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It is shown that several magnons in an easy-axis Heisenberg ferromagnet having a large spin Sa t  
the lattice site and large single-ion anisotropy produce (if their number N92S)  on one- and two- 
dimensional lattices bound states at low values of the mass-center quasimomentum. On a three- 
dimensional lattice the bound states are formed by N, < N, < N, < ... magnons. The upper bound 
ofN, is estimated. The quantum results for dimensionalities d = 2 and 3 are stronger than the 
quasiclassical results for dynamic solitons. 

1. When other than linear approximations are used in 
solid-state theory, it becomes necessary to consider not a gas 
of independent elementary excitations but a system of inter- 
acting quasiparticles. The quantum-mechanical aspect of 
this problem is that the stationary states of such a system are 
not free-motion states, but scattering states and bound states 
(BS). The latter are observed in experiments on neutron and 
photon scattering and play an important role in low-tem- 
perature thermodynamics of low-dimensionality systems. 
They are also closely related to solitons, which are nonlinear 
excitations in crystals. 

The best known problem is that of N magnons in an 
easy-axis Heisenberg ferrogmagnet. The Hamiltonian is 

where J,,, = J,,, , = J, are exchange integrals satisfying 
the condition 

(here and elsewhere C, with i = 1,2, ... are positive constants 
andp is a cylindrical coordinate); S 2 = S:  _+ iS 5;, , where 
SZy*' are the projections of a spin operator, of value S, local- 
ized on the mth site of a d-dimensional primitive cubic lat- 
tice; O < a <  1, and D>O are the exchange- and single-ion ani- 
sotropy constants, respectively. The ground state X ,  
corresponds to the maximum projection of the total spin on 
the z axis. Following the ground state are states correspond- 
ing to the projections s,,, - N, N = 1, 2 ,... of the total spin 
on the z axis-the so-called N-magnon states. Spin exten- 
sions can be regarded as quasiparticles, and the Hamiltonian 
( 1 ) describes transport of the quasiparticles from site to site 
and their interaction. The number of quasiparticles is con- 
served in this model. 

The state of an N-magnon system is described in the 
coordinate representation by a wave function $,, where 
n = {n, ... n,) is the probability amplitude of the spin exten- 
sions being located on sites n ,... n, (if s spin extensions are 
located on site m, the number m is repeated s times in the 
sequence {n, ... n,). For the N-Magnon wave function $, 
one obtains an N-p~rticle Schrodinger equation on the lat- 
tice,' similar to the usual Schrodinger equation in contin- 
uous space.2 

The most complete results for the model ( 1 ) were ob- 
tained for the dimensionality d = 1. For S = 1/2 and D = 0 
there exists a single BS of N magnons at all values of the 
mass-center quasimomentum K.3-5 The two-dimensional 
problem has also been completely solved6-'; in particular, 
ford = 2 there exist from one to three BS, depending on the 
values of K, a, and D. Ford  = 3 there are from zero to four 
BS, with no BS existing at d = 3 for small values of IKI and 
for low anisotropy. Bound states for N = 3 were considered 
in Refs. 9-12 (the Faddeev equations were solved numeri- 
cally) : at small values of K and d = 2, BS exist for all values 
of a and D, while ford = 3 they exist only if the anisotropy is 
large enough. For fixed, N, a ,  and D and for almost all 
"transport matrices" J, there exists at d = 3 a value So such 
that for all S >  So, i.e., for low anisotropy, there are no BS of 
2, ..., N magnons.I3 Note that in the limiting case of the Ising 
model, when a = 0 and the spin extensions are immobile, the 
BS are easily obtained and exist for all Nand d. 

The discrete Schrodinger equation is particularly sim- 
ple in the case of a large spin and a strong single-ion anisotro- 
PY: 

Neglecting in the Hamiltonian small (in norm) terms of or- 
der max{N /2S, J/D), the equation for the wave function of 
the N-magnon BS $, takes under condition (3)  the form 

where E is the energy of the BS and 
(n/n,)(n, +p)  ={n ,... (ni  + p  )... n,).Inthiscasewehave 
a model of N bosons on a lattice, interacting via two-particle 
contact attraction potential. This is the simplest of all non- 
trivial models of the problem of several quasiparticles on a 
lattice,I4 and was treated by numerical and approximate 
 method^.'^-'^ In the momentum representation, the state of 
the system is described by the wave function 
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where r ,  is the coordinate of site j, the lattice period is set 
equal to unity, k = (k, ... k,), k, ET d, T is a d-dimension- 
a1 torus-the Brillouin zone in the case of a primitive cubic 
lattice, and k, is the quasimomentum of the ith magnon. The 
equation for the wave function of an N-magnon BS in the 
momentum representation is 

Iv7 
(Hcp) (k) = ( )- 8 (ki)) cp (k) 

j=1 

where ~ ( k )  is the magnon kinetic energy. 
Dynamic magnetic solitons, which appear in contin- 

uous classical models of an easy-axis Heisenberg ferromag- 
net,I6 are linear superpositions of magnon BS, as shown by 
the results of semiclassical quantization of soliton solu- 
t ion~. '" '~ It follows from the semiclassical results that sta- 
ble dynamic solitons, and consequently also N-magnon BS at 
K=OexistforallNinthecased= 1,forN>N2-D/SJin 
the cased = 2, and for N > N3 - (D /SJ) 3'2 in the cased = 3. 
We shall show that the quantum-mechanical approach 
yields stronger results concerning the existence of BS than 
the semiclassical approaches, which obviously contradict 
the known exact result ford = 2 and N = 2. 

2. We begin with the two-particle problem. After separ- 
ating the mass-center motion, the Hamiltonian takes in the 
momentum representation the form 

where 

EX (k) =E (k/2+k) +E (k/2-k) . 

We consider a high symmetry-case of the general position: 

and choose the energy origin such that E, (0) = 0. We ob- 
tain a sufficient condition for the existence of BS with energy 
E<O by choosing a trial wave function p,(k) such that 
(p21 HK 1p2) < 0. The existence of a BS will follow then from 
the minimax principle.* 

The leading considerations that permit the choice of the 
trial wave function are the following. Obviously, it is easiest 
to obtain a criterion for the existence of a weakly bound 
state. This means that the wave function is concentrated in 
the region of small quasimomenta. In addition, at large dis- 
tances, where the potential does not act, the wave function 
should decrease just as the solution of the Helmholtz equa- 
tion in empty space: 

for small lkl and a-0. On this basis, we choose the trial 
wave function in the form 

where k, is a certain fixed value of the quasimomentum, 
A ,  (k,, a )  is a normalization factor, and d = 1 or 2: 

Let us calculate the matrix element 

where a, = {keTd:(k( < k,), neglecting in the evaluation of 
the integrals the terms of high order of smallness in a: 

1. 

~ r ( k ) d k -  2 J"  k2dk =- ci' + 0 ( I ) ,  
d=l: J (k2+az)z 2m , (k2+02)2 ma 

Qo 

dk C," (J-) = i + o ( l ) ,  cip,c,--1. 
00 

k2+a2 a 
b 

d=2: J ~ * ( k ) d k  2n k3 dk C,' 
=- J. = --ln(%) +o(I). 

Q, 

( k ' + ~ ~ ) ~  2m , (k2+a2)2 m 

O(x)  denotes quantities of order x. 
It is seen from (8)  that if a is chosen small enough, a 

two-magnon BS exists for d = 1 and 2 at any value of K. 
An attempt to extend the variational method to include 

the case of a large number of magnons meets with the follow- 
ing difficulty. In the two-particle problem we know the loca- 
tion of the lower boundary of the continuous spectrum. In 
the N-particle problem, on the other hand, the criterion for 
the existence of a BS is the existence of a wave function p, 
such that 

where 2, (K) is the lower boundary of the continuous spec- 
trum. The continuous spectrum of the Hamiltonian (5 )  cor- 
responds to scattering states and has a characteristic multi- 
channel s t r u ~ t u r e , ' . ~ ~ ' ~ ~ ~ ~ :  it consists of a finite number of 
branches that are segments on the energy axis. Each branch 
corresponds to the scattering states of clusters of n,, ..., n, 
magnons, where n, + ... + n, = N. The energy of such a 
state is En, (K, ) + ... + E,, (K, ), where E,,, (K, ) is the ener- 
gy of an n, -magnon state and depends on K,. Assume that 2, 
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3, ..., N - 1 magnons form BS at small IKI. Let 
E, (K), j = 2, ..., N - 1 be the energies of the ground BS. It 
was shown in Ref. 1 that min E, (K) = E, (0), i.e., the ener- 
gy of immobile space, a statement that is not trivial on a 
lattice. It follows hence that the lower edge of each branch of 
the continuous spectrum 

In addition, it follows from elementary variational consider- 
ations that the larger the number of bound magnons, the 
lower the energy of the ground BS: E,, (0)  < E,, (O), j, > j2, 
meaning that the lower boundary of the continuous spec- 
trum corresponds at K = 0 to a two-cluster breakup: 

at a certain N, [if N, = 1, then El (0) = ~(0) 1. This means 
that the trial function p, must be chosen such that 

The idea of choosing such a function was proposed in 
Ref. 19 for an N-particle Schrodinger equation in a contin- 
uous space. We extend this method to include the case of a 
lattice. Since, however, ~ ( k )  is not a quadratic function, this 
can be done only for small values of IKI, inasmuch as for 
values that are not small the lower boundary of the contin- 
uous spectrum can correspond to an s-cluster breakup with 
s > 2, and the method of Ref. 19 is not valid. 

3. We begin with the case N = 3. Then 2, (0) = E2 (0). 
Let a, (k)  be the wave function of the ground two-magnon 
BS that is characterized by the value p of the mass-center 
quasi-momentum of two magnons. We choose the trial 
three-magnon function (at K = 0)  in the form 

Using expression ( 5 )  for H,, we obtain 

(p, 1 HK 1 p 3  = 5 ep (k) @P' (k) ~ 2 '  (P) dP dk 
( T d Y  

- D [ 0, (k) (k') p2z (p) dp dk dkt 
( T d Y  

x 6 (k, .+ k, - k,' - k,') dk, dk,'dk3 dk,' 

( T d P  
x pa (k,') 6 (k, + k3 - k,' - k,') dk, dk,' dksl dks 

x ( 5 a$ (k) dk)} - D 5 v2 (k3) ~2 (k,') 
( T d )  (TdY  

X @-k, (2kl 4- k3) @-k,, (2k1 + 2k3 - k,') dk1dk3 dk,' 

x ,ak,' (- 2k, - Zk, + k,') dk2 dk3dk,'. (1  1) 

Note that the expression in the square brackets is equal 
to ( a p  I H, I ) = E2(K). As to the second and third terms, 
inasmuch as the function p,(k) is large at J k J  -0 and de- 
creases rapidly with increase of I kl, we have 

More accurately, 

A similar expression is given by the third term. Recognizing 
that 

we have 

Expressing E2 ( p) in the form 

Ez (p) =Ez (0) +pZ/2M+o (p2) 

(we consider only a high-symmetry case) we get, just as in 
the two-particle estimate, 

(Bi >O. At a sufficiently small value of a we have 
(p31Holp,) < E,(O), i.e., three magnons form a BS at d = 1 
and 2 and K = 0. 

Assume that at K = 0 there exist 4-, ..., ( N  - 1 )-mag- 
non BS and the lower boundary of the continuous spectrum 
corresponds to a breakup N = N, + N,. If N, = 1, the proof 
is perfectly similar to that in the three-particle case. Let 

(p, kg . . . k~,-S) , @z(-P, qfi . . . qjv2-1) 

be the wave functions of the N,- and N,-magnon ground BS, 
characterized by mass-center quasimomenta p and - p of 
the N, and N2 magnons, respectively, and let 
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k l . . . k N , - I ,  { Q ~ . . . ( I N , - L }  In the second step we have used here the fact that in the first 
and third terms the sum of the integrals over 

be the quasimomenta of the ( N ~  - l Ist, d k ( k  = { k ,  ... k,, - , )) is (@, I Hp I@,) = EN, (p), and in the 
(NI 4- 1 )st,..., ( N  - l)st  magnons. We seek the func- second and fourth terms the sum of the integrals over dq is 
tion of the N-magnon BS at K = 0 in the form ( a 2  IH:-, I@,) = EN, ( - p). In the calculation of the fifth 

term we have taken from under the integrals over p and p' the 
qN=Qi ( p ,  kl . . . kNr-l) @2(-p, q l .  . . Q N z - I ) ( P ~ ( P ) .  ( 14) expressions 

It should be noted that if we have assumed the existence of 
BS at K = 0 and N = s, with energies not on the boundary of 
the continuous spectrum, it follows from the general prem- 
ises of perturbation theoryZ that s-particle BS exist in a cer- 
tain region of values I K I < k,(s). Clearly, the constant k, in 
the definition of the function p2 can be chosen to have a 
certain value k, < min{k,(N, ), k,(N,) 1. Using expression 
( 5 ) ,  we obtain 

X 0 , ( k 1 .  . . ki' . . . kj' . . . kN, )  

X 6 (ki + k j  - ki' - k j f )  @a2 (- p, q )  vZ2 ( p )  dk dq dkildki' 

neglecting terms of higher order of smallness in a. In the 
third step we used the wave-function normalization condi- 
tion. We have arrived at a two-particle estimate and found 
that an N-magnon BS exists at K = 0 and d = 1,2 if there 
exist 2-, 3-, ..., ( N  - 1)-magnon BS at d = 1,2 and at small 

I KI. From the existence of an N-magnon BS at K = 0 follows 
its existence at small IKI by virtue of the general perturba- 
tion-theory theorems (it is easy to verify that the entire rea- 
soning is independent of the dimensions of the existence re- 
gion). The existence of such BS follows hence by induction. 

The physical meaning of the method employed is sim- 
ple. The BS is represented as an effective quasiparticle 
formed by intracluster interactions. Two such quasiparticles 
interact effectively, so that the interaction formed by the 
intercluster forces turns out to be attractive. Then, by the 
two-particle criterion, the two effective quasiparticles be- 
come bound, and an N-magnon BS exists by induction at 
d = 1,2 andK = 0. 

4. We turn now to the case d = 3. A small number of 
magnons does not become bound at large values of S.13 Let 
us show that a sufficiently large number can be bound and let 
us estimate this number. We assume that at K = 0 there are 
no BS of 2, ..., N - 1 magnons. The lower boundary of the 
continuous N-particle spectrum is then 

Z N  ( 0 )  =N min E ( k )  =-NSI. 
k 

X 0 2 ( q 1 .  . . qil . . . q,' . . . qN,) r: The energy origin is chosen here such that 

x 6 (qi +- qj - qir - q j1 )  0 1 '  ( p ,  k )  ~ z Y P ) d k d ¶  dqi' dq ' o = -  J - J  1.=0. 
NI NI P 

-0 )S s m1(k ,... k i . . . k N )  We choose the N-magnon trial function in the form 
i=l j=1 ( T d  )N+1 

N 

- .  q ~ ) @ ~ ( q l .  . . q j l . . . q N )  G ( k i + q j - k i t - q ' )  i.e., all the spin extensions are on one site. Using expression 
(41, we get 

= 1 1 HN, 1 0 2 ) )  ~ 2 '  ( P )  @12 ( P ,  k )  dp dk (@.v(HI @ N ) = - D N ( N - ~ ) / ~ .  (17) 
(Td )N* 

The criterion for the appearance of an N-magnon BS is 

+ 5 I H N I  I a l ) )  v r 2  ( P )  0 2 '  ( P ,  ( I )  dp a9 
( ~ d  )N* <@NIH(@N)<ZN(O)<-NSJ, 

N> (SJ1D-I-I). (18) 

The estimate (18) shows that a BS appears at a certain 
= j [EN,  ( P )  + EN. (- P ) ]  vZz ( P )  d ~  - NlNrD ( 5 q2  ( P )  d p r  . Nc -SJ /D  (this is an upper-bound estimate). The reasoning 

~d ~d in Ref. 19, which can be used without change for the case of a 
( 15) lattice, makes it possible to prove that there exists an infinite 
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sequence of natural numbers N, < N, < N2 < ... such that 
N, -, N,-, ... -magnon BS exist. 

5. It is of interest to compare the results with the soliton 
solutions of the classical models and with their semiclassical 
interpretation. The quantum-mechanical treatment under- 
taken in the present paper predicts the existence of weakly 
bound states, and consequently, in accord with the generally 
accepted treatment, also of solitons, which are not revealed 
by the semiclassical theory. 

How is this explained? It can be assumed that the ener- 
gy of two-dimensional BS is exponentially small at N <  N2 
(this is known exactly for N = 2), and therefore the semi- 
classical theory does not "catch" such BS. Another treat- 
ment is also possible. The transition from the quantum 
many-particle problem on a lattice to the classical continual 
nonlinear problem is connected with a transition from a lat- 
tice to a continuum for weakly localized states also with use 
of the mean-field approximation and the semiclassical ap- 
proach. This means that if we wish to consider the exact 
problem of N spin extensions within the framework of this 
very same approximation, we must solve the problem of 
binding one magnon in a field of N - 1 magnons in a contin- 
uous space and in the semiclassical approximation (and pair 
interaction of magnons, to be specific,-a spherical potential 
well of unit radius and of depth D).  The problem of the 
discrete levels of a particle in an external field V(r), i.e., of 
the number of BS in the semiclassical approximation, has 
been solved in Ref. 21, Ch. VII) for d = 3, but the solution 
can be easily extended to the cases d = 1 and 2. The number 
of levels is 

there are no BS. In our case the potential V(r) is produced 
by N - 1 magnons, and since the BS are weakly localized, 
the potential wells corresponding to the magnons do not 
overlap. 

In the case d = 2 we have then 

i.e., the criterion for the onset of BS is 

Since m - (SJ) - ',it follows that N, R (SJ /D + 1 ) coincides 
with the result for solitons. 

In the case d = 3 

also coincides with the result for solitons. The agreement 
between the quantum and classical results ford = 1 is appar- 

ently due to the exact integrability of the considered one- 
dimensional models. l6 

6. We note in conclusion that the above proofs of the 
existence of BS can be easily used for the following cases. 

1) Special cases of dispersion laws: ~ ( k )  cc k2" or 
E j (K)aK2"  forsmallIkIandIKl,andn =2,3, ... .Thetrial 
two-particle function must be chosen here in the form 
p2(k)  a (k2" + a2)-l. Then, 

and at a sufficiently small value of a we have 
(p21Hk Ip2) < 0. The rest of the proof is similar to that given 
above. 

2) The non-symmetric case: 

The following hypotheses, for which no proofs have 
been obtained as yet, seem likely: 

1) BS that exist for K = 0 exist for all values of K; 
2) in the case d = 3, BS exist for all N larger than a 

certain critical N, . 
The author thanks R. A. Minlos, B. A. Ivanov, A. S. 
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