0) th 

2 2 g(A), 

g ( ~ )  = 2 j dtA ( t )  exp (iAt) . 
227'4 (0) -_ 

These relations generalize the fluctuation-dissipation 
theorem to include the two-temperature case. The transition 
from (3)  to (5)  is important because the function g(A) is 
non-negative for all A. This is proved by expressing g (  A) in 
the proper representation of the Hamiltonian rz + Z d .  
Thus, the absorption signal vanishes, for arbitrary subsys- 
tem temperatures, at a single point A = fiz w,,/fi (a  property 
well known in the HTA). An approximate procedure of cal- 

culating (S, ( A )  ) must not violate this important property. 
It leads, in particular, to the possibility of measuring for 
arbitrary ratio of P and fiz by recording the zero of the ab- 
sorption signal. 

Expression (5)  can serve as a basis for deriving, for 
magnetic-resonance saturation in solids, equations that gen- 
eralize the Provotorov equations that are valid in the HTA 
to include the case of arbitrary values offlandflz. Using the 
exact relation" 

calculating (S,)  with the aid of (2) ,  and assuming that the 
temporal evolution of the system is described by the tempo- 
ral evolution of the quantitiesp(t) and& ( t ) ,  we obtain with 
the aid of (5 )  

where 

are the partial heat capacities of the subsystems ( u  
= A(O)/N), and N is the total number of spins ( u  = 1 for 

S = 1/2). As the second equation, just as in the HTA, we 
can use the spin-system energy conservation law in a rotat- 
ing coordinate frame (RCF).  The Hamiltonian is then 
2"RCP = ASz + X d ,  and the density matrix expressed in 
terms of the Zeeman temperature in the laboratory frame 
has the form (2)  as before (the dipole temperature is the 
same in both systems). The condition 

makes it possible to obtain 

From (6)  and ( 7 )  we get 

We have confined ourselves here to a relatively elemen- 
tary derivation of these equations. Note, however, that this 
result is obtained also by a more consistent analysis on the 
basis of the Nakajima-Zwanzig projection by choosing the 
Kawasaki-Gunton projector2" 9 in the form 

where X is an arbitrary operator, and (Xu ) = Sp ,Fop.  
Equations (8)  go over in the HTA into the Provotorov 

equations. They differ from the equations formulated in Ref. 
16 in that the subsystems are not redefined, a procedure un- 
necessary in our opinion, particularly for magnetically di- 
lute systems. In contrast to the HTA, Cab andg( A) are func- 
tions of fi and fl, , which cannot be determined explicitly in 
the general case. 
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3. CONCENTRATION EXPANSION OF THE CORRELATION 
FUNCTIONS 

We examine most closely the correlation function 

where the temporal evolution is governed by the secular part 
of the dipole-dipole interaction, 

), n, is the occupation number of site x, namely, 
if the site x is occupied by a spin and n, = 0 if it is not. 
( lo),  ( . . . ), denotes configuration averaging over all 

possible realizations of the spin distributions over the lattice 
site. Pure dipole-dipole interaction corresponds to a = 1/3. 
In the Anderson model a = 0. We assume further that 
S = 1/2 and that the occupations of different sites do not 
correlate, i.e., (n,), =f, (n,n,) = f 2  forx#q, etc. Here 
f = N/N, , , ,  4 1 is the density of the spins (of the occupied 
sites). 

We change from averages over the density matrix (3)  
to averages over the "Zeeman" density matrix 
po= exp( -OzXz)/Spexp( - P , Z z ) :  

We have separated in (12) a single-index sum and took it 
into account that n: = n,. Not all the occupation numbers 
have been written out explicitly in (12), since Zd depends 
on them. 

We shall use below expansions of the observables in 
terms of the occupation numbers and the concentrations. 
The methods are described in sufficient detail in Refs. 3 and 
7 (see also Ref. 18 and the review paper2'). We confine our- 
selves to high-symmetry (e.g., cubic) lattices and to ellipsoi- 
dal samples. The lattice sums of form Zxp(x  - q)  given for 
them below are practically independent of q. Taking into 
account the self-averaging of A ( t )  we have 

In the leading order in the concentration f, we have 

G ( t )  =4+fZ ([S.++S,+, S o - ( - t )  -So-]+ exp(-PBOx) )./ 

C x  h h 

where So-( - t)  = exp( - iB,,t)S; exp(iB,t). As usu- 
al, in this approximation everything is expressed in terms of 
solutions of two-spin problems. These solutions were ob- 
tained by using the identities 

( I + P ) ~  ( ; , ;) < fp (ShZ, S,') > = - fp - - f p  -- 1 1  --) 
4 ( I P 2  4 ( ' 

where q, is an arbitrary function, and 
p = 2(S i  ), = - tanh(8,o0/2) is the polarization at 
P = 0. We ultimately get 

G ( t )  = l  +mo ( t )  +mi ( t ) ,  

m0 ( t )  = f  ( C O S  at-l+ip sin a t ) ,  
X 

h ( l + u )  (cos at-4) +ip (h-u-hu)sin at 
t 

Note that m, (t,p = 0)  = 0, and that m, is independent ofp. 
A direct calculation of the RLS g( A )  on the basis of (5)  

is impossible. In fact, it is shown below [see (24)] that, for 
example, mo(Eot 1 ) = - D It I + ist, i.e., individual terms 
of the terms of the series increase with time without limit. It 
is therefore necessary to rearrange the concentration expan- 
sion so as to have a satisfactory long-wave asymptote. There 
are two general methods for such a transformation. One is 
based on the construction of approximations for the memory 

and the other on the use of cumulant expan- 
s i o n ~ . ~ ' . * ~  In both cases it is useful to compare the results 
with an exactly solvable model, whose role is assumed here 
by the Anderson model with P = 0 (Refs. 18 and 24). 

The memory function K( t )  corresponding to the corre- 
lation G(t)  is the kernel of the integrodifferential equation 

We know8 that even simple approximations of K( t )  
lead to good results for the RLS in systems with regular spin 
arrangement. The construction of K( t )  is based then on the 
first terms of its expansion in powers oft ,  determined from 
the first terms of the G(t)  expansion (i.e., from the moments 
of the corresponding Fourier transforms). It is shown in 
Ref. 7 that such a comparison of the concentration expan- 
sions of this function makes it possible to solve analogous 
problems for systems with low spin concentrations, without 
using any other approximations. 

The Laplace transforms of the functions G(t) and K(t)  

G (h )  = dte-"G ( t )  , K (A) = dte-"K ( 1 )  
0 0 

are connected by the relation K(A) = G(A) - '  - A, while 
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where R ( A )  = Re K ( A  = E - i A ) ,  I ( A )  = - Im K(/1  
= E - i h ) , & +  + 0 .  

In the leading order of the concentration expansion we 
have 

K ( h )  --h2(mo(h)+m1 ( A ) )  =KO(h)+K, ( h ) ,  

h ( l+u)  aZ-ipha (h-u-hu) 
K1(h)=fA(1'-p2) $, [ l+h-hu+p' (h-u-hu) ] (hz+ . 

The use of cumulant expansions is based as a rule on the 
representation 

with separation of the leading terms of GI ( t ) .  The general 
principles of the method of cumulant expansions are de- 
scribed in sufficient detail in Kubo's classical paper,23 and 
examples demonstrating its efficacy in the physics of disor- 
dered systems are given in Refs. 21, 25, and 26. An effective 
representation in our case is 

on the basis of which, with allowance for ( 5 )  and ( l o ) ,  we 
have 

CO 

1 
g ( A )  =g.(A) = - J dt( l+m,  ( t )  ) e x p ( m o ( t )  -t.iAt). ( 2 3 )  

2n -m 

In the Anderson model Eq. ( 2 2 )  coincides with the exact 
solution at p = 0  (Ref. 2 4 ) ,  while m ,  exp m,  coincides with 
the first term of the correlation expansion for allP (Ref. 18). 

To obtain quantitative results we must next specify the 
shape of the sample, the type of the crystal lattice, and the 
orientation of the external field. Substantial simplifications 
arise in the continuous-medium approximation (CMA), 
when the sums over x  in ( 16) ,  ( 1 7 ) ,  and ( 2 1 )  are replaced 
by integrals. This is legitimate if in the region of its signifi- 
cant values the summed expression changes little on going to 
the nearest site, as is the case in ( 16) and ( 17) for Eot$l  and 
in (21 ) for 1A / g E,. Here E,, = YWr;,,, , while rmi, is the 
shortest distance between the spins in the lattice. Note that 
the contribution of the region of small I x  I - rmi, in ( 16) and 
( 1 7 )  is insignificant if E,,t$l both by virtue of the small 
volume of the region and as a result of the rapid oscillations 
of the summed expression when x  is varied. 

In the continuous-medium approximation we have 

The volume density of the spins is here c = f /a, and fl is the 
volume of the unit cell. The parameter 6 depends on the 
orientation of the ellipsoidal sample relative to the external 
field and on the ratio of the ellipsoid axes, with - 1 (f ( 2 ;  
for a sphere we have 6 = 0 .  Let us examine the calculation of 
S in greater detail. Obviously, 

sin at - --- 
I x l c R  

f~ at 
8z = E ( --- - a t ) ,  & = $E at=nZpy2Rc. 

IXICR I+latl 

Since S, and S2 do not depend on the shape of the sample, 
they can be calculated by summation inside the sphere, fol- 
lowed by taking the limit as R  - cc . The macroscopic shift 8, 
is determined by the mean-field contribution which is pro- 
portional to6  (Ref. 8, Ch. 5 ) .  The contribution ofthe second 
term to the fluctuational shift S, is zero. Therefore, using the 
CMA, we have 

1 R 

Here y = cos 8, r = 1x1, x = iy2fi, x( y )  = 1 - 3y2. Next, 

since the integral with respect toy vanishes. 
Similarly 

Equations ( 19) and ( 2 2 )  lead to the same result at m ,  = 0 ,  
i.e., at B = 0 :  

We have no such simple equations for m , and K,. In the 
case considered, however, when p~-pEg 1 ,  we can obtain 
closed expressions for g ( A ) .  In fact, combining ( 17) ,  ( 2 3 ) ,  
and ( 2 4 )  and using the CMA, we have 

gic ( A )  =C ( I -pz)  

J d3z h ( l+u)  w ( A ,  a )  -P (h-u-hu) qa ( A ,  a )  
l+h-hu+p2(h-u-hu) 9 

where 

Note that the integral in ( 30 )  is independent of the shape of 
the sample and the integration limits are therefore infinite. 
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Replacing the integration with respect to 1x1 by integration 
with respect to la1 and calculating next the integral over the 
angles, we get 

where 

cp==cp=(A, a ) ,  cp.=cp,(A, a ) ,  h=h(a)=lI2 t11 spa, 

u=u ( a )  =th ' / ,pa. 

The integrand in (3 1 ) can be written in the form 

where xC (a,A) = p, (a,A)/a2, X, (a,A) = p, (a,A)/a. 
Both ,yc and xs have for a > 0 a resonance maximum at 
a = I A  + 61, with a width of order D. On the other hand, the 
functions $, ( a )  and $, (a) ,  by virtue of the condition 
OD< 1, are practically constant near this maximum. There- 
fore in the leading order in PD we can make in (31) the 
substitutions $,(a) -+$, (A + 6 ) ,  $,s ( a )  +$, (A + S) and 
integrate next with respect to a. As a result, 

X 
P + [  1-2ngo ( A )  Dl  ( l + p 2 )  h, 

1-p4u;-2 (1-p4)  hou0+ ( l+pZ)2h02  (uO2-1) ' (32) 

where 

In the Anderson model, h = 0. Equation (32) for that case 
was obtained earlier in Ref. 18. 

We consider now g, (A). In the leading order in the 
concentration we have 

I ( A )  =-Im K ( & - i A )  =6+Ii ( A ) ,  (33) 

Ri (A)=DQo(A,  O ) ,  (34) 
01 

Here h, = 1 tanh(aa), u ,  = tanh(a/2). An estimate of the 
asymptotes by standard methods22 leads to the values . 

a ln ( l l a )  
6 0  (P" u+O) = 2 (1 -pZ)  ' 

Here a < 1/2 and Eq. (39) was estimated from the asymp- 
totes of the integrand in (36) as a - co and a -+ 0. 

It follows from (35 )-(39) that Il/A 3; OD< 1 for all Afl 
and p. Therefore, with account taken of Eq. (20), we can 
neglect the contribution of I, ing, (A). Note, however, that 
if A 3; D Eq. (36) defines a contribution proportional to P 
from I, to the resonance-frequency shift. To the same accu- 
racy, we can neglect the terms R ,  in the denominator of 
g, ( A )  in (20), and obtain ultimately 

Attention is called to the fact that gc (A) defined by 
Eqs. (29 ) and ( 32) and g, (A) are practically equal. In fact, 
g,, and g,, differ only in the region where A 3; D. In this 
region, however, we have (g,, - g,, )/go 5 (@D)2, which is 
much lower than the accuracy with whichg, has been calcu- 
lated. The contribution of g ,  becomes substantial only at 
PA- 1. 

Analysis of Eq. ( 17) shows that, in order of magnitude, 
I m, ( t )  I 5 D 10 I. Therefore, one of the conditions for the ap- 
plicability of expressions (22) and (32) is D IP I < 1. The re- 
strictions on the region of applicability of Eq. (22) in the 
HTA have been considereed in great detail in Ref. 7. Recall 
that this equation is accurate in the Anderson model, and 
that the deviations in real systems are of order not lower than 
c2, increase with time, and are due to the presence of flip-flop 
processes. At lower temperatures, however, the spin flips are 
slowed down, and the region ofapplicability (with respect to 
t)  of (22) should increase. It is important also that Eq. (22) 
is accurate in the Anderson model also if p #0, but fl = 0 
(Refs. 18 and 24). 

The possible difference between the RLS functions 
g(A) and go(A) at B =  0 andp = 0 is not as strong as the 
difference between G(t) and exp mo(t). It is not qualitative 
but quantitative, is small, is concentrated in the region 
1A13; D, and is determined by the contribution of the flip- 
flop processes.7 Accordingly, the agreement between 
g(A,B = 0) and go( A )  should improve with increase of Ipl. 
The influence of the dipole temperaturep - '  is concentrated 
in g,  (A). The behavior of g,  ( A  3 D)  is due to the function 
m ,  ( t  < l /D), which is determined accurately in our meth- 
od. The practical equality of g,, and g,, at A 5 D means 
apparently that the equations obtained are reliable in this 
region. 

4. CONCENTRATION EXPANSION OF THE THERMODYNAMIC 
QUANTITIES 

The energies and the heat capacities can be expressed 
using the function 
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the CMA. The contribution of the second term in @, is zero 
and the first is determined by an integral of the same type as 
for the shift S, in (25). Taking this into account, we have 

where 

It is convenient next to represent @, in the form 
@, = @?) + @:I)  + @i2), where Obviously, 

Expanding Fc in terms of the occupation numbers from 
2Yd and averaging we have, in the leading order inf, 

Using ( 11) and ( 14), we find that 

Pa . (exp (-pBo,) ),=L (h ,  u )  ch 7j- exp (apa/2) ,  

(50) 

The constant 6, in (48) depends on the type of the crystal 
lattice and on the orientation of the latter relative to the 
external magnetic field. For a simple cubic lattice we obtain 

The notation here is the same as in Eq. ( 18). The succeeding 
transformations of (44) will be aimed at separating the sin- 
gularities of this expression at large and small 1x1, after 
which a transition to the CMA becomes possible. For large 
1x1, i.e., for small a, the following is valid: 

El  [loo] =5.821, El [ I  101 =2.210, [ I l l ]  =-0.804. (51 ) 

In the presence of an exchange interaction exceeding 
the dipole interaction at distances r < re, 97 = r,,/f "" it is 
useful to use an approximation in which it is assumed that 
A,  = 0 at Irl <re ,  (Ref. 27), i.e., the spins coupled by ex- 
change interaction are disregarded in the usual spin dynam- 
ics, since they reach equilibrium with the bulk of the crystal 
spins too slowly. We use in this case the substitution 

To separate the contribution due to the shape of the sample, 
we introduce therefore 

1 a! 
In L (h ,  u )  =In L (h ,  u )  + - [a+p2 (1-a) ] - 

2 l+la!l '  

We have now 

which leads to the value 

Here Ne, is the number of sites in the region covered by the 
exchange interaction. We obtain finally 

DlSl IPDI 3"3 @,=-N - 2n [ln - + - 5i-2.569] . 
f 16n 

(54) 

where Similarly, 

N f @, = - [a+p2(l-a) 1 
4 

" a ) ,  (46) 

Here h ,  = 4 tanh(aa) ,  u ,  = tanh(a/2). We obtain thus 

Only @, depends here on the shape of the sample. In the 
remaining Qi we can sum inside the sphere and then let its 
radius R tend to infinity. 

If the condition E& 1 is met, we can change over to 
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where 5, = 35'2{,/16a - 2.569. 
In the case of pure dipole interaction (a = 1/3) the 

function Jo(p2) is uniformly approximated (with relative 
accuracy not lower than 2%) by the expression 

where 

4 -' 
p= In- [ 

To derive it we took it into account that 

(here Cis the Euler constant), joined together these asymp- 
totes choosing the coefficient k in the equation 

such that (58) could be expanded for smallp2, and rounded 
off slightly some of the coefficients, for example C 
+ ln(2/a) = 0.12563- 1/8. 

Note that the expansion (59) is valid for all a < 1/2, 
and its singular terms are determined by the contribution of 
large a - l /p  in the integeral (55), i.e., by the contribution 
of relatively close spin pairs. Actually a 5 IflE,I, so that the 
asymptote (59) is valid if p 2 l /(PEo(. 

It is important that the expansions (58) and (59) can 
be differentiated, since they are valid in the complex p2 re- 
gion near the real interval (0,l) .  Therefore all the thermody- 
namic characteristics can be obtained in the CMA directly 
from Eqs. (41), (42), (56), (57). In particular, the Zeeman 
and dipole energies are defined in the CMA by the relations 

D cd = - { L [ l n L -  ~ ~ ( p ' ) - ~ ~ + l ]  
2n I P I  lPDl 

and for the heat capacities we have 

( 0 ,  - Coo2 c.,=c,'*O' +c,':', c,, - - ( 1 - p 2 ) ,  4 

1  a d  
I,. (p')  = - Z-[2p '  ( 1 - p 2 )  --? 4- 1 - 3 p 2 ]  - lo ( p 2 )  

d p  a p z  

In addition to the continuous-medium approximation 
considered above, interest attaches also to the dipole high- 
temperature limit (DHTL), whenp is arbitrary (p2 < 1 ) and 
IflE,l < 1. In this case it follows directly from (44) that 

where, just as in the CMA, C,, = C::' + C:,", while C::' is 
defined in (6  1 ) . In these equations 

is the second moment a t p  = 0. Recall that in a simple cubic 
lattice 

In the approximation (52) we have M2 = M2,(N,, ) 
= 2.1E@/N,,. 

Concluding this section, we note that for a system of 
spins coupled by the RKKY interaction, the concentration 
expansion of the free energy and of certain thermodynamic 
quantities was carried out for the state of total thermody- 
namic equilibrium in Refs. 28 and 29. The RKKY interac- 
tion energy, just as the dipole-dipole energy, decreases in 
proportion to r P 3 ,  and it is natural to expect a definite simi- 
larity of the results. Study of a two-temperature system, 
however, raises problems not encountered in equilibrium 
thermodynamics, some of which are solved in the present 
paper (see also Ref. 30). 

5. KINETICS OF RESONANCE SATURATION AND THERMAL 
MIXING IN A ROTATING COORDINATE FRAME 

Equations (8)  and the equations for the heat capacities 
and the energies, obtained in the preceding section, are the 
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general basis for the calculation of the saturation kinetics of 
magnetic resonance in disordered systems, and for further 
generalizations aimed at taking spin-lattice relaxation into 
account. If, however, the interaction with the lattice can be 
neglected, it is convenient to begin the description of the 
kinetics with the equations for the polarization P and for the 
dipole energy E,. Note that these are in fact the directly 
observable quantities." 

Recognizing that the left-hand side of Eq. (6)  is simply 
&, = w$/2 we find that 

A  
( 'JJ l  

$ZOO p=-th-, q=-tha W = n o 1 2 g ( p ,  q. A ) .  
2 2 '  

Recall that P =  2(S:) is the polarization of the system 
spins, and p = 2(S:), is the polarization at infinite dipole 
temperature. One more equation gives the law, already used 
in (7),  of energy conservation in a rotating coordinate 
frame: 

The system of equations becomes closed when supplemented 
by the equations P =  P(p,q), E, = E, (p,q), which we 
choose to be Eqs. (60) and (63) as well as the relation that 
follows from (65) : 

Let us consider the canonical resonance-saturation 
problem when the dipole system has initially a high tempera- 
ture and its polarization is arbitrary. (Its high-temperature 
analog is considered in Ref. 3 1. ) This is just the state realized 
in a number of EPR experiments at temperatures T- 1 K 
and at frequencies w0/2r- 10-40 GHZ.~'," We confine our- 
selves henceforth to spherical samples, neglect the fluctu- 
ation shift S2, and consider the case of dipole-dipole interac- 
tion, when a = 1/3. The DHTL leads then to the expression 

and in the CMA case we have 

Neglecting E, ( t  = 0 ) ,  we can rewrite (66) in the form 
A 

Ed = - ( P o - P ) .  
2  (71) 

We assume for the sake of argument that M, is defined by an 
equation that allows for the existence of exchange interac- 
tions. Following the established research practice, we con- 
fine ourselves to detunings IAl5 M :'2. 

It can be seen directly from (65) that P tends monotoni- 
cally to an equilibrium in which p = q, and it follows from 
(71) that E, ( t )  also varies monotonically. 

Let the final statepf = qf lie in the DHTL region. Obvi- 
ously, the entire process likewise takes place in this region. 
The condition for the applicability of DHTL in the presence 
of exchange interactions is 

For A2 5 M2 we have 

(PA)  K ~ 2 M 2 ~ 8 p 2 E 0 2 i N , x ~ l .  

Therefore q = - J,ph, Iql & 1, in the DHTL region, and at 
equilibrium Of = - 2pf/A. Substituting these relations in 
(68 ) , using (7 1 ), and retaining terms of order not higher 
than first inpf & 1, we obtain for the polarization 

and the condition for applicability of the DHTL takes the 
form 

or, recognizing that D--,4flc,, 

D I P O A ~ / ( ~ A ~ ~ N ~ X + ' / ~ D ~ )  

Note the appearance of the characteristic parameter fn,, , 
which has the meaning of the fraction of the spins subject to 
exchange interaction. Clearly, the theory considered is valid 
only iffN,, & 1, otherwise allowance must be made for the 
exchange narrowing of the line and an explicit account must 
be taken of the effect of the exchange dynamics on the ther- 
modynamics. The condition (74) is quite stringent. For ex- 
ample, if A - D it goes over into 3 I PoA 1 /D 5 1 regardless of 
the actual value offn,, , and it was patently violated in the 
experiments of Refs. 27 and 32. 

If the final state lands in the CMA region, the analysis is 
somewhat more complicated. For Pf & 1 we can again con- 
fine ourselves to terms not higher than of first order in pf, 
arriving then, after taking into account the asymptote (58), 
Eq. (53), and the relations Pf = pf and sign(PAp) = - 1, 
at the equation 

Its solution for Ilnlpf 1 I $rlApf/D I is 

and for Iln(pfI I &rlApf/D I 

With increase of A, the second term of (77) reverses sign, 
but this takes place at I A I = A,,, -- Eo/N,, , where the theo- 
ry considered is no longer applicable. For 1 - Ipf I& 1, tak- 
ing into account the relation p = IAfl I - ', the expansion 
(59), and the conservation law (71 ), we get 

In the considered range of A (if A2 5 M,), the logarithmic 
terms in (77) and (78) are estimated at 
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Equations (77) and (78) can therefore be combined to form 
the expression 

This solution is valid both for I ln 1 Pf 1 I < APr/D I and for 
1 - lPf/41. 

Figure 1 shows Pf vs the detuning, calculated from the 
approximate equations (73), (76), and (79), the results of a 
numerical calculation using Eqs. (68)-(7 1 ), and the more 
exact values obtained in the region (OEOI/Ne, - 1 by direct 
application of Eqs. (45) and (46) in the approximation (52) 
(solid lines). It can be seen that the exact dependence is close 
to the line that can be obtained from plots of the functions 
(73), (76), and (79) joined together by tangents in the in- 
termediate regions. A similar analysis for the dipole energy 
E~ is shown in Fig. 2. Note the substantial difference between 
the plots of Pf (Po,A) in the DHTL and CMA regions. In 
particular, in the CMA we get a nontrivial dependence of 
(76) on Po, and the parameter A ,  ,2, which is equal to half- 
width of the Po - Pf ( A )  line at half maximum, amounts to 

whereas in the DHTL we have 

Let us examine the evolution of the system with time. 
The dependence of the rate Wonp and q is quite weak and is 
immaterial in the qualitative analysis. If Wt4 1 Eq. (65) is 
equivalent to P = - WP, and when t increases the system 
goes over into an exponential reaxation near the stationary 
solutionpi = qf at a new rate wf. 

If the final state lands in the DHTL region, we have 

FIG. 1. Dependence of the quasistationary valueofthe polarization on the 
detuningJNe, = 5 X a: P,, = 0.76, (D,wo = 2),  curve I-extrapola- 
tion of values obtained from the equations for the CMA in the DHTL 
region; curveZ-extrapolation of DHTL into the CMA region; the dash- 
dot line shows an extrapolation, according to Eqs. (76) and (791, into the 
region 1 < A/D < 3; b-separated A Z D detuning region; curve I- 
PI, = 0.76, (P,wO = 2); curve2-P,, = 0.99 (Dzw,, = 5). 

FIG. 2. Dependence of the quasi-stationary value of the dipole energy on 
the detuning; fN,. = 5 X a-Po = 0.76, (D,o,, = 2); b--separated 
A 2, D detuning region, curves 1-PI, = 0.76, (B, oO = 2), curves 2- 
PO = 0.99, (p,o,, = 5); dashed curves-DHTL results. 

q = (3A2/M2) (Po - P) for p2< 1, as follows directly from 
the energy conservation in the RCF. Equation (65) takes 
then the form 

If the final state lands in the CMA region, then 

where 

This relation follows from Eq. (71) after substituting in it 
Eqs. (69), (70), and (67), taking the variation, and substi- 
tuting p = q = pf. 

It is easy now to find that for smallpf the approach to 
equilibrium is described by the equation 

where SP = P - Pf, Wf = W(pf ,qf = pf 1. 
In the opposite case 1 - P;< 1 it must be recognized 

that 

It follows then from (8 1 ) and (59) that 

This equation is strictly valid in the region of large IAl - Eo/Ne, where 
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Comparison of (82) and (83), however, shows that it is nat- 
ural to expect (83) to be valid also at small IAl, when 
Pfzpf, and it follows from (79) that 

It follows from (go), (82), and (83) that the rates of 
approach to equilibrium differ quite strongly for DHTL and 
CMA. 

We conclude by estimating the values of /OD I reached 
in the processes considered above, and verify by the same 
token the condition IPD I < 1 of the validity of the formulated 
theory. The basis for this analysis are the relations (67), 
(76) ,  and (79), with account taken of the fact that in the 
essential region of the values of A we have q = p,. = Pf. We 
confine ourselves next to the case Pi = 1. It is easily seen 
that max[PD I is reached in the region where Eq. (79) is 
valid. In terms of the variables b = [OD I and x = I A I/D, and 
with allowance for Eq. (67), it reduces to 

From this we get in the leading order in 7 
= In x/ln(l/fn,, ) 1 

2n lnf  - -. - 1.75 
bmor= I PD 1 m a  = 

In (IlfN,,) g+l In (llfNex) ' 
(85 

where = 3.591 is the root of the equation 6 + 1 = 6 In 6. 
The maximum is reached at x =  [ ( c +  1 ) / 2 ~ ]  
X ln( l/fn,, ) = 0.73 In( l/flex ). In this case In x 
z l n  In ( l/fle, ) <ln ( l/flex ), as was assumed in the deri- 
vation of (85). In the case f ix  = 5X lop4 we obtain 
b,,, = 0.23. This value goes over into b,,, = 0.29 when the 
next term of the expansion in 7 is taken into account. Both 
values are substantially smaller than unity. 

6. CONCLUSION 

Thus, the concentration expansion of the thermody- 
namic quantities and of the line-shape function have enabled 
us to develop for the first time a consistent theory of magnet- 
ic-resonance saturation in magnetically dilute solids at arbi- 
trary polarization and moderately low dipole temperature. 
Our solutions are valid up to the onset of spin-lattice relaxa- 
tion; this stage is quite extensive at low  temperature^.^^^ 
Allowance for spin-lattice relaxation is related to no less 
important aspects of saturation theory. 

Another object of future research is a generalization of 
the Provotorov two-temperature hypothesis to obtain a 
more detailed description of the slowest processes. These are 
the processes of establishment of quasi-equilibrium between 
small clusters of closely located spins and the remainder of 
the sy~tem.~'* '~.~" It follows from thermodynamics alone 
that a self-consistent theory that permits CAM to be intro- 
duced in the DHTL region should consider separately at 
least clusters consisting of pairs and triplets. The first steps 
in this direction were made in Ref. 33. It appears that such an 
approach can lead to a theory that is valid at alternating- 
field amplitudes that satisfy the condition WT, 5 1, where 7, 
is the time of the flip-flop processes in the main bulk of the 
spins. 

The fact that the quantity PD-PE turned out to be the 

smallness parameter corresponding to concentration makes 
our results applicable to the study of a large group of phe- 
nomena connected with dynamic cooling of a subsystem of 
spin-spin interactions. In particular, a temperature region 
becomes accessible in which a transition of a system of di- 
pole-interacting spins into a dipole-glass system sets in.34 
A n a l y ~ i s ~ . " , ~ ~  of the results of the spin-temperature approxi- 
mation of nonlinear effects shows that in the case of a strong 
separation the smallness parameter of this approximation is 
~ E ~ - D E / ~ ,  i.e., the concentration expansion increases the 
range of dipole temperatures that lends itself to analysis by 
f - ' times. 
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