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Using the Mitus' and Potashinskii theory as the base [Soviet Physics JETP 53,198 1; Phys. Lett. 
87A, No. 4, 179 ( 1982) 1, a cluster model of melting and premelting of metals is developed. The 
concentration of oriented defects, i.e., microcrystalline regions (clusters) with an irregular lattice 
orientation, is assumed to increase in the crystal as its temperature approaches the melting 
temperature Tm . The interaction between the oriented defects is described in the mean-field 
approximation with allowance for the entropy of the intercluster boundaries. The free energy of 
the system is expressed in terms of the orientation order parameter 77. In the crystalline phase 
77 =: 1 while at the point Tm the parameter 77 abruptly vanishes. A melt is characterized by a 
completely random orientation of the crystalline clusters. The parameters of the model are 
estimated by comparing the calculations with the experimental data for several fcc metals. The 
contribution of the oriented defects to premelting effects is assessed with the specific heat as the 
example. Some possible mechanisms of defect formation are discussed. 

The first structural theory of melting and premelting of 
metals was suggested by Frenkel'.' I t  assumes that the equi- 
librium concentration of vacancies c,  , increasing with tem- 
perature, experiences a jump from C, ~ 1 0 - ~ - 1 0 - ~  to 
c ,  =: lo-' at the melting point Tm . According to the theory, 
a melt is considered in essence as a crystal with a high con- 
centration of vacancies. Later on, a vacancy theory of melt- 
ing was developed by Lennard-Johns, Devonshire, Eyring et 
al. (see Ref. 2). It soon became clear, however, that the re- 
sults of structural experimental studies give some evidence 
in favor of cluster rather than vacancy structure of melts. In 
the simplest model, the melt of a metal at the point Tm can be 
represented as a set of crystal clusters ( 10-10' atoms) with a 
chaotic mutual ~rientation.~ Within the framework of this 
concept, the phenomenon of the premelting may include not 
only an increase of c ,  but also the appearance in the crystal, 
near Tm , of microcrystal regions disoriented relative to the 
basic lattice. The possible role of such "collective position 
defects" in melting was suggested by Ubbel~hde .~  However, 
this idea was formulated the most clearly in the model of 
Mitus' and Patashin~kii .~,~ The aim of the present work is to 
develop the model suggested in Refs. 4 and 5 in more detail 
and to correlate it with the available experimental data. 

where ci is the contribution of cells with ith orientation and k 
is the Boltzmann constant. The first term in ( 1 ) takes into 
account the interaction between the clusters in the neighbor- 
ing cells in the mean-field approximation. The clusters with 
the same orientation are thought not to interact with one 
another, while those with different orientation (i#j) add to 
the free energy some contribution proportional to y and in- 
dependent of i and j. The value y has the meaning of the total 
free energy of the boundary separating a cluster with orien- 
tation i from the neighboring clusters with orientations jfi, 
j ' f i ,  ... . The entropy s =  -dy /dT and the energy 
E = y + Ts connected with the value y are assumed con- 
stant. The second term in ( 1) describes the configuration 
entropy of the system. 

The interfaces between disoriented clusters have, prob- 
ably, a sparser structure than the ideal lattice, therefore their 
formation can be connected with the elastic energy. How- 
ever, elastic effects may be lacking if the cluster is nucleated 
at a vacancy site and the volume of the vacancy 0, is distrib- 
uted along the developed interface. There is a value of n that 
gives ideal compensation of the volume effect. The forma- 
tion of such clusters is energetically of the best advantage, 
and correspondingly their concentration is a maximum. It is 

1. FORMULATION AND ANALYSIS OF THE MODEL 
these "optimumw clusters that are kept in mind in the model. 
The possible mechanisms of their formation are discussed in 

Following Refs. 4 and 5, let us suppose that near Tm the the last section. 
formation of microscopic regions (clusters) is possible, with The equilibrium state corresponds to a cluster distribu- 
their lattice substantially disoriented relative to the basic lat- tion over ~ ~ ~ i ~ ~ t ~ t i ~ ~ ~  such that the right-hand side of ( 1 ) 
tice of the metal. TO calculate the contribution of such C ~ U S -  is a minimum if the normalization zci = 1 is taken into ac- 
ters to the free energy let us apply the cell method, similar to count. ~t high temperatures, an isotropic state of the system 
that which we used in Refs. 6 and 7 for the analysis of hetero- with a chaotic orientation of clusters is to the advantage: 
phase fluctuations. Let us divide the whole volume of the 

cq  = ... = ,*, = N - 1.  hi^ state corres~onds to a melt in the - L - 1. 

metal into identical cells with n atoms each and suppose that cluster model. ~t a certain temperature T, a preferred ori- 
the lattice of each cell can have Norientations in relation to a ,,tation of clusters spontaneously arises in one of directions 
common system of coordinates. Neglecting a correlation in (say, 1) and is enhanced as the temperature decreases. As 
the orientation of neighboring cells, let us describe the de- T,O the system approaches the state ci = 1, 
sired contribution to the free energy per cell in the form c ,  = ... = cN = 0 corresponding to the ideal crystal. 

N N N Let us calculate all the characteristics of melting and 

F-F.  = 1 y, c,ej( i -Si , )  + k ~  ze, In c i ,  ( 1 ) premelting within the framework of the above model. Since 
i-i jpi I-i all orientations are considered equivalent, any state of the 
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FIG. 1. Temperature dependence of the orier~tational order parameter. 
The solid lines denote equilibrium states, the dashed line denotes metasta- 
ble states, and the dash-dot line indicate absolutely unstable states. The 
points of the loss of stability of phases are marked. 

system is described by a single orientation order parameter 
77: 

Minimization of ( 1 ) with respect to (dF/dg = 0)  gives 

Equation (3) has two solutions (Fig. 1). One of them, 
g = 0, describes a melt with a free energy 

F, ( T )  =Fo(T)+y ( N - I )  I2N-kT In N. (4)  

The second solution, 71 > 0, describes the crystalline state 
with allowance for the orientational defects, with g-- 1 as 
T- 0. To analyze the g ( T) dependence, it is simpler to ex- 
press T from (3) in terms of g: 

The temperature dependence of the free energy of the crystal 
F, ( T) is obtained by substituting g ( T) in ( 1 ) . 

The melting point T, is determined from the equality 
F, ( T) = F, ( T) (Fig. 2). Besides Tm , there are points of 
loss of stability of two phases, TT and T,*. They represent 
the temperature limits of supercooling (superheating) of the 
melt (the crystal) and are determined from the condition 
a 'F/h2 = 0, i.e., 

together with (3).  From ( 6 )  and (3),  the point ofthe loss of 
stability of the melt is 

FIG. 2. Temperature dependence of the free energy ( F ,  ) of a melt and of a 
crystal with (F ,  ) and without allowance (F,) for oriented defects. 

The point T,* can be found only approximately. 
For the further calculations, let us take into considera- 

tion that under real conditions N% 1, with 1 - g 4 1 for the 
crystalline state (O<  T< T:). To find T,,, , we assume ac- 
cordingly F, ( T) -- F,( T) i.e., we drop the contribution of 
the orientational defects to F,. Then from the condition 
F, (T) = Fs (T), using (4), we obtain 

The approximation made gives an error in T, of order N -4 .  

Further, taking into consideration the smallness of 1 - g 
and N -' in (3)  and (6), we find the point of loss of crystal 
~tability 

At this point g* = 1 - l/ln N. Using (4) ,  it is not difficult to 
find the jumps of the energy ( 2 )  and of the entropy (s, ) at 
the melting point. This yields, per atom, 

Considering the condition N( 1 - g ) - ' $1, we obtain 
from Eq. (3)  

According to (2),  c, + ... + c, -- 1 - g. Therefore, ( 12) 
has the meaning of the concentration of the orientational 
defects in the crystal or, in other words, the fraction of the 
atoms belonging to the clusters with disturbed lattice orien- 
tation. This value grows with temperature and at the melting 
point reaches a maximum value equal to exp[ - y (  Tm ) /  
kT, ] = N -'. (Incidentally, one can see from this result 
that the conditions 1 - 77 4 1 and N$ 1 are equivalent.) 

The received equations allow one to estimate the contri- 
bution of the orientational defects to the premelting behav- 
ior of the heat capacity, thermal expansion, and other phys- 
ical properties. For instance, the contribution to the heat 
capacity per atom is 

At the melting point this contribution is a maximum and 
equal to 

2. COMPARISON WITH EXPERIMENTAL DATA 

The model contains four parameters, n, N, e and s, 
which we wil1,consider as fitting parameters. For their calcu- 
lation nn the basis of experimental data one needs four 
knob aelting characteristics. For these, let us choose the 
melting temperature of the metal Tm , the latent heat of melt- 
ing A, the volume melting effect A V/V and the surface ten- 
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TABLE I. 

sion a,, of the melt-crystal boundary at T = Tm . The data 
necessary for the calculation for several fcc metals are pre- 
sented in Table I (Ref. 8).  

Equations (8)  and ( 10) relate Tm and R to the desired 
parameters. Some additional assumptions are needed to find 
them. 

First, as already indicated, an orientational defect is 
probably generated near a vacancy, fully inheriting its vol- 
ume R, . A dynamic equilibrium is established between the 
oriented defects and vacancies and does not affect c, . Hence, 
as new defects appear, the crystal volume V increases by a 
value close to V(fl,/nR) (1 - v) ,  where S1 is the atomic 
volume. At the melting point this value changes jumpwise by 
- v(R,/nR)Av, where AT is the jump of the order param- 

eter. Assuming that this change in the volume completely 
determines the volume melting effect and taking into ac- 
count that AT =: - 1, we obtain 

Experimental data Calculation 

For the majority of fcc metals, R, ~0.8S1. 
Secondly, one should take into account that 

y ~ ~ , u ( n f l ) ~ ' ~  where u has the meaning of the surface ten- 
sion of the intercluster boundaries and g,  is a geometric fac- 
tor depending on the cluster shape. For definiteness sake, let 
us assume a spherical approximation where g, = ( 3 6 ~ )  'I3. 
On the other hand, the value of u at the melting point can be 
expressed through us,. Indeed, within the framework of the 
given model the melt-crystal interface between regions with 
a chaotic and almost ideal orientation of clusters consists of 
the segments of intercluster boundaries with tension u. On 
the basis of this, we can assume a( Tm ) = g2us,. The geomet- 
rical factor g, takes into account the fact that a melt-crystal 
interface on a scale of (nR)'I3 resembles a cobble-stone 
pavement rather than a smooth boundary. In the spherical 
approximation, such a boundary has roughly half the area of 
the combined intercluster boundaries forming it, hence, 
g,=: 1/2 and thus, y(Tm ) z (9n-/2)'13 us, ( n ~ 1 ) ~ ~ ~ .  since ac- 
cording to (8)  y( Tm )/kT,,, = 21n N, we finally obtain 

A1 
Au 
Cu 
Ni 
Pb 

The values of n, N, E and S calculated from equations 
(8),  ( lo),  ( 15) and ( 16) are presented in Table I. 

The derived values of n show that between one and 
three coordination spheres can take part in rotation around a 
central atom (vacancy). The number of orientations N 
(from 15 to 40) is not as large as could be expected, which is 
probably connected with the realization of a set of the ener- 
getically most advantageous orientations. This is indirectly 
confirmed by the following consideration. Using the ob- 

tained values E one can estimate the surface energy E of the 
intercluster boundaries by the equation E = ( 3 6 ~ ) ' ~ ~  
~ ~ ( n S 1 ) ~ l ~ .  The obtained values (for instance, 0.26, 0.46 
and 0.60 N/m for Al, Cu and Ni, respectively) are a little 
lower than the energies of the grain boundaries of general 
type but are close to the typical energies of the special boun- 
daries (Ref. 9). At the same time, the entropy of the inter- 
cluster boundaries is unusually high. The tabulated values of 
s pertain to the "surface" atoms of a cluster, so that each has 
an entropy of order of ~ n - ~ / ~ z 5 k .  However, one should 
keep in mind that this value might be overestimated owing to 
the roughness of the model. For instance, the cell method 
takes no account of the entropy due to from the differences in 
the sizes and shapes of the clusters. When fitted to experi- 
ment, this unaccounted-for entropy is ascribed to interclus- 
ter boundaries. 

Table I shows the maximum contribution of the orient- 
ed defects to the heat capacity ( 14). An analogous value for 
vacancies calculated by the equation 

934 
1338 
1358 
1728 
601 

C,,"lk= ( ~ , l k T , ) ~  exp (s,lk) exp ( -~ , lkT , ) ,  (17) 

has the same order of magnitude. Thus, C K/k = 0.055 and 
0.026 for A1 and Pb (using the experimental values 
E,  = 0.73 and0.55 eV,s, = 1.76 and 1.60kofRef. 10). Since 
the vacancy contribution is registered reliably, the value of 
ACm can also be measured in principle. However, the diffi- 
culty is that the contribution of the orientational defects as 
well as of other premelting structures can manifest them- 
selves only in a narrow interval near Tm . This pertains not 
only to the heat capacity but also to other values. Using ( 12) 
one can evaluate the temperature To above which the contri- 
bution of orientational defects prevails the vacancy contri- 
bution, from the condition 

0.112 
0.130 
0.135 
0.181 
0.049 

1-q ( T )  =c,(T)  =exp(s , /k)exp(-&,/kT)  

Thus, this condition gives the values To = 927 and 560 K for 
A1 and Pb which are close to Tm . 

As a consequence of experimental difficulty, rather few 
reliable data on premelting were obtained, in spite of many 
years of effort3 (for a review of earlier works, see Ref. 1 1 ). A 
shortcoming of the majority of the studies in which premelt- 
ing effects were observed is that impurities can "blur" the 
melting point. In this sense, the results of Refs. 12 and 13, 
obtained for especially pure samples with a thorough evalua- 
tion of possible influence of the impurities, seem to be the 
most reliable. 

The electrical resistance R of lead was measured to an 
accuracy of 10% in the range from 300 K to Tm = 601 K in 
Ref. 12. After separating out the phonon contribution, the 
R (T)  dependence was approximated by a sum of two terms 

6.5 
5.2 
4.2 
5.4 
3.6 
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0093 
0.132 
0 177 
0.255 
0.033 

0.24 
0.072 
0.161 
0.363 
0.053 

12 
15 
19 
15 
22 

1035 
1502 
1470 
1878 

648 

2 69 
3.90 
5 13 
5.43 
2.60 

2 98 
3.48 
3.22 
2.75 
3.68 

27.17 
26.65 
37.27 
30.81 
34.98 



of the form of b exp( - &/kT). The first of them, which 
made a contribution at all temperatures, corresponded to 
scattering on vacancies since the value E~ ~ 0 . 4  eV is close to 
E, . Beginning from T = 540 K, a contribution of the second 
term was observed, with E, = 1.42 eV and b, = lo7 b,. The 
authors attributed the second term to the contribution of 
new premelting defects containing, according to their esti- 
mate, n=: 17 atoms and having an energy and entropy of 
formation of E, and s, = 16 k. One can see from the compari- 
son with the data in the table that these values do not contra- 
dict the cluster model if its approximate character and the 
difficulty of separating out the second exponential of the 
experimental curve are kept in mind. 

In Ref. ( 13) the heat capacity C of mercury was mea- 
sured to an accuracy of 3 X lo-'% in the temperature range 
from 0.721 to 0.997Tm. At T <  0.91 T, the C(T) depen- 
dence was described by the sum of an electronic component, 
a lattice exponential (taking anharmonism into account) 
and the usual vacancy exponential. At temperatures 
0.91Tm, the new contribution C(T) appeared, which the 
authors attributed to orientional defects and described by 
the equation4 

where F =  const. However, they were unable to reach an 
adequate agreement. The reason of this discrepancy be- 
comes clear if one takes into account the fact that the depen- 
dence ( 18) is valid in narrow neighborhood of the point T:. 
It can be satisfied near Tm if Tm =: T f .  In the particular case 
of N = 4 and s = 0 considered in Ref. 4 this is really true but 
in case of more realistic parameter values the temperatures 
T f  and Tm differ substantially, (Table I) .  Under such con- 
ditions, the exponential dependence ( 13) should be more 
precise. It would be pcssible to check this assumption by 
reviewing of the data of Ref. 13. 

3. DISCUSSION 

Thus, at reasonable parameter values the cluster model 
agrees satisfactorily with the available experimental data on 
melting and premelting of metals. In contrast to other struc- 
tural theories, the cluster model describes directly the loss of 
the long-range order at the melting point and gives a more 
realistic structure of a melt. The model suggests that orien- 
tional lattice defects can arise in a crystal near Tm . Let us 
discuss the possible mechanisms of their formation. 

1. The formation of an "extended" vacancy from a nor- 
mal vacancy, followed by the transformation "normal va- 
cancy s "extended" vacancy *oriented defect." The idea of 
"extended" point defects was developed by Seeger14." to ac- 
count for the high-temperature anomalies in silicon but was 
used later to analyze premelting effects in  metal^.'^.'^ The 
"extended" vacancy has a non-ordered (liquid-like) struc- 
ture resulting from strong displacements of 10-20 atoms 
surrounding the vacancy. The structure is thought either to 
be unstable to one of the generalized coordinates and consid- 
ered as an activated complex for vacancy jump,",18 or it is 

assumed to be a stable state separated by potential barriers 
from the other states. Having a high energy and entropy, the 
"extended" vacancies originate at high temperatures and are 
in dynamic equilibrium with the normal vacancies. Accord- 
ing to the suggested mechanism, a lattice section with an 
irregular orientation, i.e., an orientational defect, is pro- 
duced by a successive crystallization of an "extended" va- 
cancy. After some time, it may again become disoriented and 
later crystallize with regular orientation or again into an ir- 
regular lattice but of another orientation. 

2. In the vicinity of Tm , the concentration of vacancies, 
interstices, and other defects increases. As a result of their 
interaction, they are ordered and form cell boundaries with 
disoriented lattices. An analogous mechanism was consid- 
ered for the melting of two-dimensional crystals.'9320 It was 
assumed that as temperature and concentration of the dislo- 
cations (in the two-dimensional case, point defects) in- 
crease, they line up in dislocation walls. The walls then close 
on themselves and form the boundaries of disoriented clus- 
ters, the number of clusters and the disorientation angles 
increasing in the vicinity of Tm . Recently such a picture of 
the two-dimensional melting was revealed by computer sim- 
ulation by the molecular-dynamics technique." Although 
the two-dimensional melting has its own distinctive features, 
one can assume that in the three-dimensional case genera- 
tion of disoriented crystalline clusters is possible as a result 
of association of interacting defects. 

To choose between these mechanisms as well as to 
check the adequacy of the model itself, further accumulation 
of experimental data is required. 
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